SUPPORTING INFORMATION

Eco-friendly organocatalyst- and reagent-controlled selective construction of diverse and multifunctionalized 2-hydroxybenzophenone frameworks for potent UV-A/B filters by cascade benzannulation

Muhammad Saeed Akhtar,^a Raju S. Thombal,^a Ramuel John Inductivo Tamargo,^a Won-Guen Yang,^b Sung Hong Kim,^b and Yong Rok Lee^a*

^aSchool of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea E-mail: yrlee@yu.ac.kr; Phone: +82-53-810-2529; Fax: 82-53-810-4631
^bAnalysis Research Division, Daegu Center, Korea Basic Science Institute, Daegu 41566, Republic of Korea

TABLE OF CONTENTS

1.	General remarks	
2.	General procedures:	
	2.1 Procedure for synthesis of compounds 3 , 5-32 , d-3	
	2.2 Procedure for synthesis of compounds 33-39	S4
	2.3 Procedure for synthesis of compounds 42-43	S4
	2.4 Procedure for synthesis of compounds 44-73	S4
3.	Gram scale synthesis:	
	3.1 Procedure for gram scale synthesis of compounds 3	
	3.2 Procedure for gram scale synthesis of compounds 4	
4.	Synthetic transformations of 55 :	
	4.1 General procedure for synthesis of compounds 74-78	S6
	4.2 Procedure for synthesis of compound 79	S6
5.	Control experiments:	
	5.1 Procedure for synthesis of compound 80 <i>via</i> intermediate II	S6
	5.2 Procedure for synthesis of compound 80	S7
	5.3 Procedure for synthesis of compound 4 <i>via</i> intermediate VII	S7
	5.4 Procedure for synthesis of compound 82	
	5.5 Attempt for synthesis of compound 33	S8
6.	Characterization data of synthesized compounds	S9
7.	¹ H NMR and ¹³ C NMR spectra of synthesized compounds	S26
8.	GCMS analysis	S108
9.	Energy-minimization calculation	S110
10.	UV-Studies	S112
11.	X-ray structure and data for compound 5	S116
12.	X-ray structure and data for compound 34	S132

1. General remarks

All experiments were carried out under open atmosphere. All the reactions were performed in oven-dried glassware with magnetic stirring. Unless otherwise noted, toluene and DMSO were purchased from Alfa Aesar; CH₃CN from TCI and ethanol from Merck and used without further purification. All the catalysts (Cat. I - Cat. VII) were purchased from Sigma Aldrich. 3-Formylchromones 1a, 1b, 1f, 1g and 1j were purchased from TCI; 1c, 1i, 1k and 1l from Sigma Aldrich; 1h from Alfa Aesar while 1d, 1e, 1m and 1n were synthesized according to known method.¹ α , β -Unsaturated aldehydes 2a, 2b, 2d, 2h and 2i were purchased from Sigma Aldrich; 2c and 2e from TCI; 2g and 2f from Alfa Aesar while 2j was synthesized according to known method.² 4-Oxo-4*H*-chromene-2-d-3-carbaldehyde (d-1a) was synthesized according to known method.³ Merck, pre-coated silica gel plates (Art. 5554) with a fluorescent indicator were used for analytical TLC and were visualized with a UV lamp. Flash column chromatography was performed using silica gel 9385 (Merck). ¹H NMR spectra were recorded on Varian VNS (600 and 150MHz) spectrometer at the core research center for natural products and medical materials of Yeungnam University. The chemical shifts were described in parts per million (δ) relative to TMS (0 ppm) as internal standard or relative to the resonance of the residual protonated solvent (¹H : CDCl₃, $\delta = 7.24$ ppm). ¹³C NMR spectra were referenced to the internal solvent signals (¹³C: CDCl₃, $\delta = 77.0$ ppm). IR spectra were recorded on a PerkinElmer Spectrum Two TMIR spectrometer. Melting points were measured with a Fisher Johns melting point apparatus and uncorrected. The high-resolution mass spectra (HRMS) were measured using a JEOL JMS-600 mass spectrometer (positive ion EI mode) at the Korean Basic Science Institute. GC-MS data was recorded on Shimadzu GCMS-QP2010 Ultra using SH-Rxi-1ms column.

