Supplementary Information

A hierarchical porous carbon derived from gas-exfoliation activation of lignin for

high-energy lithium-ion batteries

Yuebin Xi, ^{a, d} Si Huang, ^{a, b} Dongjie Yang, ^{*a, b} Xueqing Qiu, ^{* a, c} Huajian Su, ^{a, b} Conghua Yi ^{a, b} and Qiong Li ^{a, b}

^{*a.*} School of Chemistry and Chemical Engineering, South China University of Technology, Wushan Road 381, Guangzhou 510640, China

^{b.} Guangdong Green Fine Chemical Product Engineering Technology Research and Development Center, Guangzhou 510640, China

^{c.} School of Chemical Engineering and Light Industry, Guangdong University of Technology, Waihuan Xi Road 100, Guangzhou 510006, China

^{d.} State Key Laboratory of Biobased Material and Green Papermaking, Key Laboratory of Pulp and Paper Science and Technology of Ministry of Education, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China

Corresponding Authors

* E-mail: <u>cedjyang@scut.edu.cn</u> (D. Y.)

* E-mail: <u>cexqqiu@scut.edu.cn</u> (X. Q.)

The specific purification process is as follows:

Dissolving 200 g of bio-refinery residue in sodium hydroxide solution and stirred at 70 °C mix for 2 h, and ensure the solution $pH \ge 12$. After the lignin completely dissolved, the insoluble impurities was filtered and removed, and the filtrate was collected. Then, adding 50 wt% sulfuric acid solution to the filtrate while stirring at 65 °C, adjusting the pH value of the solution to 2 with continue stirring for 2 h until lignin was aggregated and precipitated. After standing for more than 24 h, the purified lignin was obtained by filtration, washing and drying after the lignin has settled completely. Last, it was packaged and preserved for later experiment.

Test method of EHL purity:

A two-stage acid hydrolysis procedure was employed to hydrolyze the milled EHL and purity EHL substrates. The supernatant after filtration through filter paper was used for carbohydrate analysis by using high-performance anion-exchange chromatography with pulsed amperometric detection (HPAEC-PAD). EHL retained on the filter paper was quantified gravimetrically after drying. The typical standard deviation of the chemical composition analysis was approximately 0.3% (X. Luo, R. Gleisner, S. Tian, J. Negron, W. Zhu, E. Horn, X. J. Pan, J.Y. Zhu, *Ind. Eng. Chem. Res*, 2010, 49, 8258-8266; C. Cai, X. Qiu, X. Lin, H. Lou, Y. Pang, D. Yang, S. Chen, K. Cai, *Bioresource Technology*, 2016, 216, 968-975.).

Fig. S1 MS curve of lignin and lignin/ZnCO₃ mixture pyrolyzed in the Ar atmosphere

Fig. S2 Raman spectrum of LC-600, HLPC-ZnCO₃-600, LPC-K₂CO₃-900 and LPC-ZnCl₂-600

Fig. S3 XPS spectrum of HLPC-ZnCO $_3$ -600 and the atomic contents of C, O and N are 95.08%, 4.65%

and 0.27%

Fig. S4 the rate performance of LC-600, HLPC-ZnCO₃-600, LPC-K₂CO₃-900 and LPC-ZnCl₂-600

Fig. S5 the cyclic performance and rate performance of LPC-ZnCO₃-700

Complex	S_{BET} ^a	V _{total} ^b	V _{meso} ^c	R _{meso} ^d	ь <i>И</i>
Samples	(m² g ⁻¹)	(cm ³ g ⁻¹)	(cm ³ g ⁻¹)	(%)	ID/ IG
LC-600	12	0.02			1.20
HLPC-ZnCO ₃ -600	531	0.42	0.28	66.7	0.89
LPC-K ₂ CO ₃ -900	2300	0.48	0.13	27.0	0.72
LPC-ZnCl ₂ -600	971	0.24	0.05	20.8	0.89

Table S1 Microstructure parameters of LPC obtained under different conditions

a. $S_{BET:}$ BET surface area.

b. V_{total}: Total pore volume.

c. V_{meso} : Pore volume of mesopore.

d. *R_{meso}*: Pore volume percent of mesopore.

Complex	S _{bet}	\mathbf{V}_{total}	V _{meso}	V _{mic} ^a	R _{meso}	R _{mic} ^b
Samples	(m²·g ⁻¹)	(cm³·g⁻¹)	(cm³·g⁻¹)	(cm ³ ·g ⁻¹)	(%)	(%)
Lignin/ZnCO ₃	8.4	-	-	-	-	-
LPC-ZnCO ₃ -250	5.3	-	-	-	-	-
LPC-ZnCO ₃ -400	51.0	0.08	0.01	0.02	12.5	25.0
LPC-ZnCO ₃ -500	109	0.11	0.06	0.02	54.5	18.2
HLPC-ZnCO ₃ -600	531	0.42	0.28	0.06	66.7	14.3
LPC-ZnCO ₃ -700	677	0.78	0.66	0.05	84.6	6.4

Table S2 Microstructure parameter of LPC obtained at different temperature by $ZnCO_3$ activation

a. V_{mic} : Pore volume of micropore.

b. *R_{mic}*: Pore volume percent of micropore.

