Supporting Information

Visible Light-induced Aerobic Oxidation of Diarylalkynes to α-Diketones Catalyzed by Copper-superoxo at Room Temperature

Vaibhav Pramod Charpe, Arunachalam Sagadevan, and Kuo Chu Hwang*

Department of Chemistry, National Tsing Hua University, Hsinchu, Taiwan, R. O. C.

E-mail: <u>kchwang@mx.nthu.edu.tw</u>

Table of contents

Experimental section	S2
EPR detection of superoxide radical	S7
Evaluation of Green metrics for photochemical process	S10
¹ H NMR, ¹³ C NMR and HRMS data	S13
References	S26
¹ H NMR and ¹³ C NMR spectra	S27
ORTEP diagram and X-ray Data of compound 2a	S61
ORTEP diagram and X-ray Data of compound 2ad	S65
ORTEP diagram and X-ray Data of compound 4	S70
ORTEP diagram and X-ray Data of compound 5	S78
ORTEP diagram and X-ray Data of compound 6	S85

Experimental section

General: All reactions were conducted in oven-dried glasswares. All reactions were conducted using a blue light-emitting diode (LED) array (30 lamps, power density: 40 mW/cm² at 460 nm) as the visible-light source under oxygen (O₂) atmosphere in all reactions. All solvents were dried according to known methods and distilled prior to use. Starting materials were commercially available (Sigma-Aldrich or Alfa-Aesar or TCI-chemicals) and used as received. ¹H NMR and ¹³C NMR spectra were recorded at 600 MHz using deuterated CDCl₃ or CDCl₃-DMSO-d₆ mixture. Chemical shifts (δ) were reported as parts per million (ppm) and the following abbreviations were used to identify the multiplicities: s= singlet, d= doublet, t= triplet, q= quartet, m= multiplet, b= broad and all combinations thereof can be explained by their integral parts. Unless otherwise specified, the proton/carbon signal of 2 residual solvents (at δ 7.24 or 2.50 and δ 77.00 or 39.51 ppm, respectively) was used as the internal reference.

General procedure for the synthesis of α -diketones:

Scheme S1: Current photochemical process for the synthesis of α -diketones

$$\begin{array}{c|cccc} Ph & \hline 10 \text{ mol}\% \text{ CuCl}_2 \\ \hline 1a & \hline 10 \text{ mol}\% \text{ CuCl}_2 \\ \hline 3.3 \text{ equiv. H}_2\text{O} \\ ACN, 12 \text{ h}, \text{ O}_2 \\ \hline 0 \\ \hline 2a \end{array}$$

To a dry test tube (20 mL) containing 10 mol% CuCl₂ and internal alkyne (diarylacetylenes) (0.5 mmol), was added 5 mL of ACN, followed by the addition of 30 μ L of water. The reaction mixture was then irradiated with blue LEDs (40 mW/cm² at 460 nm) under an oxygen atmosphere at room temperature (25-28 °C) until completion of the reaction (monitored by TLC). The reaction mixture was then diluted with 40 % ethyl acetate in hexane and stirred for 10 min. The mixture was filtered through celite and silica gel pads and washed with ethyl acetate. The filtrate was concentrated and the residue was purified by column chromatography on silica gel.

General procedure for the preparation of starting materials (internal alkynes)^{s1}:

Scheme S2: Photo induced Sonogashira coupling

A dry test tube (20 mL) with a rubber septum and a magnetic stirrer bar was charged with aryl or alkyl iodides (0.50 mmol, 1.0 equiv.), K_2CO_3 (0.52 mmol, 1.05 equiv.) and 5 mol% CuCl. The test tube was evacuated and purged with dry N₂ gas for three times and then dry ACN (2 mL) and MeOH (2 mL) were added via syringe, and finally the terminal acetylene (0.60 mmol, 1.2 equiv.) using syringe. The transparent suspension was irradiated with blue light output from a blue LED array (power density 40 mW/cm² at 460 nm) at room temperature for 4–12 h until completion of the cross-coupling reaction (as determined by thin layer chromatography). The reaction mixture was filtered through celite and silica gel pads and washed with ethyl acetate. The filtrate was concentrated and the residue was purified by flash column chromatography on silica gel to afford the desired cross-coupling product.

Procedures for the further transformations from the a-diketones:

a) Formation of benzillic acid from a-diketones^{s2}

Scheme S3: Formation of benzillic acid from α -diketones

After cooled to room temperature, the mixture was washed with ether (50 mL x 3). The aqueous layer was cooled to 0 °C, acidified with 12 N HCl (5 mL) and extracted with DCM (50 mL x 2). The combined organic layers were washed with brine, dried over MgSO₄ and the filtrate was concentrated in vacuo to get benzillic acid (3) (yield 89%).

b) Synthesis of Trifenagrel drug:

Step1: Preparation of 2-(4,5-diphenyl-1H-imidazol-2-yl)phenols3

Scheme S4: Preparation of 2-(4,5-diphenyl-1H-imidazol-2-yl)phenol from α -diketones

2-(4,5-diphenyl-1H-imidazol-2-yl)phenol

A mixture of benzil (0.525 g; 2.5 mmol), salicylaldehyde (0.3053 g; 2.5 mmol), ammonium acetate (0.5g;6mmol) and glycine (0.05 g, 0.6 mmol) was stirred in ethanol (10ml) for 3 h at 80 °C. The completion of the reaction was monitored by TLC. Ensuring the completion of reaction, the reaction mixture was poured into crush ice: cold ethanol mixture (1:1) and filtered to afford 2-(2-Hydroxyphenyl)-4,5-diphenyl-1H-imidazole (4) in 93% yield (pale yellow precipitate).

Step2: Preparation of 2-(2-(4,5-diphenyl-1H-imidazol-2-yl)phenoxy)-N,Ndimethylethanamine (Trifenagrel)^{s3}

2-(2-Hydroxyphenyl)-4,5-diphenylimidazole (0.2 g, 0.6 mmol) and K_2CO_3 (1.5 equiv., 0.12 g) was dissolved in MeOH (15 mL) and stirred for 15 mins at room temperature. Then, the solution of 2-bromo-N,N-dimethylethanamine (1.5 equiv., 0.15 g, 1.0 mmol) in 3 mL of MeOH was added dropwise into the reaction mixture over the period of 10mins. The reaction mixture was then stirred for 12 h at 60 °C. After completion of reaction, the reaction mixture was then concentrated (to remove MeOH) and then diluted with ether and layers were separated. The

filtrate was then concentrated and the residue was purified by column chromatography on silica gel (yield 85%).

c) Preparation of 2,3-diphenylquinoxaline from a-diketones^{s4}:

Scheme S6: Preparation of 2,3-diphenylquinoxaline (5) from α -diketones

Benzil (0.21 g, 1 mmol) and o-phenyldiamine (0.11g, 1.05 equiv., 1.05 mmol) was dissolved in ethanol and stirred at 60 °C for 3 h. The reaction mixture was then concentrated and the residue was purified by column chromatography on silica gel (yield 96%).

d) Preparation of 2,4,5-triphenyloxazole (6)

Scheme S7: Preparation of 2,4,5-triphenyloxazole (6)

Benzil (1.0 mmol), NH4OAc (5.0 mmol) and SnCl₂.2H₂O (0.05 mmol) was dissolved in EtOH (4 mL). The reaction mixture was stirred and refluxed for 4 h. After completion of reaction, the reaction mixture was then concentrated (to remove EtOH) and then diluted with ether and layers were separated. The filtrate was then concentrated and the residue was purified by column chromatography on silica gel (yield 73%).

e) Preparation of 1,2-diphenylethane-1,2-diol (7)

Scheme S8: Preparation of 1,2-diphenylethane-1,2-diol (7)

1,2-diphenylethane-1,2-diol

Benzil (1.0 mmol) was dissolved in EtOH (15 mL) and stirred for 5min at 0 °C. To this solution, NaBH₄ (2.0 equiv.) was added slowly and the reaction mixture was further stirred for 4 h at room temperature. After completion of reaction, the reaction mixture was then concentrated (to remove EtOH) and then the layers were separated. The filtrate was then concentrated and the residue was purified by column chromatography on silica gel (yield 88%).

f) Preparation of 2,2-dimethyl-4,5-diphenyl-2H-imidazole (8)

Scheme S9: Preparation of 2,2-dimethyl-4,5-diphenyl-2H-imidazole (8)

2,2-dimethyl-4,5-diphenyl-2H-imidazole

Benzil (1.0 mmol) and NH₄OAc (5.0 mmol) was dissolved in AcOH (5 mL). To this solution, acetone (4.0 equiv.) was added. The reaction mixture was stirred and refluxed (120 °C) for 4 h. After completion of reaction, the reaction mixture was then concentrated and the layers were separated. The filtrate was then concentrated and the residue was purified by column chromatography on silica gel (yield 78%).

Control Reactions:

Control reaction presented in the **Scheme S10** showed that the aryl diketones are stable. In contrast, alkyl diketones are not stable and undergo over oxidation (cleavage) to form various (oxidized products) unidentified products in the presence of copper superoxide. The decomposition of 3,4-hexadione under current reaction conditions forms various products which are difficult to identify and isolate.

Scheme S10: Control reactions to check the stability of aryl and alkyl α -diketones in the presence of copper superoxo species.

EPR measurements: EPR spectra were recorded at room temperature on a Bruker ESP-300E(X band, 9.8 GHz) with parameters setting as shown below: receiver gain=30n; receiver phase=0deg; receiver harmonic=1; field modulation frequency=100000 Hz; microwave frequency[Hz]= $9.660469e^{+09}$; field modulation amplitude [T]= 0.00016; receiver time constant[S] = 0.32768; microwave power= 0.015 W; receiver offset [%FS]=0; DMPO (5-,5-dimethyl-1-pyrroline N-oxide) was employed as a radical trap for superoxide.

The reaction under standard condition (1a, $CuCl_2$, O_2) in ACN was irradiated with blue LED light for 30 min in the presence of DMPO. The EPR signals shown in Figure S1 is corresponding to DMPO-OO(Cu). This result indicates that copper superoxide free radical was formed in the reaction solution. No superoxide EPR signals were observed from the reaction solution under standard condition in absence of CuCl₂ (Figure S2).

EPR spectra of the reaction mixture after blue LEDs irradiation

Figure S1: EPR spectra of the reaction mixture: diphenylacetylene (**1a**) (0.5 mmol), and 10 mol% of CuCl₂ in ACN (5 mL), 0.5 ml of this reaction solution was taken out into a small vial, followed by the addition of 0.01 mL of DMPO (5 x 10^{-2} M). The mixture was irradiated with blue LEDs at room temperature under an oxygen atmosphere (1 atm) for 30 minutes. The reaction mixture was then analyzed by EPR spectra. There are classical 6 peaks, the signals corresponding to (DMPO-OO(Cu))

EPR spectra of the reaction mixture in the absence of CuCl₂

Figure S2: EPR spectra of the reaction mixture: diphenylacetylene (**1a**) (0.5 mmol) in ACN (5 mL), 0.5 ml of this reaction solution was taken out into a small vial, followed by the addition of 0.01 mL of DMPO (5 x 10^{-2} M). The mixture was irradiated with blue LEDs at room temperature under an oxygen atmosphere (1 atm) for 30 minutes. The reaction mixture was then analyzed by EPR spectra. No signals were detected.