2. General procedures:

2.1 General procedure for synthesis of compounds 3, 5-32, d-3

To a solution of 3-formylchromone 1 (1.0 mmol) and α,β -unsaturated aldehyde 2 (1.2eq.) in ethanol (5.0 mL) was added Cat. II (10 mol %) at room temperature. The mixture was stirred at 60 °C for 20 – 22 h approx. After completion of reaction as indicated by TLC, the reaction mixture was evaporated in rotary evaporator and the residue was purified on a silica gel column chromatography using hexane/ethyl acetate as eluent to afford the desired product.

2.2 General procedure for synthesis of compounds 33-39

To a solution of 3-formylchromone 1 (1.0 mmol) and α,β -unsaturated aldehyde 2 (2.4 eq.) in ethanol (5.0 mL) was added Cat. II (10 mol %) at room temperature. The mixture was stirred at 60 °C for 20 – 22 h approx. After completion of reaction as indicated by TLC, the reaction mixture was evaporated in rotary evaporator and the residue was purified on a silica gel column chromatography using hexane/ethyl acetate as eluent to afford the desired product.

2.3 General procedure for synthesis of compounds 42-43

To a solution of 3-formylchromone **1f** (1.0 mmol) and α,β -unsaturated aldehyde **2h** (1.2 eq.) in ethanol (5.0 mL) was added Cat. **II** (10 mol %) at room temperature. The mixture was kept to stir at room temperature for 10 h approx. After complete disappearance of **1f** as indicated by TLC, α,β -unsaturated aldehyde **2a** or **2b** were added at room temperature. The mixture was stirred at 60 °C for 10 - 15h approx. After completion of reaction as indicated by TLC, the reaction mixture was evaporated in rotary evaporator and the residue was purified on a silica gel column chromatography using hexane/ethyl acetate as eluent to afford the desired product.

2.4 General procedure for synthesis of compounds 44-73, d-4

To a solution of 3-formylchromone 1 (1.0 mmol) and α,β -unsaturated aldehydes 2 (1.2 eq.) in ethanol (5.0 mL) was added Cat. VI (20 mol %) at room temperature. The mixture was stirred at 80 °C for 12 – 15 h approx. After completion of reaction as indicated by TLC, the reaction mixture was evaporated in rotary evaporator and the residue was purified on a silica gel column chromatography using hexane/ethyl acetate as eluent to afford the desired product.

3. Gram scale synthesis:

3.1 Gram Scale synthesis of compounds 3

To a solution of 3-formylchromone **1a** (1.74g, 10 mmol) and α,β -unsaturated aldehyde **2a** (1.0g, 1.2 eq.) in ethanol (50 mL) was added Cat. **II** (253mg, 10 mol %) at room temperature. The mixture was stirred at 60 °C for 20 – 22 h approx. After completion of reaction as indicated by TLC, the reaction mixture was evaporated in rotary evaporator and the residue was purified on a silica gel column chromatography using hexane/ethyl acetate as eluent to afford the desired product **3** in 76% yield.

3.2 Gram Scale synthesis of compounds 4

To a solution of 3-formylchromone **1a** (1.74g, 10 mmol) and α,β -unsaturated aldehydes **2a** (1.0g, 1.2 eq.) in ethanol (50 mL) was added Cat. **VI** (170mg, 20 mol %) at room temperature. The

mixture was stirred at 80 °C for 12 - 15 h approx. After completion of reaction as indicated by TLC, the reaction mixture was evaporated in rotary evaporator and the residue was purified on a silica gel column chromatography using hexane/ethyl acetate as eluent to afford the desired product **4** in 81% yield.

4. Synthetic transformations of 55:

4.1 General procedure for synthesis of compounds 74-78

To a solution of **55** (0.5 mmol) and **3** (1.2 eq.) in DCE (3.0 mL) were added $[Cp*RhCl_2]_2$ (2.5 mmol), AgSbF₆ (10 mol %), AgOAc (30 mol %) at room temperature. The mixture was stirred 60 °C for 12 h approx. After completion of reaction as indicated by TLC, the reaction mixture was evaporated in rotary evaporator and the residue was purified on a silica gel column chromatography using hexane/ethyl acetate as eluent to afford the desired product.