carbon sources								
Carbon source	Activator	Carbonization (°C)	SBET (m²·g ⁻¹)	Testing condition	Q _∨ ª (mAh∙cm⁻³)	Q _d ^b (mAh∙g⁻¹)	Ref	
EHL	ZnCO ₃	600	531	200 mA∙g ⁻¹	733	545	This work	
Alkali lignin (I)	кон	700	907	200 mA·g ⁻¹	276	470	1	
Corn stalks lignin	-	800	188	2 C	634	222	2	
Alkali lignin (П)	-	750	419	60 mA∙g ⁻¹	245	194	3	
Organosolv lignin	-	900	-	30 mA∙g ⁻¹	-	576	4	
Sodium lignosulfonat e (I)	-	700	296	100 mA·g⁻¹	545	431	5	
Sodium lignosulfonat e(II)	-	800	867	200 mA·g⁻¹	429	700	6	
Hydrolysis lignin	-	Room temperature	-	25 mA/cm ²	-	450	7	
Sodium lignosulfonat e (Ⅲ)	-	900	<261.9	0.2C	302	149	8	
Alkali lignin (III)	-	1000	-	0.1	-	335	9	
Graphene	КОН	850	770	200 mA∙g ⁻¹	311	180	10	
Silk	ZnCl ₂	900	2494	1C	298	1400	11	
sheep bone	-	1100	2058	1 A·g ⁻¹	124	480	12	
Duckweed	-	800	534	100 mA∙g ⁻¹	1070	1070	13	
Broad beans	КОН	650	655	1C	212	261	14	

Table S3 Comparison of lithium storage performance of carbon materials obtained from different

D-Glucose		1000	412	1C	402	310	15
Sweet potato		850	79	200 mA⋅g ⁻¹	-	370	16
Rice husk		1000	243	200 mA⋅g ⁻¹	895	403	17
Bacterial nanocellulose		900	670	75 mA∙g ⁻¹	306	386	18
Coir pith	КОН	850	2500	100 mA·g⁻¹	178	837	19
g-C ₃ N ₄ @RGO	кон	550	215	500 mA∙g ⁻¹	2221	899.3	20

a. Q_v : volume specific capacity, which obtained according to the conversion of the specific surface area conversion.

b. Q_d: discharge mass specific capacity.

References

- 1. W. Zhang, J. Yin, Z. Lin, H. Lin, H. Lu, Y. Wang and W. Huang, *Electrochimica Acta*, 2015, **176**, 1136-1142.
- 2. Z. z. Chang, B. j. Yu and C. y. Wang, *Electrochimica Acta*, 2015, **176**, 1352-1357.
- 3. H. Zhao, Q. Wang, Y. Deng, Q. Shi, Y. Qian, B. Wang, L. Lei and X. Qiu, *Rsc Advances*, 2016, **6**, 77143-77150.
- 4. S. X. Wang, L. Yang, L. P. Stubbs, X. Li and C. He, ACS Appl Mater Interfaces, 2013, 5, 12275-12282.
- 5. Z. W. He, J. Yang, Q. F. Lü and Q. Lin, Acs Sustainable Chemistry & Engineering, 2013, 1, 334-340.
- 6. Z. Zhou, F. Chen, T. Kuang, L. Chang, J. Yang, P. Fan, Z. Zhao and M. Zhong, Electrochimica Acta, 2018, 274, 288-297.
- S. V. Gnedenkov, D. P. Opra, S. L. Sinebryukhov, A. K. Tsvetnikov, A. Y. Ustinov and V. I. Sergienko, *Journal of Industrial and Engineering Chemistry*, 2014, 20, 903-910.
- 8. D. Cao, Q. Zhang, A.M. Hafez, Y. Jiao, Y. Ma, H. Li, Z. Cheng, C. Niu, H. Zhu, Small Methods, 2019, 3, 1800539.
- 9. P.N. Andrzej, H. Johan, L. Simon, S. Hannah, B. Darren, U. Anders, T. Per, L. Göran, Holzforschung, 2018, 72, 81-90.
- 10. W. Shi, Y. Zhang, J. Key and P. K. Shen, Journal of Power Sources, 2018, 379, 362-370.
- 11. J. Hou, C. Cao, F. Idrees and X. Ma, Acs Nano, 2015, 9, 2556.
- 12. J. Niu, R. Shao, M. Y. Liu, J. J. Liang, Z. P. Zhang, M. L. Dou, Y. Q. Huang, F. Wang, *Energy Storage Materials*, 2018, **12**, 145–152.
- 13. F. Zheng, D. Liu, G. Xia, Y. Yang, T. Liu, M. Wu and Q. Chen, Journal of Alloys and Compounds, 2017, 693, 1197-1204.
- 14. G. Xu, J. Han, B. Ding, P. Nie, J. Pan, H. Dou, H. Li and X. Zhang, Green Chemistry, 2015, 17, 1668-1674.
- 15. K. Tang, R. J. White, X. Mu, M.-M. Titirici, P. A. van Aken and J. Maier, ChemSusChem, 2012, 5, 400-403.
- 16. P. Zheng, T. Liu, J. Zhang, L. Zhang, Y. Liu, J. Huang and S. Guo, RSC Advances, 2015, 5, 40737-40741.
- 17. L. Wang, Z. Schnepp and M. M. Titirici, *Journal of Materials Chemistry A*, 2013, 1, 5269-5273.
- 18. L. Wang, C. Schütz, G. Salazar-Alvarez and M.-M. Titirici, RSC Advances, 2014, 4, 17549-17554.
- 19. V. Mullaivananathan, R. Sathish and N. Kalaiselvi, *Electrochimica Acta*, 2017, 225, 143-150.
- 20. S. Wang, Y. Shi, C. Fan, J. Liu, Y. Li, X.-L. Wu, H. Xie, J. Zhang, H. Sun, ACS Applied Materials & Interfaces, 2018, **10**, 30330-30336.