Evaluation of Green metrics for the literature reported photochemical process^{s5}

A tom oconomy	(%) – Molecular	Molecular mass of desired product				
(AE)	(70) – Molecula	Molecular mass of all reactants			X 100	
Reaction mass efficiency (%) = $\frac{Mas}{mas}$		Mass	s of desired product x 100			
(RI	ME)	Ma	ss of all reactants			
Reactant1 1,	2-diphenylethyne		1g	5.61 mmol	FW 178.23	
Reactant2 4,4'-Di	nitrodiphenyl disu	ılfide	0.259g	0.84 mmol	FW 308.33	
Solvent	ACN		15.72g (20mL)			
Auxiliary						
Product	Benzil		0.977g	4.65 mmol	FW 210.22	
Product yield = 83% E-factor = $\frac{1g + 15.72g + 0.259g - 0.977g}{0.977g}$ = 16.0 Kg waste/ 1 Kg product						
Atom economy = $\frac{210}{210}$ x 100 = 100%						
Atom efficiency = 83% x 100% /100 = 83%						
Carbon efficiency = $\frac{14}{14}$ x 100 = 100%						
Reaction mass efficiency = $\frac{0.977g}{1g}$ x 100 = 97.7%						

Scheme S11: Reaction in the presence of $H_2^{18}O$

Procedure: To a dry test tube (20 mL) containing 10 mol% CuCl₂ and diphenylacetylene (0.5 mmol), was added 5 mL of dry ACN, followed by the addition of **30** μ L of H₂¹⁸O. The reaction mixture was then irradiated with blue LEDs (40 mW/cm² at 460 nm) under an oxygen atmosphere at room temperature (25-28 °C) for 10h. The reaction mixture was then diluted with 40 % ethyl acetate in hexane and stirred for 10 min. The mixture was filtered through celite and silica gel pads and washed with ethyl acetate. The filtrate was concentrated and the residue was purified by column chromatography on silica gel.

The ESI mass of the crude reaction mixture was detected. In the ESI mass data, we have observed only (M+Na) peak of ${}^{16}O_2$ product. Thus, this experiment showed that the source of O-atom in the product is only from the molecular O_2 .

ESI Mass Data

Data:H2O18-2 Acquired:4/15/2020 3:41:42 PM Comment: Operator:AccuTOF Description: m/z Calibration File:20200102-1TFANa... Ionization Mode:ESI+ Created:4/16/2020 3:12:00 PM History:Average(MS[1] 1.59..1.62) Created by:AccuTOF Tolerance:50.00[ppm], 20.00 .. 20.00[... Charge number:1 Unsaturation Number:-150.0 .. 200.0 (... Element: ¹²C:14 .. 14, ¹H:0 .. 11, ²³Na:0 .. 1, ¹⁶O:2 .. 2 **Relative Intensity** 100-160 265.08519 (M+Na) 233.0578 ¹⁶0 Chemical Formula: C₁₄H₁₀¹⁶O₂ Exact Mass: 210.0681 50 Molecular Weight: 210.2190 122.07913 182.89822 - 1 0 300 100 200 250 50 150 m/z Mass Difference Mass Difference Mass Intensity Calc. Mass Possible Formula [mDa] [ppm] -0.03 12C141H1023Na116O2 233.05784 1885.54 233.05785 -0.01

Spectroscopic Data

Benzil (2a)^{s6-9}

Yellow solid; ¹**H NMR** (600 MHz, CDCl₃): δ 7.94 (t, *J*= 6.0 Hz, 4H), 7.62-7.59 (m, 2H), 7.46 (t, *J*= 12.0 Hz, 4H); ¹³**C NMR** (150 MHz, CDCl₃): δ 194.4, 134.7, 132.8, 129.7 and 128.8; ESI-MS calcd for C₁₄H₁₀O₂ (M+H): 210.0681, found: 211.0795.

1-(naphthalen-1-yl)-2-phenylethane-1,2-dione (2b)^{s6,7}

Yellow solid; ¹**H** NMR (600 MHz, CDCl₃): δ 9.28 (d, *J*= 6.0 Hz, 1H), 8.09 (d, *J*= 6.0 Hz, 1H), 8.01 (t, *J*= 6.0 Hz, 2H), 7.93-7.89 (m, 2H), 7.73 (t, *J*= 6.0 Hz, 1H), 7.65-7.59 (m, 2H), 7.51-7.45 (m, 3H); ¹³C NMR (150 MHz, CDCl₃): δ 197.1, 194.5, 135.9, 135.0, 134.7, 134.0, 133.3, 130.9, 129.9, 129.4, 129.0, 128.7, 128.6, 127.1, 125.9 and 124.4; **ESI-MS** calcd for C₁₈H₁₂O₂ (M+H): 260.0837, found: 261.0913.

1-(3,5-dimethylphenyl)-2-phenylethane-1,2-dione (2c)^{s7}

Pale yellow oil; ¹**H NMR** (600 MHz, CDCl₃): δ 7.95 (d, *J*= 7.2 Hz, 2H), 7.64-7.61 (m, 1H), 7.56 (s, 2H), 7.50-7.46 (m, 2H), 7.26 (s, 1H), 2.34 (s, 6H); ¹³C NMR (150 MHz, CDCl₃): δ 194.7,

194.4, 138.6, 136.5, 134.5, 132.8, 131.6, 129.7, 128.7, 127.3 and 21.2; **ESI-MS** calcd for $C_{16}H_{14}O_2$ (M+H): 238.0994, found: 239.1075.

1-(4-tert-butylphenyl)-2-phenylethane-1,2-dione (2d)^{s7}

Off white solid; ¹H NMR (600 MHz, CDCl₃): δ 7.95 (d, *J*= 7.2 Hz, 2H), 7.89 (d, *J*= 12.0 Hz, 2H), 7.63 (t, *J*= 6.0 Hz, 1H), 7.51-7.47 (m, 4H), 1.32 (s, 9H); ¹³C NMR (150 MHz, CDCl₃): δ 194.7, 194.2, 159.0, 134.7, 133.0, 130.4, 129.8, 128.9, 126.0, 35.3 and 30.9; ESI-MS calcd for C₁₈H₁₈O₂ (M+Na): 266.1307, found: 289.1205.

1-(4-methoxyphenyl)-2-phenylethane-1,2-dione (2e)^{s6}

Off white solid; ¹**H NMR** (600 MHz, CDCl₃): δ 7.95-7.92 (m, 4H), 7.62 (t, *J*= 6.0 Hz, 1H), 7.48 (t, *J*= 6.0 Hz, 2H), 7.65 (d, *J*= 6.0 Hz, 2H), 3.86 (s, 3H); ¹³**C NMR** (150 MHz, CDCl₃): δ 194.8, 193.1, 164.9, 134.7, 133.1, 132.3, 129.8, 128.9, 126.0, 114.3 and 55.6; **ESI-MS** calcd for C₁₅H₁₂O₃ (M+Na): 240.0786, found: 263.0677.

1-(3-methoxyphenyl)-2-phenylethane-1,2-dione (2f)^{s6}

Off white solid; ¹H NMR (600 MHz, CDCl₃): δ 7.94 (d, *J*= 12.0 Hz, 2H), 7.64-7.62 (m, 1H), 7.52-7.46 (m, 4H), 7.45-7.36 (m, 1H), 7.19-7.17 (m, 1H), 3.84 (s, 3H); ¹³C NMR (150 MHz, CDCl₃): δ 194.4, 194.4, 160.0, 134.8, 134.1, 132.9, 130.0, 129.8, 128.9, 123.2, 121.8, 112.7, and 55.5; **ESI-MS** calcd for C₁₅H₁₂O₃ (M+Na): 240.0786, found: 263.0684.

1-(4-hydroxyphenyl)-2-phenylethane-1,2-dione (2g)^{s6}

Brown solid; ¹H NMR (600 MHz, CDCl₃): δ 7.92 (d, *J*= 6.0 Hz, 2H), 7.82 (d, *J*= 6.0 Hz, 2H), 7.62 (t, *J*= 6.0 Hz, 1H), 7.47 (t, *J*= 6.0 Hz, 2H), 6.87 (d, *J*= 12.0 Hz, 2H); ¹³C NMR (150 MHz, CDCl₃): δ 195.4, 193.6, 162.5, 135.0, 132.9, 132.7, 129.9, 129.0, 125.5 and 116.1; ESI-MS calcd for C₁₄H₁₀O₃ (M+Na): 226.0630, found: 249.0529

1-(4-fluorophenyl)-2-phenylethane-1,2-dione (2h)^{s6}

White solid; ¹**H** NMR (600 MHz, CDCl₃): δ 8.01 (d, *J*= 6.0 Hz, 2H), 7.96 (d, *J*= 6.0 Hz, 2H), 7.65 (t, *J*= 6.0 Hz, 1H), 7.50 (t, *J*= 6.0 Hz, 2H), 7.17 (t, *J*= 12.0 Hz, 2H); ¹³C NMR (150 MHz, CDCl₃): δ 194.0, 192.7, 167.6 (d, ^{*1*}*J*_{*C-F*}=258.0 Hz), 135.0, 132.7 (d, ³*J*_{*C-F*}=6.0 Hz), 132.6, 129.9, 129.0, and 116.4 (d, ²*J*_{*C-F*}=22.5 Hz); **ESI-MS** calcd for C₁₄H₉FO₂ (M+Na): 228.0587, found: 251.0479

1-(3,5-difluorophenyl)-2-phenylethane-1,2-dione (2i)

White solid; ¹**H** NMR (600 MHz, CDCl₃): δ 7.95 (d, *J*= 6.0 Hz, 2H), 7.68 (t, *J*= 6.0 Hz, 1H), 7.54-7.49 (m, 4H), 7.10 (t, *J*= 6.0 Hz, 1H); ¹³**C** NMR (150 MHz, CDCl₃): δ 192.7, 191.4, 163.9 (d, ¹*J*_{*C*-*F*}=252.0 Hz), 162.2 (d, ¹*J*_{*C*-*F*}=252.0 Hz), 135.3, 133.0, 132.4, 130.0, 129.1, 112.7 (q, ²*J*_{*C*-*F*</sup>=15.0, 6.0 Hz), and 110.1 (d, ²*J*_{*C*-*F*}=25.5 Hz); **ESI-MS** calcd for C₁₄H₈F₂O₂ (M+Na): 246.0492, found: 269.0400}

1-(4-chlorophenyl)-2-phenylethane-1,2-dione (2j)^{s6}

White solid; ¹**H** NMR (600 MHz, CDCl₃): δ 7.94 (d, *J*= 12.0 Hz, 2H), 7.90 (d, *J*= 6.0 Hz, 2H), 7.64 (t, *J*= 6.0 Hz, 1H), 7.51-7.46 (m, 4H); ¹³C NMR (150 MHz, CDCl₃): δ 193.8, 193.0, 141.5, 135.0, 132.7, 131.3, 131.2, 129.9, 129.4 and 129.0; ESI-MS calcd for C₁₄H₉ClO₂ (M+Na): 244.0291, found: 267.0189

1-(4-bromophenyl)-2-phenylethane-1,2-dione (2k)^{s6}

Pale yellow solid; ¹**H NMR** (600 MHz, CDCl₃): δ 7.94 (d, J = 7.2 Hz, 2H), 7.83-7.81 (m, 2H), 7.65-7.63 (m, 3H), 7.51-7.49 (m, 2H); ¹³**C NMR** (150 MHz, CDCl₃): δ 193.8, 193.2, 135.0, 132.7, 132.4,

131.6, 131.2, 130.4, 129.9, and 129.0; **ESI-MS** calcd for C₁₄H₉BrO₂ (M+Na): 287.9786, found: 310.9673.