4.2 Procedure for synthesis of compound 79

To a solution of **55** (0.5 mmol) and **3f** (1.2 eq.) in DCE (3.0 mL) were added $[Cp*RhCl_2]_2$ (2.5 mmol), AgSbF₆ (10 mol %), AgOAc (30 mol %) and AcOH (5.0 eq.) at room temperature. The mixture was stirred 60 °C for 12 h approx. After completion of reaction as indicated by TLC, the reaction mixture was evaporated in rotary evaporator and the residue was purified on a silica gel column chromatography using hexane/ethyl acetate as eluent to afford the desired product.

5 Control experiment:

5.1 Procedure for synthesis of compound 80 via intermediate II

To a solution of α,β -unsaturated aldehyde **2a** (0.3 mmol) was added Cat. **II** (0.3 mmol) in DMSOd₆ (2 mL) at room temperature. The mixture was stirred for 1 h and analyzed for ¹H NMR spectroscopy. To this crude mixture, **1f** (0.3 mmol) and ethanol (2 mL) were added. The mixture was allowed to stir at room temperature for additional 10 h and monitored by TLC. The reaction mixture was evaporated in rotary evaporator to remove ethanol. Workup by water–ethyl acetate and drying over anhydrous magnesium sulphate gave yellow residue. The residue was purified on a silica gel column chromatography using hexane/ethyl acetate as eluent to afford the desired intermediate **80**.

5.2 Procedure for synthesis of compound 80

To a solution of 3-formylchromone **1f** (1.0 mmol) and α,β -unsaturated aldehyde **2a** (1.2 eq.) in ethanol (5.0 mL) was added Cat. **II** (10 mol %) at room temperature. The mixture was allowed to stir at room temperature for 12h approx. After completion of reaction as indicated by TLC, the solid precipitate obtained was filtered and washed with ethyl acetate to obtain **11** as a yellow solid.

5.3 Procedure for synthesis of compound 4 via intermediate VII

To a solution of α,β -unsaturated aldehyde **2a** (0.3 mmol) in benzene (2 mL) was added piperidine (0.3 mmol) at room temperature. The mixture was stirred and heated under reflux for 3 h approx. The mixture was allowed to cool at room temperature. To this mixture of **VII** was added **1a** (0.3 mmol) and ethanol (2 mL) at room temperature. The mixture was stirred at 80 °C for 2 h approx. After completion of reaction as indicated by TLC, the reaction mixture was evaporated in rotary

evaporator and the residue was purified on a silica gel column chromatography using hexane/ethyl acetate as eluent to afford the desired product **4**.

5.4 Procedure for synthesis of compound 82

To a solution of 1,4-naphthoquinone **81** (1.0 mmol) and α,β -unsaturated aldehyde **2a** (1.2 eq.) in ethanol (5.0 mL) was added Cat. **VI** (20 mol %) at room temperature. The mixture was stirred and heated at 80 °C for 10 h approx. After completion of reaction as indicated by TLC, the reaction mixture was evaporated in rotary evaporator and the residue was purified on a silica gel column chromatography using hexane/ethyl acetate as eluent to afford the desired product.

5.5 Attempt for synthesis of compound 33

The compound **33'** was prepared according to literature report.⁴ To a solution of **33'** and α,β unsaturated aldehyde **2h** (1.2 eq.) in ethanol (5.0 mL) was added Cat. **II** (10 mol %) at room temperature. The mixture was stirred and heated at 60 °C for 22 h approx. The reaction was continuously monitored by TLC. Since no new spot was observed in TLC the reaction was stopped after 22 h.

