Electronic Supplementary Information

Green water-based fabrication of garnet-based solid electrolyte separators for solid-state lithium batteries

Ruijie Ye,^{a,b} Chih-Long Tsai,^a Martin Ihrig,^a Serkan Sevinc,^a Melanie Rosen,^a Enkhtsetseg Dashjav,^a Yoo Jung Sohn,^a Egbert Figgemeier *^{b,c} and Martin Finsterbusch*^{a,c}

^{a.} Institute of Energy and Climate Research – Materials Synthesis and Processing (IEK-1), Forschungszentrum Jülich GmbH, 52425 Jülich, Germany.

^{b.} Institute for Power Electronics and Electrical Drives (ISEA), RWTH Aachen University, 52066 Aachen, Germany.

^{c.} Helmholtz Institute Münster (IEK-12), Forschungszentrum Jülich GmbH, 48149 Münster, Germany.

*Corresponding authors: Egbert.Figgemeier@isea.rwth-aachen.de (E.F.); m.finsterbusch@fz-juelich.de (M.F.)

This ESI file includes:

Supplementary Text: Calculation of conductivity; Calculation of the degree of Li⁺/H⁺-exchange and pH of slurry;

Supplementary Figures S1, S2 and S3;

Supplementary Table S1, S2.

Supplementary Text:

Calculation of conductivity

The ionic conductivity (σ) is calculated based on

$$\sigma = \frac{L}{A \times Z}$$

where *L* is the thickness and area of solid electrolyte separator, *A* is the area of lithium foil electrode, and *Z* is the impedance for real axis of the high-frequency semicircle in Nyquist plot (**Fig. 6a**).

In our case:

$$\sigma = \frac{150 \,[\mu m]}{\pi \times (\frac{7 \,[mm]}{2})^2 \times 256.7 \,[\Omega]} = 0.15 \,[mS \, cm^{-1}]$$

Calculation of the degree of Li^{\dagger}/H^{\dagger} -exchange and pH of slurry

We assume here all Li-loss in sample "LLZ-slurry" (**Table S1**) is caused by Li^+/H^+ -exchange and thus calculate the amount of Li^+ diffusing into the dispersion medium (n_{Li^+}) as

$$n_{Li^+} = \left(1 - \frac{Li_{LLZ-slurry}}{Li_{LLZ-AlTa}}\right) \times \frac{m_{LLZ-AlTa}}{M_{LLZ-AlTa}} = \left(1 - \frac{4.42}{6.45}\right) \times \frac{52.40 \ [g]}{873.02 \ [g \ mol^{-1}]} = 0.0189 \ [mol]$$

where $Li_{LLZ-slurry}$ and $Li_{LLZ-AlTa}$ is the number of Li per formula in sample "LLZ-slurry" and stoichiometric AI- and Ta-substituted LLZ (LLZ-Al-Ta), respectively, and $m_{LLZ-AlTa}$ is the weight of LLZ powder in slurry and $M_{LLZ-AlTa}$ is molar mass of LLZ-AlTa.

To balance the electric neutrality in slurry, we assume the concentration of $OH^-(c_{OH^-})$ equals to the concentration of exchanged $Li^+(c_{Li^+})$:

$$c_{OH^{-}} = c_{Li^{+}} = \frac{n_{Li^{+}}}{m_{water}/\rho_{water}} = \frac{0.0189 \ [mol]}{43.66 \ [g]/1.00 \ [g \ mL^{-1}]} = 0.433 \ [mol \ L^{-1}]$$

where m_{water} is the weight of water in slurry and ρ_{water} is the density of water. We here ignore the volume expansion due to the presence of polymers in slurry and make here a rough estimation of the volume of dispersion medium by simply applying the volume of water.

Thus the pH value of the slurry can be obtained as

$$pH = 14 - pOH = 14 + log_{10} c_{OH^{-}} = 14 + log_{10}(0.433 [mol L^{-1}]) = 13.6$$

We can find that the calculated pH value is higher than the measured one (12.5). Therefore, we assume that a large amount of OH⁻ is not in the bulk but is adsorbed on the surface of solid particles, providing electrostatic repulsive force to stabilize the suspension.

Supplementary Figures:

Figure S1: XRD pattern of as-synthesized LLZ:AITa powder.

Figure S2: XRD patterns of LLZ samples from each step of fabrication procedure. The Rietveld refinements were conducted based on these XRD data.

Figure S3: XRD pattern of sintered Na-doped LLZ pellet. A mixture of 0.5 g LLZ:AlTa powder and 0.05 g Na₂CO₃·H₂O was pressed into pellet and sintered at 1175 °C for 4 hours. The XRD pattern afterwards shows clearly that Na₂CO₃ reacts with LLZ:AlTa to form several secondary phases.

Supplementary Table:

LLZ-Ar

	Elemental Content (normalized to La) ^a								
	Li	Al	La	Zr	Та				
LLZ:AlTa	7.56	0.07	3.00	1.53	0.37				
LLZ-slurry	4.42	0.07	3.00	1.53	0.37				
LLZ-green	7.56	0.08	3.00	1.53	0.37				
LLZ-air	6.72	0.08	3.00	1.53	0.37				

0.08

3.00

1.52

0.40

Table S1: Elemental analysis of LLZ samples from each step of fabrication procedure

^a Target composition: $Li_{6.45}AI_{0.05}La_3Zr_{1.6}Ta_{0.4}O_{12}$

6.40

Table S2: Calculated values of the EIS data

Element	R1 [Ω]	L1	R2 [Ω]	CPE1 [F s ⁿ⁻¹]	n1	R3 [Ω]	CPE2 [F s ⁿ⁻¹]	n2
Value	143.5	2.43E-6	113.2	1.45E-9	0.95	248.4	7.89E-4	0.35
Error [%]	4.22	4.56	5.60	13.28	1.35	0.75	1.76	0.93