1-(4-iodophenyl)-2-phenylethane-1,2-dione (2l)

White solid; ¹**H** NMR (600 MHz, CDCl₃): δ 7.93 (d, *J*= 12.0 Hz, 2H), 7.86 (d, *J*= 6.0 Hz, 2H), 7.65 (d, *J*= 12.0 Hz, 3H), 7.49 (t, *J*= 12.0 Hz, 2H); ¹³C NMR (150 MHz, CDCl₃): δ 193.8, 193.6, 138.3, 135.0, 132.7, 132.2, 130.9, 129.9, 129.0 and 103.6; **ESI-MS** calcd for C₁₄H₉IO₂ (M+Na): 335.9647, found: 358.9521

1-phenyl-2-(4-(trifluoromethyl)phenyl)ethane-1,2-dione (2m)^{s6,7}

Pale yellow solid; ¹H NMR (600 MHz, CDCl₃): δ 8.08 (d, *J*= 6.0 Hz, 2H), 7.95 (d, *J*= 6.0 Hz, 2H), 7.76 (d, *J*= 12.0 Hz, 2H), 7.67 (t, *J*= 6.0 Hz, 1H), 7.52 (t, *J*= 6.0 Hz, 2H); ¹³C NMR (150 MHz, CDCl₃): δ 193.4, 193.0, 135.6, 135.2, 132.6, 130.2, 129.9, 129.1, 128.6 and 126.0; ESI-MS calcd for C₁₅H₉F₃O₂ (M+Na): 278.0555, found: 301.1433

4-(2-oxo-2-phenylacetyl)benzonitrile (2n)^{s7}

White solid; ¹H NMR (600 MHz, CDCl₃): δ 8.06 (d, *J*= 12.0 Hz, 2H), 7.95 (d, *J*= 6.0 Hz, 2H), 7.79 (d, *J*= 12.0 Hz, 2H), 7.67 (t, *J*= 12.0 Hz, 1H), 7.52 (t, *J*= 6.0 Hz, 2H); ¹³C NMR (150 MHz, CDCl₃): δ 192.9, 192.3, 135.8, 135.3, 132.7, 132.4, 130.1, 129.9, 129.1, 117.8 and 117.5; ESI-MS calcd for C₁₅H₉NO₂ (M+Na): 235.0633, found: 258.0560.

1-(3-nitrophenyl)-2-phenylethane-1,2-dione (20)^{s8}

Yellow solid; ¹H NMR (600 MHz, CDCl₃): δ 8.79 (d, *J*= 6.0 Hz, 1H), 8.48 (d, *J*= 6.0 Hz, 1H), 8.29 (d, *J*= 6.0 Hz, 1H), 7.98 (d, *J*= 6.0 Hz, 2H), 7.73-7.67 (m, 2H), 7.53 (t, *J*= 6.0 Hz, 2H); ¹³C NMR (150 MHz, CDCl₃): δ 192.6, 191.4, 148.5, 135.4, 135.2, 134.2, 132.3, 130.3, 130.0, 129.2, 128.8 and 124.5; ESI-MS calcd for C₁₄H₉NO₄ (M+Na): 255.0532, found: 278.0460.

1-(4-acetylphenyl)-2-phenylethane-1,2-dione (2p)^{s7}

White solid; ¹H NMR (600 MHz, CDCl₃): δ 8.13 (s, 4H), 8.04 (d, *J*= 6.0 Hz, 2H), 7.74 (t, *J*= 6.0 Hz, 1H), 7.60 (t, *J*= 6.0 Hz, 2H); ¹³C NMR (150 MHz, CDCl₃): δ 197.2, 193.7, 193.5, 141.2,

135.9, 135.1, 132.6, 130.0, 129.9, 129.0, 128.6 and 26.8; **ESI-MS** calcd for $C_{16}H_{12}O_3$ (M+Na): 252.0786, found: 275.0677.

1-phenyl-2-(thiophen-2-yl)ethane-1,2-dione (2q)

Yellow solid; ¹**H NMR** (600 MHz, CDCl₃): δ 8.03 (d, *J*= 8.4 Hz, 2H), 7.80 (d *J*= 6.0 Hz, 1H), 7.78 (d, *J*= 4.2 Hz, 1H), 7.65-7.62 (m, 1H), 7.51-7.48 (m, 2H), 7.17-7.16 (m, 1H); ¹³**C NMR** (150 MHz, CDCl₃): δ 192.0, 185.5, 139.8, 136.8, 136.7, 134.8, 132.5, 130.2, 128.9 and 128.8; **ESI-MS** calcd for C₁₂H₈O₂S (M+Na): 216.0245, found: 239.0142

1-(4-ethylphenyl)-2-phenylethane-1,2-dione (2r)

Yellow liquid; ¹**H NMR** (600 MHz, CDCl₃): δ 7.95 (d, *J*= 6.0 Hz, 2H), 7.87 (t, *J*= 6.0 Hz, 2H), 7.63-7.60 (m, 1H), 7.49-7.46 (m, 2H), 7.31 (d, *J*= 6.0 Hz, 2H), 2.70 (q, 2H), 1.23 (t, *J*= 6.0 Hz, 3 H); ¹³**C NMR** (150 MHz, CDCl₃): δ 194.7, 194.2, 152.2, 134.7, 133.0, 130.6, 130.0, 129.8, 128.9, 128.5, 29.1 and 14.9; **ESI-MS** calcd for C₁₆H₁₄O₂ (M+Na): 238.0994, found: 261.0890.

1,4-diphenylbut-3-yne-1,2-dione (2s)

Yellow oil; ¹**H NMR** (600 MHz, CDCl₃): δ 8.07-8.05 (m, 2H), 7.65-7.62 (m, 3 H), 7.52-7.48 (m, 3H), 7.40-7.37 (m, 2H); ¹³**C NMR** (150 MHz, CDCl₃): δ 188.4, 178.5, 134.8, 133.6, 131.6, 130.4, 128.9, 128.7, 119.1, 99.1, and 87.0; **ESI-MS** calcd for C₁₆H₁₀O₂ (M+Na): 234.0681, found: 257.0079

1-(4-tert-butylphenyl)-2-(4-methoxyphenyl)ethane-1,2-dione (2w)

Semi solid; ¹**H** NMR (600 MHz, CDCl₃): δ 7.92 (d, *J*= 9.0 Hz, 2H), 7.88 (d, *J*= 8.4 Hz, 2H), 7.49 (d, *J*= 8.4 Hz, 2H), 6.94 (d, *J*= 9.0 Hz, 2H), 3.85 (s, 3H), 1.31 (s, 9H); ¹³C NMR (150 MHz, CDCl₃): δ 194.5, 193.3, 164.8, 158.7, 132.3, 130.6, 129.8, 126.1, 125.9, 114.2, 55.6, 35.3 and 30.9; **ESI-MS** calcd for C₁₉H₂₀O₃ (M+Na): 296.1412, found: 319.1318

1-(4-butylphenyl)-2-(4-methoxyphenyl)ethane-1,2-dione (2x)

White solid; ¹**H** NMR (600 MHz, CDCl₃): δ 7.88 (d, *J*= 12.0 Hz, 2H), 7.81 (d, *J*= 6.0 Hz, 2H), 7.22 (d, *J*= 12.0 Hz, 2H), 6.90 (d, *J*= 12.0 Hz, 2H), 3.82 (s, 3H), 2.61 (t, *J*= 6.0 Hz, 2H), 1.57-1.52 (m, 2H); ¹³C NMR (150 MHz, CDCl₃): δ 194.6, 193.4, 164.8, 150.8, 132.3, 130.8. 130.0, 129.0, 126.1, 114.2, 55.6, 35.8, 33.1, 22.2 and 13.8; **ESI-MS** calcd for C₁₉H₂₀O₃ (M+H): 296.1412, found: 297.1490

1-(4-tert-butylphenyl)-2-(4-(trifluoromethyl)phenyl)ethane-1,2-dione (2y)

White solid; ¹**H** NMR (600 MHz, CDCl₃): δ 8.07 (d, *J*= 6.0 Hz, 2H), 7.89 (d, *J*= 12.0 Hz, 2H), 7.74 (d, *J*= 6.0 Hz, 2H), 7.52 (d, *J*= 6.0 Hz, 2H); ¹³C NMR (150 MHz, CDCl₃): δ 193.2, 193.1, 159.4, 135.7 (t, ²*J*_{*C*-*F*}=19.3 Hz), 131.3, 131.2, 130.4, 130.1, 130.0, 129.9, 126.1, 125.9, 124.2 (q, ¹*J*_{*C*-*F*}=272.2 Hz), 122.4, 35.4 and 30.9; **ESI-MS** calcd for C₁₉H₁₇F₃O₂ (M+Na): 334.1181, found: 357.1068

1-(4-tert-butylphenyl)-2-(4-chlorophenyl)ethane-1,2-dione (2z)

Yellow solid; ¹**H NMR** (600 MHz, CDCl₃): δ 7.91-7.88 (m, 4H), 7.51 (d, *J*= 6.0 Hz, 2H), 7.46 (d, *J*= 6.0 Hz, 2H), 1.32 (s, 9H); ¹³**C NMR** (150 MHz, CDCl₃): δ 193.5, 193.2, 159.2, 141.4, 131.4, 131.1, 130.2, 129.9, 129.3, 126.0, 35.3 and 30.9; **ESI-MS** calcd for C₁₈H₁₇ClO₂ (M+Na): 300.0917, found: 323.0805

1-(4-chlorophenyl)-2-(4-methoxyphenyl)ethane-1,2-dione (2aa)^{s9}

Yellow solid; ¹**H** NMR (600 MHz, CDCl₃): δ 7.90 (t, *J*= 12.0 Hz, 4H), 7.45 (d, *J*= 6.0 Hz, 2H), 6.95 (d, *J*= 6.0 Hz, 2H), 3.87 (s, 3H); ¹³C NMR (150 MHz, CDCl₃): δ 193.3, 192.4, 165.1, 141.3, 132.4, 131.5, 131.2, 129.3, 125.8, 114.4 and 55.6; ESI-MS calcd for C₁₅H₁₁ClO₃ (M+Na): 274.0397, found: 297.0294

1-(4-acetylphenyl)-2-(4-ethylphenyl)ethane-1,2-dione (2ab)

White solid; ¹H NMR (600 MHz, CDCl₃): δ 8.03 (s, 4H), 7.86 (d, *J*= 6.0 Hz, 2H), 7.32 (d, *J*= 12.0 Hz, 2H), 2.71 (q, 2H), 2.62 (s, 3H), 1.24 (t, *J*= 6.0 Hz, 3H); ¹³C NMR (150 MHz, CDCl₃): δ 197.2, 193.7, 193.4, 152.6, 141.2, 136.1, 130.4, 130.1, 130.0, 128.6, 128.6, 29.1, 26.9 and 15.0; **ESI-MS** calcd for C₁₈H₁₆O₃ (M+Na): 280.1099, found: 303.0982

1-(4-acetylphenyl)-2-(4-tert-butylphenyl)ethane-1,2-dione (2ac)

White solid; ¹H NMR (600 MHz, CDCl₃): δ 8.04 (s, 4H), 7.93 (d, *J*= 8.4 Hz, 2H), 7.52 (d, *J*= 9.0 Hz, 2H), 2.63 (s, 3H), 1.32 (s, 9H); ¹³C NMR (150 MHz, CDCl₃): δ 197.2, 193.8, 193.4, 159.3, 141.1, 136.0, 130.0, 129.9, 129.8, 128.6, 128.1, 126.1, 35.4, and 30.9; **ESI-MS** calcd for C₂₀H₂₀O₃ (M+Na): 308.1412, found: 331.1324

White solid; ¹**H NMR** (600 MHz, CDCl₃): δ 8.02 (t, *J*= 6.0 Hz, 4H), 7.92 (d, *J*= 12.0 Hz, 2H), 6.95 (d, *J*= 6.0 Hz, 2H), 3.86 (s, 3H), 2.62 (s, 3H); ¹³**C NMR** (150 MHz, CDCl₃): δ 197.2, 193.8,