References:

- 1. Ł. Albrecht, G. Dickmeiss, F. Cruz-Acosta, C. Rodríguez-Escrich, R. L. Davis and K. A. Jørgensen, J. Am. Chem. Soc., 2012, 134, 2543.
- 2. H. Duckert, V. Khedkar, H. Waldmann and K. Kumar, Chem.-Eur. J., 2011, 17, 5130.
- 3. K. Wittstein, A. B. García, M. Schürmann and K. Kumar, Synlett, 2012, 227.
- 4. F. Weng, C. Wang and B. Xu, Tetrahedron Lett., 2010, 51, 2593.

6. Characterization data of synthesized compounds

3-(2-Hydroxybenzoyl)-5-methylbenzaldehyde (3). Yield 91% (218 mg) as a yellow oil: ¹H NMR $(600 \text{ MHz}, \text{CDCl}_3) \delta$ 11.86 (1H, s), 10.04 (1H, s), 7.93 (1H, s), 7.89 (1H, s), 7.73 (1H, s), 7.53 - 7.50 (2H, m), 7.08 (1H, d, J = 8.3 Hz), 6.88 (1H, t, J = 7.6 Hz),2.51 (3H, s); ¹³C NMR (150 MHz, CDCl₃) δ 200.4, 191.3, 163.3, 139.7, 138.7, 136.8, 136.3, 135.1, 133.2, 132.8, 127.7, 118.9, 118.8, 118.6, 21.2; IR (neat) 3286, 2923, 1736, 1699, 1624, 1211, 1153, 759 cm⁻¹; HRMS m/z (M⁺) calcd for C₁₅H₁₂O₃: 240.0786. Found: 240.0785.

(2-Hydroxyphenyl)(m-tolyl)methanone (4). Yield 85% (181 mg) as a yellow solid: mp 53 – 55 °C; ¹H NMR (600 MHz, CDCl₃) δ 12.04 (1H, s), 7.58 (1H, d, J = 7.8 Hz), 7.49 – 7.27 (2H, m), 7.44 (1H, d, J = 6.8 Hz), 7.38 – 7.35 (2H, m), 7.05 (1H, d, J = 8.3Hz), 6.86 (1H, t, J = 7.6 Hz), 2.42 (3H, s); ¹³C NMR (150 MHz, CDCl₃) δ 201.8, 163.1, 138.2, 137.8, 136.1, 133.5, 132.6, 129.5, 128.0, 126.3, 119.1, 118.5, 118.2, 21.3; IR (neat) 3042, 2923, 1727, 1624, 1482, 1444, 1248, 1205, 960, 757 cm⁻¹; HRMS m/z (M⁺) calcd for $C_{14}H_{12}O_2$: 212.0837. Found: 212.0834.

3-(2-Hydroxy-5-methylbenzoyl)-5-methylbenzaldehyde (5). Yield 81% (205 mg) as a yellow solid: mp 108 – 110 °C; ¹H NMR (600 MHz, CDCl₃) δ 11.67 (1H, s), 10.05 (1H, s), 7.92 (1H, s), 7.90 (1H, s), 7.72 (1H, s), 7.34 (1H, d, *J* = 8.3 Hz,), 7.25 (1H, s), 6.99 (1H, d, J = 8.5 Hz,), 2.52 (3H, s), 2.24 (3H, s); ¹³C NMR (150 MHz, CDCl₃) δ 200.4, 191.4, 161.2, 139.6, 138.9, 137.9, 136.3, 135.0, 132.7, 132.6, 128.1, 127.6, 118.5, 118.4, 21.2, 20.5; IR (neat) 3458, 2922, 1738, 1696, 1631, 1482, 1340, 1189, 783, 665 cm⁻¹; HRMS m/z (M⁺) calcd for C₁₆H₁₄O₃: 254.0943. Found: 254.0946.

3-(2-Hydroxy-5-isopropylbenzoyl)-5-methylbenzaldehyde (6). Yield 78% (220 mg) as a yellow oil; ¹H NMR (600 MHz, CDCl₃) δ 11.66 (1H, s), 10.04 (1H, s), 7.95 (1H, s), 7.90 (1H, s), 7.75 (1H, s), 7.41 (1H, dd, J = 8.6, 2.3 Hz), 7.31 (1H, d, J = 2.3 Hz), 7.02 $(1H, d, J = 8.6 \text{ Hz}), 2.80 (1H, m), 2.52 (3H, s), 1.15 (6H, d, J = 7.2 \text{ Hz}); {}^{13}\text{C}$ NMR (150 MHz, CDCl₃) δ 200.3, 191.3, 161.4, 139.6, 139.2, 138.8, 136.3, 135.3, 135.2, 132.6, 130.3, 127.9, 118.4, 118.4, 33.1, 23.9, 21.21; IR (neat) 3425, 2959, 1698, 1629, 1589, 1481, 1320, 1191, 791, 663 cm⁻¹; HRMS m/z (M⁺) calcd for $C_{18}H_{18}O_3$: 282.1256. Found: 282.1253.

3-(2-Hydroxy-5-methoxybenzoyl)-5-methylbenzaldehyde (7). Yield 88% (237 mg) as a yellow sticky oil; ¹H NMR (600 MHz, CDCl₃) δ 11.41 (1H, s), 10.04 (1H, s), 7.95 (1H, s), 7.89 (1H, s), 7.74 (1H, s), 7.15 (1H, dd, *J* = 9.0, 3.1 Hz), 7.02 (1H, d, *J* = 9.1 Hz), 6.95 (1H, d, J = 3.0 Hz), 3.67 (3H, s), 2.51 (3H, s); ¹³C NMR (150 MHz, $CDCl_3$) δ 199.9, 191.3, 157.6, 151.5, 139.7, 138.7, 136.3, 135.0, 132.8, 127.6, 124.5, 119.4, 118.3, 115.8, 55.9, 21.2; IR (neat) 3452, 2922, 1697, 1592, 1484, 1200, 1034, 790, 664 cm⁻¹; HRMS m/z (M⁺) calcd for $C_{16}H_{14}O_4$: 270.0892. Found: 270.0893.

3-(2-Hydroxy-4-methoxybenzoyl)-5-methylbenzaldehyde (8). Yield 85% (230 mg) as a brown solid: mp 103 – 105 °C; ¹H NMR (600 MHz, CDCl₃) δ 12.51 (1H, s), 10.03 (1H, s), 7.89 (1H, s), 7.86 (1H, s), 7.68 (1H, s), 7.41 (1H, d, J = 8.9 Hz), MeO S9 6.51 (1H, d, J = 2.5 Hz), 6.41 (1H, dd, J = 9.0, 2.5 Hz), 3.85 (3H, s), 2.50 (3H, s); ¹³C NMR (150 MHz, CDCl₃) ¹³C NMR (151 MHz, CDCl₃) δ 198.7, 191.4, 166.5, 166.4, 139.6, 139.1, 136.2, 134.9, 134.8, 132.3, 127.5, 112.8, 107.8, 101.2, 55.6, 21.2; IR (neat) 3438, 2922, 1690, 1587, 1349, 1237, 802, 608 cm⁻¹; HRMS m/z (M⁺) calcd for C₁₆H₁₄O₄: 270.0892. Found: 270.0893.

3-(5-Chloro-2-hydroxybenzoyl)-5-methylbenzaldehyde (9). Yield 79% (217 mg) as a yellow solid: mp 108 – 110 °C; ¹H NMR (600 MHz, CDCl₃) δ 11.73 (1H, s), 10.05 (1H, s), 7.92 (2H, s), 7.71 (1H, s), 7.48 – 7.44 (2H, m), 7.04 (1H, d, J = 8.8 Hz), 2.53 (3H, s); ¹³C NMR (150 MHz, CDCl₃) δ 199.6, 191.2, 161.7, 139.9, 138.1, 136.70, 136.4, 134.8, 133.1, 131.9, 127.5, 123.6, 120.3, 119.4, 21.2; IR (neat) 3448, 2921, 2852, 1699, 1595, 1466, 1337, 1197, 790, 698 cm⁻¹; HRMS m/z (M⁺) calcd for C₁₅H₁₁ClO₃: 274.0397. Found: 274.0397.