192.2, 165.2, 141.1, 136.2, 132.4, 130.0, 128.6, 125.7, 114.4, 55.6 and 26.9; **ESI-MS** calcd for C₁₇H₁₄O₄ (M+H): 282.0892, found: 283.0969

2-hydroxy-2,2-diphenylacetic acid (Benzillic acid) (3)

White solid; ¹**H NMR** (600 MHz, CDCl₃): δ 7.33 (d, *J*= 12.0 Hz, 4H), 7.16-7.11 (m, 6H), 6.19 (s, 1H); ¹³**C NMR** (150 MHz, CDCl₃): δ 175.5, 142.2, 127.4, 127.2, 127.0 and 80.1; **ESI-MS** calcd for C₁₄H₁₂O₃ (M-H): 228.0786, found: 227.0707

2-(4,5-diphenyl-1H-imidazol-2-yl)phenol (4)

Pale yellow solid; ¹**H NMR** (600 MHz, CDCl₃): δ 7.83 (d, *J*= 6.0 Hz, 1H), 7.54 (d, *J*= 6.0 Hz, 4H), 7.31 (d, *J*= 12.0 Hz, 4H), 7.28 (d, *J*= 12.0 Hz, 2H), 7.19 (t, *J*= 6.0 Hz, 1H), 7.00 (d, *J*= 6.0 Hz, 1H), 6.84 (t, *J*= 6.0 Hz, 1H); ¹³**C NMR** (150 MHz, CDCl₃): δ 157.0, 146.0, 132.5, 132.1, 129.7, 128.3, 127.8, 127.3, 124.2, 118.7, 117.0 and 113.0; **ESI-MS** calcd for C₂₁H₁₆N₂O (M+H): 312.1263, found: 313.1352

2-(2-(4,5-diphenyl-1H-imidazol-2-yl)phenoxy)-N,N-dimethylethanamine (4')

Pale yellow liquid; ¹H NMR (600 MHz, CDCl₃): δ 12.33 (s, 1H), 8.46 (d, *J*= 6.0 Hz, 1H), 7.60-7.25 (m, 12H), 7.10 (t, *J*= 6.0 Hz, 1H), 6.98 (d, *J*= 6.0 Hz, 1H), 4.18 (t, *J*= 6.0 Hz, 2H), 2.63 (t, *J*= 6.0 Hz, 2H), 1.94 (s, 6H); ¹³C NMR (150 MHz, CDCl₃): δ 154.9, 143.6, 128.9, 128.7, 128.2, 127.4, 126.4, 122.0, 120.2, 113.5, 65.5, 57.9 and 44.3; ESI-MS calcd for C₂₅H₂₅N₃O (M+H): 383.1998, found: 384.2083

2,3-diphenylquinoxaline (5)

Yellow solid; ¹**H** NMR (600 MHz, CDCl₃): δ 8.17 (t, *J*= 6.0 Hz, 2H), 7.71 (d, *J*= 6.0 Hz, 2H), 7.53 (d, *J*= 6.0 Hz, 4H), 7.34-7.30 (m, 6H); ¹³C NMR (150 MHz, CDCl₃): δ 152.9, 140.8, 138.7, 129.5, 128.7, 128.4 and 127.8; ESI-MS calcd for C₂₀H₁₄N₂ (M+H): 282.1157, found: 283.1238

2,4,5-triphenyloxazole (6)

Pale yellow solid; ¹H NMR (600 MHz, CDCl₃): δ 8.18 (d, *J*= 6.0 Hz, 2H), 7.74 (d, *J*= 6.0 Hz, 2H), 7.68 (d, *J*= 6.0 Hz, 2H), 7.48-7.46 (m, 3H), 7.43-7.34 (m, 6H); ¹³C NMR (150 MHz, CDCl₃): δ 160.0, 145.4, 136.6, 134.8, 132.5, 130.2, 129.8, 128.7, 128.6, 128.5, 128.0, 126.4 and 126.3; ESI-MS calcd for C₂₁H₁₅NO (M+H): 297.1154, found: 298.1229

(1R,2R)-1,2-diphenylethane-1,2-diol (7)

White solid; ¹**H** NMR (600 MHz, CDCl₃): δ 7.03-7.02 (m, 6H), 6.98 (dd, *J*= 6.0 Hz, 4H), 4.64 (s, 2H), 4.07 (s, 2H); ¹³C NMR (150 MHz, CDCl₃): δ 140.4, 127.1, 126.7 and 77.1; ESI-MS calcd for C₁₄H₁₄O₂ (M+Na): 214.0994, found: 237.0884

2,2-dimethyl-4,5-diphenyl-2H-imidazole (8)

White solid; ¹**H** NMR (600 MHz, CDCl₃): δ 7.43 (t, *J*= 6.0 Hz, 4H), 7.33-7.30 (m, 2H), 7.25 (t, *J*= 6.0 Hz, 4H), 1.58 (s, 6H); ¹³C NMR (150 MHz, CDCl₃): δ 163.8, 132.3, 129.8, 128.5, 127.9, 101.2 and 23.8; ESI-MS calcd for C₁₇H₁₆N₂ (M+H): 248.1313, found: 249.1389

References:

- S1. A. Sagadevan and K. C. Hwang, Adv. Synth. Catal., 2012, 354, 3421.
- S2. A. Acharjee, A. Ghoshal and S. K. Ghosh, *World Journal of pharmacy and Pharmaceutical Sciences*, 2015, **6**, 1741.
- S3. (a) L. Nagarapu, A. A. Satyender, G. Chandana and R. Bantu, J. Heterocyclic. Chem., 2009, 46, 195; (b) S. Elumalai, D. Somasundaran and S. Guhanathan, Der. Chemica Sinica, 2014, 5, 60.
- S4. G. N. Raju, K. B. Sai, R. T. Myneni, N. Navya, R. S. Yasaswini and R. R. Nadendla, World Journal of Pharmaceutical Research, 2015, 5, 2625.
- S5. X. Zhu, P. Li, Q. Shi and L. Wang, Green Chem, 2016, 18, 6373.
- S6. J. W. Xue, M. Zeng, X. Hou, Z. Chen and G. Yin, Asian J. Org. Chem., 2018, 7, 212.
- S7. X. Liu, T. Cong, P. Liu and P. Sun, J. Org. Chem., 2016, 81, 7256.
- T. Nobuta, N. Tada, K. Hattori, S. I. Hirashima, T. Miura and A. Itoh, *Tetrahedron Lett.*, 2011, 52, 875.
- S9. X. F. Xia, Z. Gu, W. Liu, N. Wang, H. Wang, Y. Xia, H. Gao and X. Liu, Org. Biomol. Chem., 2014, 12, 9909.

27,292,2938 27,2529 26,252,2938 27,2529 27,2528 27,2528 27,2528 27,2528 27,2528 27,2528 27,2528 27,258 28,257 29,257 29,257 29,257 29,257 29,257 29,257 29,2

3.841

8.094 8.080 8.080 8.079 7.756 7.755 7.755 7.772 7.772 7.655 7.653 7.657 7.657 7.657 7.657 7.657 7.657 7.653 7.653 7.653 7.653 7.5533 7.5339

B.803 B.799 B.799 B.495 B.495 B.495 B.495 B.495 B.492 B.492 B.492 B.492 B.203 B.203

7.846 7.833 7.559 7.559 7.559 7.3308 7.3308 7.3308 7.295 7.3308 7.295 7.295 7.295 7.205 7.205 7.205 7.205 7.205 7.205 7.205 7.205 7.2015 7.7195 7.7105 7.7105 7.7105 7.71195 7.71005 7.7105 7.7105 7.7105 7.7105 7.7105 7.7105 7.71005 7.71005 7

Table S1. Crystal data and structure refinement for 180116LT_0N	1_a.
---	------

Identification code	180116LT_0m_a		
Empirical formula	C14 H10 O2		
Formula weight	210.22		
Temperature	100(2) K		
Wavelength	0.71073 Å		
Crystal system	Trigonal		
Space group	P 32 2 1		
Unit cell dimensions	a = 8.3601(7) Å	a= 90°.	
	b = 8.3601(7) Å	b= 90°.	
	c = 13.3968(12) Å	g = 120°.	
Volume	810.88(15) Å ³		
Z	3		
Density (calculated)	1.291 Mg/m ³		
Absorption coefficient	0.086 mm ⁻¹		
F(000)	330		
Crystal size	0.18 x 0.16 x 0.16 mm ³		
Theta range for data collection	2.813 to 26.509°.		
Index ranges	-10<=h<=10, -10<=k<=10), - 16<=l<=16	
Reflections collected	10682		
Independent reflections	1127 [R(int) = 0.0333]		
Completeness to theta = 25.242°	100.0 %		
Absorption correction	Semi-empirical from equi	valents	
Max. and min. transmission	0.9485 and 0.7698		
Refinement method	Full-matrix least-squares on F ²		
Data / restraints / parameters	1127 / 0 / 74		

Goodness-of-fit on F ²	1.105
Final R indices [I>2sigma(I)]	R1 = 0.0295, wR2 = 0.0685
R indices (all data)	R1 = 0.0313, $wR2 = 0.0695$
Absolute structure parameter	0(2)
Extinction coefficient	n/a
Largest diff. peak and hole	0.144 and -0.131 e.Å ⁻³

Table S2. Atomic coordinates $(x \ 10^4)$ and equivalent isotropic displacement parameters (Å²x 10³) for 180116LT_0M_a. U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor.

	X	у	Z	U(eq)	
<u>C(1)</u>	2346(2)	2085(2)	2450(1)	32(1)	
C(2)	1826(2)	2964(2)	1749(1)	37(1)	
C(3)	1825(3)	4570(2)	2001(1)	47(1)	
C(4)	2361(3)	5303(3)	2948(1)	52(1)	
C(5)	2888(3)	4441(3)	3650(1)	48(1)	
C(6)	2880(2)	2831(2)	3407(1)	39(1)	
C(7)	2305(2)	344(2)	2210(1)	35(1)	
O(1)	2623(2)	-553(2)	2811(1)	49(1)	
Table S3.	Bond lengths [Å] and angl	es [°] for 18	30116LT_0M_a.		
C(1)-C(2)	1.390(2)				
C(1)-C(6)	1.397(2)				
C(1)-C(7)	1.474(2)				
C(2)-C(3)	1.386(2)				
C(2)-H(2)	0.9500				

C(3)-C(4)	1.383(3)
C(3)-H(3)	0.9500
C(4)-C(5)	1.384(3)
C(4)-H(4)	0.9500
C(5)-C(6)	1.381(3)
C(5)-H(5)	0.9500
C(6)-H(6)	0.9500
C(7)-O(1)	1.2166(19)

C(7)-C(7)#1	1.539(3)
C(2)-C(1)-C(6)	119.92(16)
C(2)-C(1)-C(7)	121.01(15)
C(6)-C(1)-C(7)	119.06(14)
C(3)-C(2)-C(1)	119.97(17)
C(3)-C(2)-H(2)	120.0
C(1)-C(2)-H(2)	120.0
C(4)-C(3)-C(2)	119.74(17)
C(4)-C(3)-H(3)	120.1
C(2)-C(3)-H(3)	120.1
C(3)-C(4)-C(5)	120.64(17)
C(3)-C(4)-H(4)	119.7
C(5)-C(4)-H(4)	119.7
C(6)-C(5)-C(4)	119.98(17)
C(6)-C(5)-H(5)	120.0
C(4)-C(5)-H(5)	120.0
C(5)-C(6)-C(1)	119.75(16)
C(5)-C(6)-H(6)	120.1
C(1)-C(6)-H(6)	120.1
O(1)-C(7)-C(1)	124.02(14)
O(1)-C(7)-C(7)#1	116.95(15)
C(1)-C(7)-C(7)#1	118.92(14)

Symmetry transformations used to generate equivalent atoms: #1 x-y,-y,-z+1/3

Table S4. Anisotropic displacement parameters $(Å^2x \ 10^3)$ for $180116LT_0M_a$. The anisotropic displacement factor exponent takes the form: $-2p^2[h^2 a^{*2}U^{11} + ... + 2h k a^{*} b^{*} U^{12}]$

	U ¹¹	U22	U33	U23	U13	U12	
C(1)	25(1)	26(1)	41(1)	7(1)	7(1)	10(1)	
C(2)	31(1)	36(1)	45(1)	10(1)	9(1)	16(1)	
C(3)	48(1)	41(1)	60(1)	18(1)	16(1)	28(1)	
C(4)	56(1)	35(1)	69(1)	9(1)	24(1)	26(1)	
C(5)	51(1)	34(1)	52(1)	-1(1)	11(1)	16(1)	

C(6)	37(1)	31(1)	43(1)	5(1)	4(1)	12(1)
C(7)	31(1)	26(1)	43(1)	5(1)	1(1)	11(1)
O(1)	63(1)	36(1)	51(1)	3(1)	-10(1)	27(1)

Table S5. Hydrogen coordinates ($x \ 10^4$) and isotropic displacement parameters (Å²x 10³) for 180116LT_0M_a.