3-(5-Bromo-2-hydroxybenzoyl)-5-methylbenzaldehyde (10). Yield 82% (261 mg) as a brown solid: mp 111 – 113 °C; ¹H NMR (600 MHz, CDCl₃) δ 11.74 (1H, s), 10.05 (1H, s), 7.92 (1H, s), 7.91 (1H, s), 7.70 (1H, s), 7.59 (2H, d, *J* = 7.5 Hz), 6.99 (1H, d, *J* = 9.5 Hz), 2.53 (3H, s); ¹³C NMR (150 MHz, CDCl₃) δ 199.5, 191.1, 162.1, 139.9, 139.4, 138.1, 136.5, 134.9, 134.8, 133.1, 127.5, 120.6, 120.1, 110.5, 21.2; IR (neat) 3482, 3005, 1739, 1700, 1594, 1467, 1337, 1200, 785 cm⁻¹; HRMS m/z (M⁺) calcd for C₁₅H₁₁BrO₃: 317.9892. Found: 317.9889.

3-(5-Fluoro-2-hydroxybenzoyl)-5-methylbenzaldehyde (11). Yield 76% (195 mg) as a brown solid: mp 133 – 135 °C; ¹H NMR (600 MHz, CDCl₃) δ 11.58 (1H, s), 10.05 (1H, s), 7.93 (1H, s), 7.92 (1H, s), 7.72 (1H, s), 7.27 (1H, m), 7.18 (1H, dd, J = 8.7, 3.1 Hz), 7.05 (1H, dd, J = 9.1, 4.5 Hz), 2.52 (3H, s); ¹³C NMR (150 MHz, CDCl₃) δ 100.5 101.1 150.4 155.4 152.8 120.0 128.2 126.4 124.0 122.1 127.5 124.5

 $\begin{array}{c} & \begin{array}{c} & 199.5, 191.1, 159.4, 155.4, 153.8, 139.9, 138.2, 136.4, 134.9, 133.1, 127.5, 124.5, \\ & 124.3, 120.0, 120.0, 117.9, 117.7, 21.2; IR (neat) 3468, 2924, 1739, 1614, 1479, \\ & 1344, 1202, 782 \text{ cm}^{-1}; \text{HRMS m/z (M}^+) \text{ calcd for } C_{15}H_{11}FO_3: 258.0692. \text{ Found: } 258.0690. \end{array}$

3-(2-Hydroxy-5-nitrobenzoyl)-5-methylbenzaldehyde (12). Yield 85% (243 mg) as a yellow solid: mp 137 – 139 °C; ¹H NMR (600 MHz, CDCl₃) δ 12.44 (1H, s), 10.06 (1H, s), 8.49 (1H, d, J = 2.8 Hz), 8.40 (1H, dd, J = 9.2, 2.8 Hz), 7.98 (1H, s), 7.96 (1H, s), 7.75 (1H, s), 7.20 (1H, d, J = 9.2 Hz), 2.55 (3H, s); ¹³C NMR (150 MHz, CDCl₃) δ 199.6, 190.9, 167.8, 140.3, 139.6, 137.3, 136.7, 134.8, 134.0, 131.2, 129.2, 127.4, 119.7, 117.7, 21.2; IR (neat) 3485, 2970, 1737, 1632, 1470, 1377, 1230, 701 cm⁻¹; HRMS m/z (M⁺) calcd for C₁₅H₁₁NO₅: 285.0637. Found: 285.0640.

3-(3,5-Dichloro-2-hydroxybenzoyl)-5-methylbenzaldehyde (13). Yield 76% (235 mg) as a brown solid: mp 140 – 142 °C; ¹H NMR (600 MHz, CDCl₃) δ 12.20 (1H, s), 10.05 (1H, s), 7.94 (1H, s), 7.92 (1H, s), 7.71 (1H, s), 7.62 (1H, d, J = 2.5 Hz), 7.40 (1H, d, J = 2.5 Hz), 2.53 (3H, s); ¹³C NMR (150 MHz, CDCl₃) δ 199.3, 191.0, 157.5, 140.1, 137.6, 136.5, 136.2, 134.8, 133.6, 130.5, 127.5, 124.3, 123.5, 120.0, 21.2; IR (neat) 3482, 2924, 1702, 1629, 1428, 1215, 747 cm⁻¹;

HRMS m/z (M⁺) calcd for $C_{15}H_{10}Cl_2O_3$: 308.0007. Found: 308.0007.