H(2)	1472	2463	1096	45
H(3)	1458	5167	1525	56
H(4)	2367	6409	3119	62
H(5)	3255	4955	4298	57
H(6)	3236	2234	3888	47

 Table S6.
 Crystal data and structure refinement for twin5.

Identification code	twin5		
Empirical formula	C17 H14 O4		
Formula weight	282.28		
Temperature	100(2) K		
Wavelength	0.71073 Å		
Crystal system	Monoclinic		
Space group	C 2/c		
Unit cell dimensions	a = 23.502(2) Å	a= 90°.	
	b = 3.9358(3) Å	b=105.082(2)°.	
	c = 15.1235(12) Å	g = 90°.	
Volume	1350.73(19) Å ³		
Z	4		
Density (calculated)	1.388 Mg/m ³		
Absorption coefficient	0.099 mm ⁻¹		
F(000)	592		
Crystal size	$0.25 \ge 0.12 \ge 0.04 \text{ mm}^3$		
Theta range for data collection	1.795 to 26.552°.		
Index ranges	-28<=h<=28, 0<=k<=4, 0	<=1<=19	
Reflections collected	1467		
Independent reflections	1467 [R(int) = 0.0370]		
Completeness to theta = 25.242°	99.8 %		
Absorption correction	orption correction Semi-empirical from equivalents		
Max. and min. transmission	0.9485 and 0.7780		
Refinement method	Full-matrix least-squares on F ²		
Data / restraints / parameters 1467 / 52 / 122			
Goodness-of-fit on F ²	1.044		

Final R indices [I>2sigma(I)]	R1 = 0.0379, wR2 = 0.0865
R indices (all data)	R1 = 0.0537, wR2 = 0.0944
Extinction coefficient	n/a
Largest diff. peak and hole	0.208 and -0.172 e.Å ⁻³

Table S7. Atomic coordinates $(x \ 10^4)$ and equivalent isotropic displacement parameters (Å²x 10³) for twin5. U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor.

C(1)	3512(1)	8295(4)	3835(1)	24(1)	
C(2)	3291(1)	6782(4)	2976(1)	27(1)	
C(3)	3668(1)	5597(4)	2492(1)	26(1)	
C(4)	4279(1)	5884(4)	2846(1)	24(1)	
C(5)	4498(1)	7418(4)	3698(1)	27(1)	
C(6)	4119(1)	8593(4)	4193(1)	26(1)	
C(7)	4663(1)	4563(4)	2299(1)	27(1)	
O(1)	4477(1)	3217(3)	1550(1)	34(1)	
C(8)	3121(9)	9420(50)	4255(12)	21(2)	
O(2)	2592(1)	9116(6)	3950(1)	31(1)	
C(9)	3276(7)	10880(50)	5206(12)	27(2)	
O(3)	3069(6)	9460(40)	4341(8)	21(2)	
C(10)	3354(7)	11120(50)	5222(12)	22(2)	

C(1)-C(8)	1.32(2)	
C(1)-C(6)	1.3930(19)	
C(1)-C(2)	1.401(2)	
C(1)-O(3)	1.515(14)	
C(2)-C(3)	1.368(2)	
C(2)-H(2)	0.9500	
C(3)-C(4)	1.4002(19)	
C(3)-H(3)	0.9500	
C(4)-C(5)	1.3950(19)	
C(4)-C(7)	1.469(2)	
C(5)-C(6)	1.382(2)	
C(5)-H(5)	0.9500	
C(6)-H(6)	0.9500	
C(7)-O(1)	1.2241(17)	
C(7)-C(7)#1	1.542(3)	
C(8)-O(2)	1.22(2)	
C(8)-C(9)	1.50(2)	
C(9)-H(9A)	0.9800	
C(9)-H(9B)	0.9800	
C(9)-H(9C)	0.9800	
O(3)-C(10)	1.48(2)	
C(10)-H(10A)	0.9800	
C(10)-H(10B)	0.9800	
C(10)-H(10C)	0.9800	
C(8)-C(1)-C(6)	123.7(7)	
C(8)-C(1)-C(2)	116.8(7)	
C(6)-C(1)-C(2)	119.40(14)	
C(6)-C(1)-O(3)	123.3(5)	
C(2)-C(1)-O(3)	117.3(5)	
C(3)-C(2)-C(1)	120.39(13)	
C(3)-C(2)-H(2)	119.8	
C(1)-C(2)-H(2)	119.8	
C(2)-C(3)-C(4)	120.62(13)	
C(2)-C(3)-H(3)	119.7	

Table S8. Bond lengths [Å] and angles $[\circ]$ for twin5.

C(4)-C(3)-H(3)	119.7
C(5)-C(4)-C(3)	118.91(14)
C(5)-C(4)-C(7)	122.69(13)
C(3)-C(4)-C(7)	118.40(12)
C(6)-C(5)-C(4)	120.67(14)
C(6)-C(5)-H(5)	119.7
C(4)-C(5)-H(5)	119.7
C(5)-C(6)-C(1)	120.01(13)
C(5)-C(6)-H(6)	120.0
C(1)-C(6)-H(6)	120.0
O(1)-C(7)-C(4)	123.38(13)
O(1)-C(7)-C(7)#1	116.58(16)
C(4)-C(7)-C(7)#1	119.85(14)
O(2)-C(8)-C(1)	123.9(14)
O(2)-C(8)-C(9)	111.6(17)
C(1)-C(8)-C(9)	124.3(15)
C(8)-C(9)-H(9A)	109.5
C(8)-C(9)-H(9B)	109.5
H(9A)-C(9)-H(9B)	109.5
C(8)-C(9)-H(9C)	109.5
H(9A)-C(9)-H(9C)	109.5
H(9B)-C(9)-H(9C)	109.5
C(10)-O(3)-C(1)	112.2(11)
O(3)-C(10)-H(10A)	109.5
O(3)-C(10)-H(10B)	109.5
H(10A)-C(10)-H(10B)	109.5
O(3)-C(10)-H(10C)	109.5
H(10A)-C(10)-H(10C)	109.5
H(10B)-C(10)-H(10C)	109.5

Symmetry transformations used to generate equivalent atoms: #1 -x+1,y,-z+1/2

	U11	U22	U33	U ²³	U13	U12	
C(1)	30(1)	17(1)	22(1)	5(1)	-1(1)	0(1)	
C(2)	27(1)	21(1)	26(1)	4(1)	-7(1)	-2(1)	
C(3)	33(1)	18(1)	20(1)	1(1)	-7(1)	-2(1)	
C(4)	30(1)	16(1)	20(1)	4(1)	-2(1)	-3(1)	
C(5)	27(1)	26(1)	21(1)	1(1)	-3(1)	-6(1)	
C(6)	31(1)	23(1)	20(1)	1(1)	-4(1)	-6(1)	
C(7)	32(1)	21(1)	23(1)	2(1)	-4(1)	-2(1)	
O(1)	34(1)	38(1)	26(1)	-10(1)	-2(1)	-3(1)	
C(8)	25(3)	23(2)	15(2)	-1(2)	3(3)	2(2)	
O(2)	23(1)	44(1)	24(1)	-5(1)	5(1)	5(1)	
C(9)	29(4)	24(3)	24(3)	-1(2)	1(3)	6(3)	
O(3)	20(2)	27(2)	19(3)	-2(2)	9(2)	10(2)	
C(10)	22(3)	28(4)	16(3)	-5(2)	7(2)	6(3)	

Table S9. Anisotropic displacement parameters $(Å^2x \ 10^3)$ for twin5. The anisotropic displacement factor exponent takes the form: $-2p^2[h^2 a^{*2}U^{11} + ... + 2h k a^{*} b^{*} U^{12}]$

Table S10. Hydrogen coordinates (x 10^4) and isotropic displacement parameters (Å²x 10 ³) for twin5.

	Х	У	Z	U(eq)	
H(2)	2878	6577	2727	32	
H(3)	3513	4569	1910	32	
H(5)	4911	7657	3941	32	
H(6)	4273	9605	4776	32	
H(9A)	2916	11156	5412	40	
H(9B)	3465	13096	5204	40	
H(9C)	3546	9340	5623	40	
H(10A)	3594	9449	5638	33	
H(10B)	3052	12028	5497	33	
H(10C)	3606	12974	5116	33	

Figure S5: ORTEP diagram of compound 4 (CCDC No. 1859204)

 Table S11. Crystal data and structure refinement for mo_180117lt_0m_a.

Identification code	mo_180117lt_0m_a		
Empirical formula	C23 H22 N2 O2 S		
Formula weight	390.48		
Temperature	100(2) K		
Wavelength	0.71073 Å		
Crystal system	Triclinic		
Space group	P -1		
Unit cell dimensions	a = 9.3322(5) Å	a=95.845(2)°.	
	b = 10.0321(5) Å	b=105.956(2)°.	
	c = 11.8425(6) Å	$g = 109.513(2)^{\circ}$.	
Volume	981.56(9) Å ³		
Ζ	2		
Density (calculated)	1.321 Mg/m ³		
Absorption coefficient	0.186 mm ⁻¹		
F(000)	412		
Crystal size	0.16 x 0.13 x 0.12 mm ³		
Theta range for data collection	1.831 to 26.568°.		
Index ranges	-11<=h<=11, -12<=k<=12, -14<=l<=14		
Reflections collected	28567		
Independent reflections	4075 [R(int) = 0.0443]		

Completeness to theta = 25.242°	99.9 %
Absorption correction	Semi-empirical from equivalents
Max. and min. transmission	0.9485 and 0.8862
Refinement method	Full-matrix least-squares on F ²
Data / restraints / parameters	4075 / 0 / 256
Goodness-of-fit on F ²	1.139
Final R indices [I>2sigma(I)]	R1 = 0.0397, wR2 = 0.1006
R indices (all data)	R1 = 0.0566, wR2 = 0.1081
Extinction coefficient	n/a
Largest diff. peak and hole	0.296 and -0.428 e.Å ⁻³

Table S12. Atomic coordinates $(x \ 10^4)$ and equivalent isotropic displacement parameters $(Å^2x \ 10^3)$ for mo_180117lt_0m_a. U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor.