3-(3,5-Dibromo-2-hydroxybenzoyl)-5-methylbenzaldehyde (14). Yield 83% (330 mg) as a yellow solid: mp 173 – 175 °C; ¹H NMR (600 MHz, CDCl₃) δ 12.33 (1H, s), 10.04 (1H, s), 7.93 (1H, s), 7.90 (1H, s), 7.89 (1H, d, J = 2.3 Hz), 7.70 (1H, s), 7.57 (1H, d, J = 2.3 Hz), 2.53 (3H, s); ¹³C NMR (150 MHz, CDCl₃) δ 199.1, 190.9, 158.7, 141.7, 140.1, 137.5, 136.5, 134.8, 134.2, 133.5, 127.5, 120.4, 113.4, 110.4, 21.2; IR (neat) 3465, 2969, 1738, 1692, 1427, 1215, 785 cm⁻¹; HRMS m/z (M⁺) calcd for C₁₅H₁₀Br₂O₃: 395.8997. Found: 395.8994.

3-(5-Chloro-2-hydroxy-4-methylbenzoyl)-5-methylbenzaldehyde (15). Yield 77% (222 mg) as a yellow solid: mp 125 – 127 °C; ¹H NMR (600 MHz, CDCl₃) δ 11.73 (1H, s), 10.04 (1H, s), 7.90 (2H, s), 7.69 (1H, s), 7.43 (1H, s), 6.97 (1H, s), 2.52 (3H, s), 2.39 (3H, s); ¹³C NMR (150 MHz, CDCl₃) δ 199.1, 191.2, 161.6, 146.2, 139.8, 138.3, 136.4, 134.8, 132.9, 132.3, 127.5, 124.3, 120.6, 117.7, 21.2, 20.8; IR (neat) 3436, 3038, 2917, 1774, 1699, 1513, 1233, 1085, 755 cm⁻¹; HRMS m/z (M⁺) calcd for C₁₆H₁₃ClO₃: 288.0553. Found: 288.0550.

3-Ethyl-5-(2-hydroxybenzoyl)benzaldehyde (16). Yield 75% (191 mg) as a yellow oil; ¹H NMR (600 MHz, CDCl₃) δ 11.87 (1H, s), 10.05 (1H, s), 7.95 (1H, s), 7.92 (1H, s), 7.75 (1H, s), 7.52 (2H, m), 7.08 (1H, d, J = 8.3 Hz), 6.88 (1H, t, J = 7.6 Hz), 2.81 (2H, q, J = 7.6 Hz), 1.31 (3H, t, J = 7.6 Hz); ¹³C NMR (150 MHz, CDCl₃) δ 200.5, 191.4, 163.3, 145.9, 138.8, 136.7, 136.4, 134.1, 133.2, 131.6, 128.0, 118.9, 118.8, 118.6, 28.5, 15.1; IR (neat) 3465, 3073, 2966, 1698, 1624, 1592, 1482, 1208, 757, 656 cm⁻¹; HRMS m/z (M⁺) calcd for C₁₆H₁₄O₃: 254.0943. Found: 254.0940.

3-(2-Hydroxybenzoyl)-5-propylbenzaldehyde (17). Yield 84% (225 mg) as a yellow oil; ¹H NMR (600 MHz, CDCl₃) δ 11.87 (1H, s), 10.05 (1H, s), 7.95 (1H, s), 7.90 (1H, s), 7.73 (1H, s), 7.53 – 7.50 (2H, m), 7.07 (1H, d, *J* = 8.2 Hz), 6.88 (1H, t, *J* = 7.6 Hz), 2.74 (2H, t *J* = 7.2 Hz), 1.73 – 1.67 (2H, m), 0.96 (3H, t, *J* = 7.3 Hz); ¹³C NMR (150 MHz, CDCl₃) δ 200.5, 191.4, 163.3, 144.4, 138.7, 136.7, 136.3, 134.6, 133.1, 132.1, 128.1, 118.9, 118.8, 118.6, 37.5, 24.2, 13.6; IP. (next) 3463 - 2060 - 2029 - 1732 - 1608 - 1592 - 1338 - 1200 - 755 em⁻¹; HPMS m/z (M[±]) exled for