	Х	у	Z	U(eq)	
C(1)	6025(2)	3360(2)	4578(2)	14(1)	
C(2)	5438(2)	3444(2)	6263(2)	14(1)	
C(3)	6819(2)	4607(2)	6399(2)	14(1)	
C(4)	6005(2)	2873(2)	3368(2)	15(1)	
C(5)	7365(2)	3546(2)	3034(2)	16(1)	
C(6)	7364(3)	3106(2)	1878(2)	19(1)	
C(7)	6025(3)	2017(2)	1056(2)	21(1)	
C(8)	4676(3)	1336(2)	1373(2)	21(1)	
C(9)	4676(3)	1755(2)	2521(2)	18(1)	
C(10)	4551(2)	2980(2)	7095(2)	15(1)	
C(11)	3951(2)	1519(2)	7153(2)	17(1)	
C(12)	3112(3)	1074(2)	7936(2)	20(1)	
C(13)	2870(3)	2085(2)	8676(2)	21(1)	
C(14)	3477(3)	3535(2)	8637(2)	21(1)	
C(15)	4303(2)	3986(2)	7849(2)	18(1)	
C(16)	7889(2)	5766(2)	7463(2)	15(1)	
C(17)	8278(2)	5469(2)	8614(2)	17(1)	
C(18)	9293(3)	6577(2)	9604(2)	22(1)	
C(19)	9924(3)	7988(2)	9467(2)	24(1)	
C(20)	9545(3)	8289(2)	8331(2)	22(1)	
-------	---------	----------	---------	-------	
C(21)	8554(2)	7188(2)	7336(2)	19(1)	
C(22)	1042(3)	7558(2)	2964(2)	23(1)	
C(23)	259(3)	8251(2)	4897(2)	26(1)	
N(1)	4950(2)	2667(2)	5104(2)	14(1)	
N(2)	7170(2)	4539(2)	5339(2)	15(1)	
O(1)	8705(2)	4624(2)	3804(1)	20(1)	
O(2)	2057(2)	10276(2)	4054(1)	20(1)	
S(1)	1930(1)	8825(1)	4367(1)	17(1)	

Table S13. Bond lengths A and angles ° for mo 18011/1	i um a	a.
---	--------	----

C(1)-N(2)	1.328(3)
C(1)-N(1)	1.357(3)
C(1)-C(4)	1.460(3)
C(2)-C(3)	1.376(3)
C(2)-N(1)	1.379(3)
C(2)-C(10)	1.468(3)
C(3)-N(2)	1.382(3)
C(3)-C(16)	1.473(3)
C(4)-C(9)	1.400(3)
C(4)-C(5)	1.408(3)
C(5)-O(1)	1.354(2)
C(5)-C(6)	1.394(3)
C(6)-C(7)	1.380(3)
C(6)-H(6)	0.9500
C(7)-C(8)	1.389(3)
C(7)-H(7)	0.9500
C(8)-C(9)	1.381(3)
C(8)-H(8)	0.9500
C(9)-H(9)	0.9500
C(10)-C(15)	1.398(3)
C(10)-C(11)	1.400(3)
C(11)-C(12)	1.386(3)
C(11)-H(11)	0.9500
C(12)-C(13)	1.389(3)

C(12)-H(12)	0.9500
C(13)-C(14)	1.384(3)
С(13)-Н(13)	0.9500
C(14)-C(15)	1.385(3)
C(14)-H(14)	0.9500
С(15)-Н(15)	0.9500
C(16)-C(21)	1.395(3)
C(16)-C(17)	1.400(3)
C(17)-C(18)	1.388(3)
С(17)-Н(17)	0.9500
C(18)-C(19)	1.385(3)
C(18)-H(18)	0.9500
C(19)-C(20)	1.386(3)
C(19)-H(19)	0.9500
C(20)-C(21)	1.385(3)
C(20)-H(20)	0.9500
C(21)-H(21)	0.9500
C(22)-S(1)	1.780(2)
C(22)-H(22A)	0.9800
C(22)-H(22B)	0.9800
C(22)-H(22C)	0.9800
C(23)-S(1)	1.780(2)
C(23)-H(23A)	0.9800
C(23)-H(23B)	0.9800
C(23)-H(23C)	0.9800
N(1)-H(1)	0.8800
O(1)-H(1A)	0.8400
O(2)-S(1)	1.5132(15)
N(2)-C(1)-N(1)	110.60(18)
N(2)-C(1)-C(4)	123.34(18)
N(1)-C(1)-C(4)	126.00(18)
C(3)-C(2)-N(1)	105.95(17)
C(3)-C(2)-C(10)	131.95(19)
N(1)-C(2)-C(10)	122.10(17)
C(2)-C(3)-N(2)	109.12(18)
C(2)-C(3)-C(16)	129.79(19)

N(2)-C(3)-C(16)	121.04(18)
C(9)-C(4)-C(5)	118.53(19)
C(9)-C(4)-C(1)	122.30(19)
C(5)-C(4)-C(1)	119.17(18)
O(1)-C(5)-C(6)	117.77(19)
O(1)-C(5)-C(4)	122.18(18)
C(6)-C(5)-C(4)	120.05(19)
C(7)-C(6)-C(5)	120.1(2)
C(7)-C(6)-H(6)	120.0
C(5)-C(6)-H(6)	120.0
C(6)-C(7)-C(8)	120.6(2)
C(6)-C(7)-H(7)	119.7
C(8)-C(7)-H(7)	119.7
C(9)-C(8)-C(7)	119.6(2)
C(9)-C(8)-H(8)	120.2
C(7)-C(8)-H(8)	120.2
C(8)-C(9)-C(4)	121.1(2)
C(8)-C(9)-H(9)	119.4
C(4)-C(9)-H(9)	119.4
C(15)-C(10)-C(11)	118.87(19)
C(15)-C(10)-C(2)	120.82(18)
C(11)-C(10)-C(2)	120.30(18)
C(12)-C(11)-C(10)	120.6(2)
C(12)-C(11)-H(11)	119.7
C(10)-C(11)-H(11)	119.7
C(11)-C(12)-C(13)	119.9(2)
C(11)-C(12)-H(12)	120.1
C(13)-C(12)-H(12)	120.1
C(14)-C(13)-C(12)	120.0(2)
C(14)-C(13)-H(13)	120.0
C(12)-C(13)-H(13)	120.0
C(13)-C(14)-C(15)	120.5(2)
C(13)-C(14)-H(14)	119.8
C(15)-C(14)-H(14)	119.8
C(14)-C(15)-C(10)	120.2(2)
C(14)-C(15)-H(15)	119.9

C(10)-C(15)-H(15)	119.9
C(21)-C(16)-C(17)	118.66(19)
C(21)-C(16)-C(3)	120.13(19)
C(17)-C(16)-C(3)	121.21(19)
C(18)-C(17)-C(16)	120.2(2)
C(18)-C(17)-H(17)	119.9
C(16)-C(17)-H(17)	119.9
C(19)-C(18)-C(17)	120.5(2)
C(19)-C(18)-H(18)	119.7
C(17)-C(18)-H(18)	119.7
C(18)-C(19)-C(20)	119.5(2)
C(18)-C(19)-H(19)	120.2
C(20)-C(19)-H(19)	120.2
C(21)-C(20)-C(19)	120.4(2)
C(21)-C(20)-H(20)	119.8
C(19)-C(20)-H(20)	119.8
C(20)-C(21)-C(16)	120.6(2)
C(20)-C(21)-H(21)	119.7
C(16)-C(21)-H(21)	119.7
S(1)-C(22)-H(22A)	109.5
S(1)-C(22)-H(22B)	109.5
H(22A)-C(22)-H(22B)	109.5
S(1)-C(22)-H(22C)	109.5
H(22A)-C(22)-H(22C)	109.5
H(22B)-C(22)-H(22C)	109.5
S(1)-C(23)-H(23A)	109.5
S(1)-C(23)-H(23B)	109.5
H(23A)-C(23)-H(23B)	109.5
S(1)-C(23)-H(23C)	109.5
H(23A)-C(23)-H(23C)	109.5
H(23B)-C(23)-H(23C)	109.5
C(1)-N(1)-C(2)	107.80(16)
C(1)-N(1)-H(1)	126.1
C(2)-N(1)-H(1)	126.1
C(1)-N(2)-C(3)	106.53(17)
C(5)-O(1)-H(1A)	109.5

O(2)-S(1)-C(23)	106.55(10)
O(2)-S(1)-C(22)	105.34(10)
C(23)-S(1)-C(22)	97.70(11)

Symmetry transformations used to generate equivalent atoms:

Table S14. Anisotropic displacement parameters $(Å^2x \ 10^3)$ for mo_180117lt_0m_a. The anisotropic displacement factor exponent takes the form: $-2p^2[h^2 a^{*2}U^{11} + ... + 2h k a^{*} b^{*} U^{12}]$

	U11	U ²²	U33	U ²³	U13	U12	
C(1)	13(1)	14(1)	16(1)	6(1)	4(1)	5(1)	
C(2)	13(1)	14(1)	15(1)	4(1)	4(1)	7(1)	
C(3)	15(1)	16(1)	15(1)	6(1)	6(1)	7(1)	
C(4)	16(1)	16(1)	14(1)	6(1)	5(1)	7(1)	
C(5)	16(1)	15(1)	17(1)	4(1)	4(1)	7(1)	
C(6)	19(1)	22(1)	19(1)	7(1)	10(1)	10(1)	
C(7)	25(1)	24(1)	16(1)	3(1)	8(1)	12(1)	
C(8)	20(1)	20(1)	18(1)	0(1)	2(1)	6(1)	
C(9)	16(1)	18(1)	19(1)	6(1)	6(1)	6(1)	
C(10)	11(1)	17(1)	15(1)	6(1)	3(1)	5(1)	
C(11)	17(1)	17(1)	17(1)	4(1)	5(1)	7(1)	
C(12)	21(1)	20(1)	21(1)	10(1)	7(1)	7(1)	
C(13)	16(1)	30(1)	18(1)	10(1)	9(1)	8(1)	
C(14)	18(1)	26(1)	20(1)	3(1)	8(1)	10(1)	
C(15)	15(1)	18(1)	21(1)	5(1)	6(1)	6(1)	
C(16)	11(1)	18(1)	18(1)	2(1)	7(1)	6(1)	
C(17)	16(1)	19(1)	18(1)	4(1)	8(1)	5(1)	
C(18)	17(1)	32(1)	18(1)	1(1)	8(1)	9(1)	
C(19)	15(1)	24(1)	25(1)	-9(1)	7(1)	1(1)	
C(20)	18(1)	16(1)	34(1)	2(1)	14(1)	5(1)	
C(21)	15(1)	21(1)	22(1)	4(1)	10(1)	6(1)	
C(22)	24(1)	23(1)	18(1)	0(1)	6(1)	9(1)	
C(23)	32(1)	16(1)	35(1)	7(1)	22(1)	6(1)	
N(1)	11(1)	14(1)	15(1)	3(1)	4(1)	2(1)	

N(2)	14(1)	16(1)	14(1)	4(1)	5(1)	5(1)
O(1)	16(1)	22(1)	18(1)	0(1)	8(1)	1(1)
O(2)	20(1)	14(1)	23(1)	6(1)	7(1)	3(1)
S(1)	16(1)	17(1)	16(1)	4(1)	4(1)	6(1)

Table S15. Hydrogen coordinates ($x \ 10^4$) and isotropic displacement parameters (Å²x 10³) for mo_180117lt_0m_a.

H(6)	8286	3556	1656	22	
H(7)	6026	1730	267	25	
H(8)	3758	586	804	26	
H(9)	3758	1277	2739	21	
H(11)	4120	826	6651	20	
H(12)	2703	80	7965	24	
H(13)	2289	1781	9209	25	
H(14)	3326	4226	9155	25	
H(15)	4703	4981	7821	21	
H(17)	7846	4506	8718	21	
H(18)	9558	6366	10381	27	
H(19)	10611	8743	10148	28	
H(20)	9968	9257	8234	27	
H(21)	8324	7403	6558	22	
H(22A)	89	7700	2481	34	
H(22B)	726	6571	3106	34	
H(22C)	1822	7704	2533	34	
H(23A)	467	8944	5625	39	
H(23B)	103	7293	5081	39	
H(23C)	-712	8202	4276	39	
H(1)	4094	1865	4765	17	
H(1A)	8557	4819	4459	31	

Figure S6: ORTEP diagram of compound 5 (CCDC No. 1859203)

Table S16. Crystal data and structure refin	ement for mo_170751lt_0r	n.
Identification code	mo_170751LT_0m	
Empirical formula	C20 H14 N2	
Formula weight	282.33	
Temperature	100(2) K	
Wavelength	0.71073 Å	
Crystal system	Monoclinic	
Space group	P 21/n	
Unit cell dimensions	a = 6.0178(13) Å	a= 90°.
	b = 10.934(2) Å	b=95.035(4)°.
	c = 22.509(5) Å	g = 90°.
Volume	1475.3(6) Å ³	
Z	4	
Density (calculated)	1.271 Mg/m ³	
Absorption coefficient	0.075 mm ⁻¹	
F(000)	592	
Crystal size	0.25 x 0.20 x 0.20 mm ³	
Theta range for data collection	1.816 to 26.698°.	
Index ranges	-7<=h<=4, -13<=k<=13, -	28<=l<=28
Reflections collected	11963	
Independent reflections	3101 [R(int) = 0.0501]	
Completeness to theta = 25.242°	99.8 %	

S79

Absorption correction	Semi-empirical from equivalents
Max. and min. transmission	0.9485 and 0.6897
Refinement method	Full-matrix least-squares on F ²
Data / restraints / parameters	3101 / 0 / 199
Goodness-of-fit on F ²	1.055
Final R indices [I>2sigma(I)]	R1 = 0.0452, wR2 = 0.1197
R indices (all data)	R1 = 0.0571, wR2 = 0.1278
Extinction coefficient	n/a
Largest diff. peak and hole	0.304 and -0.275 e.Å ⁻³

Table S17. Atomic coordinates $(x \ 10^4)$ and equivalent isotropic displacement parameters $(Å^2x \ 10^3)$ for mo_170751lt_0m. U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor.

N(1)	5096(2)	132(1)	2411(1)	18(1)	
N(2)	7347(2)	2070(1)	1898(1)	19(1)	
C(1)	10927(3)	1560(1)	3268(1)	23(1)	
C(2)	9732(3)	627(1)	3537(1)	23(1)	
C(3)	7782(3)	177(1)	3265(1)	22(1)	
C(4)	6956(2)	643(1)	2701(1)	18(1)	
C(5)	4407(2)	571(1)	1881(1)	17(1)	
C(6)	2513(2)	-96(1)	1556(1)	18(1)	
C(7)	2405(3)	-297(1)	940(1)	23(1)	
C(8)	630(3)	-947(2)	657(1)	28(1)	
C(9)	-1049(3)	-1388(1)	980(1)	27(1)	
C(10)	5485(2)	1607(1)	1636(1)	18(1)	
C(11)	8143(2)	1579(1)	2433(1)	18(1)	
C(12)	10152(2)	2034(1)	2726(1)	20(1)	
C(13)	4574(2)	2262(1)	1086(1)	18(1)	
C(14)	5951(2)	2474(1)	632(1)	23(1)	
C(15)	5191(3)	3147(2)	132(1)	26(1)	
C(16)	3056(3)	3628(1)	87(1)	25(1)	
C(17)	1677(3)	3418(1)	539(1)	25(1)	
C(18)	2417(2)	2731(1)	1035(1)	22(1)	
C(19)	853(2)	-585(1)	1879(1)	19(1)	

N(1)-C(5)	1.3191(18)
N(1)-C(4)	1.3647(18)
N(2)-C(10)	1.3203(18)
N(2)-C(11)	1.3669(17)
C(1)-C(12)	1.370(2)
C(1)-C(2)	1.414(2)
C(1)-H(1)	0.9500
C(2)-C(3)	1.368(2)
C(2)-H(3)	0.9500
C(3)-C(4)	1.4153(19)
C(3)-H(14)	0.9500
C(4)-C(11)	1.414(2)
C(5)-C(10)	1.440(2)
C(5)-C(6)	1.4901(18)
C(6)-C(19)	1.393(2)
C(6)-C(7)	1.3990(19)
C(7)-C(8)	1.389(2)
C(7)-H(10)	0.9500
C(8)-C(9)	1.382(2)
C(8)-H(11)	0.9500
C(9)-C(20)	1.388(2)
C(9)-H(2)	0.9500
C(10)-C(13)	1.4910(19)
C(11)-C(12)	1.4151(19)
C(12)-H(4)	0.9500
C(13)-C(14)	1.391(2)
C(13)-C(18)	1.391(2)
C(14)-C(15)	1.388(2)
C(14)-H(9)	0.9500
C(15)-C(16)	1.384(2)
C(15)-H(8)	0.9500
C(16)-C(17)	1.387(2)

 Table S18.
 Bond lengths [Å] and angles [°] for mo_170751lt_0m.

C(16)-H(7)	0.9500
C(17)-C(18)	1.386(2)
C(17)-H(6)	0.9500
C(18)-H(5)	0.9500
C(19)-C(20)	1.385(2)
С(19)-Н(13)	0.9500
C(20)-H(12)	0.9500
C(5)-N(1)-C(4)	117.60(12)
C(10)-N(2)-C(11)	117.46(12)
C(12)-C(1)-C(2)	120.53(13)
C(12)-C(1)-H(1)	119.7
C(2)-C(1)-H(1)	119.7
C(3)-C(2)-C(1)	121.09(13)
C(3)-C(2)-H(3)	119.5
C(1)-C(2)-H(3)	119.5
C(2)-C(3)-C(4)	119.49(14)
C(2)-C(3)-H(14)	120.3
C(4)-C(3)-H(14)	120.3
N(1)-C(4)-C(11)	121.07(12)
N(1)-C(4)-C(3)	119.32(13)
C(11)-C(4)-C(3)	119.50(13)
N(1)-C(5)-C(10)	121.13(12)
N(1)-C(5)-C(6)	115.66(13)
C(10)-C(5)-C(6)	123.18(12)
C(19)-C(6)-C(7)	118.90(13)
C(19)-C(6)-C(5)	118.93(12)
C(7)-C(6)-C(5)	122.10(13)
C(8)-C(7)-C(6)	120.09(14)
C(8)-C(7)-H(10)	120.0
C(6)-C(7)-H(10)	120.0
C(9)-C(8)-C(7)	120.37(14)
C(9)-C(8)-H(11)	119.8
C(7)-C(8)-H(11)	119.8
C(8)-C(9)-C(20)	119.87(14)
C(8)-C(9)-H(2)	120.1
C(20)-C(9)-H(2)	120.1

N(2)-C(10)-C(5)	121.60(12)
N(2)-C(10)-C(13)	114.95(12)
C(5)-C(10)-C(13)	123.42(12)
N(2)-C(11)-C(4)	120.64(12)
N(2)-C(11)-C(12)	119.47(13)
C(4)-C(11)-C(12)	119.87(12)
C(1)-C(12)-C(11)	119.52(14)
C(1)-C(12)-H(4)	120.2
C(11)-C(12)-H(4)	120.2
C(14)-C(13)-C(18)	119.26(13)
C(14)-C(13)-C(10)	119.37(13)
C(18)-C(13)-C(10)	121.26(13)
C(15)-C(14)-C(13)	120.62(14)
C(15)-C(14)-H(9)	119.7
C(13)-C(14)-H(9)	119.7
C(16)-C(15)-C(14)	119.90(14)
C(16)-C(15)-H(8)	120.1
C(14)-C(15)-H(8)	120.1
C(15)-C(16)-C(17)	119.66(13)
C(15)-C(16)-H(7)	120.2
C(17)-C(16)-H(7)	120.2
C(18)-C(17)-C(16)	120.64(14)
C(18)-C(17)-H(6)	119.7
C(16)-C(17)-H(6)	119.7
C(17)-C(18)-C(13)	119.91(14)
C(17)-C(18)-H(5)	120.0
C(13)-C(18)-H(5)	120.0
C(20)-C(19)-C(6)	120.66(13)
С(20)-С(19)-Н(13)	119.7
C(6)-C(19)-H(13)	119.7
C(19)-C(20)-C(9)	120.03(14)
С(19)-С(20)-Н(12)	120.0
C(9)-C(20)-H(12)	120.0

Symmetry transformations used to generate equivalent atoms:

Table S19.Anisotropic displacement parameters ($Å^2x \ 10^3$) for mo_170751lt_0m.The

	U11	U22	U33	U23	U13	U12	
N(1)	17(1)	20(1)	17(1)	-1(1)	3(1)	0(1)	
N(2)	18(1)	19(1)	19(1)	0(1)	2(1)	1(1)	
C(1)	20(1)	24(1)	24(1)	-6(1)	-2(1)	2(1)	
C(2)	27(1)	26(1)	17(1)	-2(1)	0(1)	6(1)	
C(3)	26(1)	22(1)	19(1)	1(1)	4(1)	1(1)	
C(4)	17(1)	19(1)	18(1)	-2(1)	3(1)	3(1)	
C(5)	16(1)	19(1)	17(1)	-2(1)	5(1)	2(1)	
C(6)	17(1)	16(1)	20(1)	1(1)	2(1)	2(1)	
C(7)	26(1)	24(1)	20(1)	1(1)	3(1)	-3(1)	
C(8)	33(1)	28(1)	20(1)	-1(1)	-4(1)	-2(1)	
C(9)	22(1)	24(1)	33(1)	-3(1)	-5(1)	-4(1)	
C(10)	17(1)	18(1)	18(1)	-1(1)	4(1)	0(1)	
C(11)	18(1)	18(1)	17(1)	-2(1)	3(1)	3(1)	
C(12)	19(1)	20(1)	22(1)	-3(1)	4(1)	0(1)	
C(13)	19(1)	18(1)	18(1)	0(1)	0(1)	-4(1)	
C(14)	19(1)	27(1)	22(1)	1(1)	2(1)	-2(1)	
C(15)	27(1)	33(1)	18(1)	3(1)	4(1)	-6(1)	
C(16)	30(1)	26(1)	19(1)	4(1)	-5(1)	-6(1)	
C(17)	21(1)	26(1)	27(1)	1(1)	-4(1)	-1(1)	
C(18)	19(1)	26(1)	22(1)	1(1)	3(1)	-3(1)	
C(19)	19(1)	18(1)	21(1)	1(1)	3(1)	3(1)	
C(20)	18(1)	22(1)	32(1)	1(1)	5(1)	-2(1)	

anisotropic displacement factor exponent takes the form: -2p²[h² a*²U¹¹ + ... + 2 h k a* b* U¹²]

	Х	У	Z	U(eq)	
H(1)	12277	1862	3466	27	
H(3)	10294	309	3913	28	
H(14)	6988	-444	3452	26	
H(10)	3546	10	715	28	
H(11)	571	-1088	240	33	
H(2)	-2282	-1810	783	32	
H(4)	10957	2662	2548	24	
H(9)	7425	2155	664	27	
H(8)	6135	3277	-179	31	
H(7)	2538	4100	-251	30	
H(6)	211	3748	508	30	
H(5)	1452	2580	1339	27	
H(13)	946	-487	2299	23	
H(12)	-2075	-1525	1816	29	

Table S20. Hydrogen coordinates ($x \ 10^4$) and isotropic displacement parameters (Å²x 10³) for mo_170751lt_0m.

Figure S7: ORTEP diagram of compound 6 (CCDC No. 1911059)

Table S21. Crystal data and structure refin	ement for 190333lt.	
Identification code	190333LT	
Empirical formula	C21 H15 N O	
Formula weight	297.34	
Temperature	100(2) K	
Wavelength	0.71073 Å	
Crystal system	Orthorhombic	
Space group	Pbca	
Unit cell dimensions	a = 19.711(2) Å	a= 90°.
	b = 7.4314(9) Å	b= 90°.
	c = 20.568(2) Å	g = 90°.
Volume	3012.9(6) Å ³	
Ζ	8	
Density (calculated)	1.311 Mg/m ³	
Absorption coefficient	0.080 mm ⁻¹	
F(000)	1248	
Crystal size	0.20 x 0.08 x 0.08 mm ³	
Theta range for data collection	1.980 to 26.419°.	
Index ranges	-24<=h<=24, -9<=k<=8,	-25<=l<=25
Reflections collected	16418	
Independent reflections	3037 [R(int) = 0.0457]	
Completeness to theta = 25.242°	97.9 %	

Absorption correction	Semi-empirical from equivalents
Max. and min. transmission	0.7454 and 0.5925
Refinement method	Full-matrix least-squares on F ²
Data / restraints / parameters	3037 / 0 / 209
Goodness-of-fit on F ²	1.156
Final R indices [I>2sigma(I)]	R1 = 0.0611, $wR2 = 0.1553$
R indices (all data)	R1 = 0.1048, $wR2 = 0.2427$
Extinction coefficient	0.0030(10)
Largest diff. peak and hole	0.459 and -0.472 e.Å ⁻³

Table S22. Atomic coordinates $(x \ 10^4)$ and equivalent isotropic displacement parameters $(Å^2x \ 10^3)$ for 190333lt. U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor.

	Х	у	Z	U(eq)	
O(1)	1928(1)	8107(3)	3574(1)	33(1)	
N(1)	2587(1)	7639(3)	2723(1)	26(1)	
C(1)	4254(2)	8326(5)	4607(2)	32(1)	
C(2)	4312(2)	8790(4)	3957(2)	31(1)	
C(3)	3764(2)	8659(4)	3546(2)	29(1)	
C(4)	3137(2)	8056(4)	3786(1)	25(1)	
C(5)	2561(2)	7928(4)	3351(2)	30(1)	
C(6)	1508(2)	7927(4)	3032(2)	29(1)	
C(7)	777(2)	8018(4)	3145(2)	29(1)	
C(8)	316(2)	7142(4)	2735(2)	29(1)	
C(9)	-371(2)	7215(4)	2858(2)	29(1)	
C(10)	-615(2)	8139(4)	3394(2)	34(1)	
C(11)	3080(2)	7600(5)	4436(2)	32(1)	
C(12)	3636(2)	7737(5)	4844(2)	33(1)	
C(13)	1918(2)	7647(4)	2507(2)	27(1)	
C(14)	1792(2)	7372(4)	1817(2)	25(1)	
C(15)	2221(2)	6226(4)	1466(2)	30(1)	
C(16)	2126(2)	5952(5)	803(2)	34(1)	
C(17)	1610(2)	6845(5)	481(2)	34(1)	
C(18)	1190(2)	8022(4)	820(2)	30(1)	

C(19)	1279(2)	8271(4)	1484(2)	26(1)
C(20)	-163(2)	9008(5)	3805(2)	36(1)
C(21)	523(2)	8952(4)	3688(2)	32(1)

O(1)-C(5)	1.337(4)
O(1)-C(6)	1.393(4)
N(1)-C(5)	1.310(4)
N(1)-C(13)	1.391(4)
C(1)-C(12)	1.382(5)
C(1)-C(2)	1.386(5)
C(1)-H(1)	0.9500
C(2)-C(3)	1.374(5)
C(2)-H(15)	0.9500
C(3)-C(4)	1.404(4)
C(3)-H(3)	0.9500
C(4)-C(11)	1.385(4)
C(4)-C(5)	1.448(4)
C(6)-C(13)	1.365(5)
C(6)-C(7)	1.462(5)
C(7)-C(8)	1.400(5)
C(7)-C(21)	1.407(5)
C(8)-C(9)	1.379(5)
C(8)-H(14)	0.9500
C(9)-C(10)	1.385(5)
C(9)-H(13)	0.9500
C(10)-C(20)	1.386(5)
C(10)-H(2)	0.9500
C(11)-C(12)	1.385(5)
C(11)-H(5)	0.9500
C(12)-H(4)	0.9500
C(13)-C(14)	1.455(4)
C(14)-C(19)	1.393(4)
C(14)-C(15)	1.400(4)

1.391(5)

C(15)-C(16)

Table S23.	Bond lengths	[Å]	and angles	[°]	for	190333lt.
------------	--------------	-----	------------	-----	-----	-----------

C(15)-H(10)	0.9500
C(16)-C(17)	1.384(5)
С(16)-Н(9)	0.9500
C(17)-C(18)	1.391(5)
C(17)-H(8)	0.9500
C(18)-C(19)	1.389(4)
C(18)-H(7)	0.9500
С(19)-Н(6)	0.9500
C(20)-C(21)	1.374(5)
C(20)-H(12)	0.9500
C(21)-H(11)	0.9500
C(5)-O(1)-C(6)	105.7(3)
C(5)-N(1)-C(13)	106.1(3)
C(12)-C(1)-C(2)	119.5(3)
C(12)-C(1)-H(1)	120.2
C(2)-C(1)-H(1)	120.2
C(3)-C(2)-C(1)	120.7(3)
C(3)-C(2)-H(15)	119.7
C(1)-C(2)-H(15)	119.7
C(2)-C(3)-C(4)	119.9(3)
C(2)-C(3)-H(3)	120.0
C(4)-C(3)-H(3)	120.0
C(11)-C(4)-C(3)	119.2(3)
C(11)-C(4)-C(5)	121.2(3)
C(3)-C(4)-C(5)	119.6(3)
N(1)-C(5)-O(1)	112.9(3)
N(1)-C(5)-C(4)	126.1(3)
O(1)-C(5)-C(4)	120.9(3)
C(13)-C(6)-O(1)	107.2(3)
C(13)-C(6)-C(7)	135.7(3)
O(1)-C(6)-C(7)	117.0(3)
C(8)-C(7)-C(21)	118.5(3)
C(8)-C(7)-C(6)	121.5(3)
C(21)-C(7)-C(6)	119.9(3)
C(9)-C(8)-C(7)	120.6(3)

C(9)-C(8)-H(14)	119.7
C(7)-C(8)-H(14)	119.7
C(8)-C(9)-C(10)	120.4(3)
C(8)-C(9)-H(13)	119.8
C(10)-C(9)-H(13)	119.8
C(9)-C(10)-C(20)	119.6(3)
C(9)-C(10)-H(2)	120.2
C(20)-C(10)-H(2)	120.2
C(12)-C(11)-C(4)	120.2(3)
C(12)-C(11)-H(5)	119.9
C(4)-C(11)-H(5)	119.9
C(1)-C(12)-C(11)	120.4(3)
C(1)-C(12)-H(4)	119.8
C(11)-C(12)-H(4)	119.8
C(6)-C(13)-N(1)	108.0(3)
C(6)-C(13)-C(14)	133.8(3)
N(1)-C(13)-C(14)	118.2(3)
C(19)-C(14)-C(15)	118.5(3)
C(19)-C(14)-C(13)	122.4(3)
C(15)-C(14)-C(13)	119.0(3)
C(16)-C(15)-C(14)	120.9(3)
C(16)-C(15)-H(10)	119.6
C(14)-C(15)-H(10)	119.6
C(17)-C(16)-C(15)	119.8(3)
C(17)-C(16)-H(9)	120.1
C(15)-C(16)-H(9)	120.1
C(16)-C(17)-C(18)	120.0(3)
C(16)-C(17)-H(8)	120.0
C(18)-C(17)-H(8)	120.0
C(19)-C(18)-C(17)	120.1(3)
C(19)-C(18)-H(7)	120.0
C(17)-C(18)-H(7)	120.0
C(18)-C(19)-C(14)	120.8(3)
C(18)-C(19)-H(6)	119.6
C(14)-C(19)-H(6)	119.6
C(21)-C(20)-C(10)	120.7(3)

С(21)-С(20)-Н(12)	119.6
С(10)-С(20)-Н(12)	119.6
C(20)-C(21)-C(7)	120.2(3)
C(20)-C(21)-H(11)	119.9
C(7)-C(21)-H(11)	119.9

Symmetry transformations used to generate equivalent atoms:

Table S24. Anisotropic displacement parameters (Å²x 10³) for 190333lt. The anisotropic displacement factor exponent takes the form: $-2p^2[h^2 a^{*2}U^{11} + ... + 2h k a^{*} b^{*} U^{12}]$

	U11	U22	U33	U ²³	U13	U12
O(1)	31(1)	34(1)	33(1)	0(1)	-6(1)	-2(1)
N(1)	25(1)	25(1)	26(1)	2(1)	-4(1)	-1(1)
C(1)	29(2)	35(2)	33(2)	-3(1)	-7(1)	-3(1)
C(2)	25(2)	30(2)	38(2)	4(1)	2(1)	-2(1)
C(3)	28(2)	25(2)	34(2)	1(1)	5(1)	4(1)
C(4)	28(2)	25(2)	22(1)	-1(1)	0(1)	3(1)
C(5)	31(2)	30(2)	31(2)	4(1)	-5(1)	0(1)
C(6)	28(2)	26(2)	34(2)	4(1)	-6(1)	-2(1)
C(7)	31(2)	28(2)	28(2)	2(1)	0(1)	-2(1)
C(8)	32(2)	29(2)	25(2)	3(1)	2(1)	-2(1)
C(9)	28(2)	27(2)	32(2)	7(1)	0(1)	-4(1)
C(10)	31(2)	33(2)	37(2)	9(1)	10(2)	4(1)
C(11)	25(2)	44(2)	27(2)	1(1)	4(1)	-6(1)
C(12)	33(2)	36(2)	31(2)	-1(1)	-1(1)	2(1)
C(13)	29(2)	27(2)	25(2)	1(1)	-2(1)	2(1)
C(14)	23(2)	21(1)	32(2)	1(1)	-2(1)	-3(1)
C(15)	26(2)	32(2)	33(2)	1(1)	2(1)	4(1)
C(16)	32(2)	34(2)	36(2)	-7(1)	10(2)	0(1)
C(17)	28(2)	44(2)	29(2)	-3(1)	2(1)	-10(1)
C(18)	24(2)	37(2)	29(2)	4(1)	-1(1)	1(1)
C(19)	25(2)	27(2)	26(2)	2(1)	2(1)	0(1)
C(20)	42(2)	33(2)	33(2)	0(1)	6(2)	3(2)
C(21)	38(2)	28(2)	31(2)	-1(1)	0(1)	-3(1)

	v	V	7	LI(eq)	· · · · · · · · · · · · · · · · · · ·
	Λ	у	L	0(04)	
H(1)	4635	8413	4888	39	
H(15)	4735	9202	3793	37	
H(3)	3809	8976	3101	35	
H(14)	478	6492	2369	34	
H(13)	-680	6629	2573	35	
H(2)	-1088	8176	3481	40	
H(5)	2658	7192	4603	38	
H(4)	3594	7424	5290	40	
H(10)	2581	5627	1684	36	
H(9)	2416	5155	572	41	
H(8)	1541	6653	29	40	
H(7)	843	8658	597	36	
H(6)	986	9063	1713	31	
H(12)	-330	9649	4171	43	
H(11)	827	9546	3975	39	

Table S25. Hydrogen coordinates ($x \ 10^4$) and isotropic displacement parameters (Å²x 10³) for 190333lt.