IR (neat) 3463, 2969, 2929, 1732, 1698, 1592, 1338, 1209, 755 cm⁻¹; HRMS m/z (M⁺) calcd for $C_{17}H_{16}O_3$: 268.1099. Found: 268.1097.

3-Butyl-5-(2-hydroxybenzoyl)benzaldehyde (18). Yield 81% (229 mg) as a yellow oil; ¹H NMR (600 MHz, CDCl₃) δ 11.87 (1H, s), 10.05 (1H, s), 7.95 (1H, s), 7.90 (1H, s), 7.73 (1H, s), 7.53 – 7.50 (2H, m), 7.07 (1H, d, J = 8.2 Hz), 6.88 (1H, t, J = 7.6 Hz), 2.76 (2H, t, J = 7.8 Hz), 1.68 – 1.63 (2H, m), 1.40 – 1.33 (2H, m), 0.93 (3H, t, J = 7.4 Hz); ¹³C NMR (150 MHz, CDCl₃) δ 200.5, 191.4, 163.3, 144.6, 138.7, 136.7, 136.3, 134.6, 133.1, 132.1, 128.0, 118.9, 118.8, 118.6,

35.2, 33.2, 22.2, 13.8; IR (neat) 3463, 3073, 2928, 1700, 1625, 1340, 1209, 757, 656 cm⁻¹; HRMS m/z (M⁺) calcd for $C_{18}H_{18}O_3$: 282.1256. Found: 282.1258.

3-(2-Hydroxybenzoyl)-5-pentylbenzaldehyde (19). Yield 86% (254 mg) as a yellow oil; ¹H NMR (600 MHz, CDCl₃) δ 11.87 (1H, s), 10.05 (1H, s), 7.95 (1H, s), 7.90 (1H, s), 7.73 (1H, s), 7.52 (2H, t, J = 8.8 Hz), 7.08 (1H, d, J = 8.3Hz), 6.88 (1H, t, J = 7.6 Hz), 2.75 (2H, t, J = 7.8 Hz), 1.68 (2H, m), 1.35 - 1.31 (4H, m), 0.89 (3H, t, J = 6.6 Hz); ¹³C NMR (150 MHz, CDCl₃) δ 200.5, 191.4, 163.3, 144.6, 138.73, 136.7, 136.3, 134.6, 133.1, 132.1, 128.0, 118.9, 118.8, 118.6, 35.5, 31.3, 30.7, 22.4, 13.9; IR (neat) 3468, 2927, 2856, 1701, 1625, 1445, 1209, 757, 656 cm⁻¹; HRMS m/z (M⁺) calcd for C₁₉H₂₀O₃: 296.1412. Found: 296.1414.

3-Hexyl-5-(2-hydroxybenzoyl)benzaldehyde (20). Yield 81% (251 mg) as a yellow oil; ¹H NMR (600 MHz, CDCl₃) δ 11.87 (1H, s), 10.05 (1H, s), 7.95 (1H, s), 7.90 (1H, s), 7.73 (1H, s), 7.53 – 7.50 (2H, m), 7.08 (1H, d, J = 8.2 Hz), 6.88 (1H, t, J = 7.6 Hz), 2.77 – 2.73 (2H, m), 1.69 – 1.64 (2H, m), 1.35 – 1.32 (2H, m), 1.31 – 1.27 (4H, m), 0.89 – 0.85 (3H, m); ¹³C NMR (150 MHz, CDCl₃) δ 200.5, 191.4, 163.3, 144.7, 138.7, 136.7, 136.3, 134.6, 133.2, 132.1, 128.0, 118.8, 118.6, 35.5, 31.5, 31.0, 28.8, 22.5, 14.0; IB (part) 3456

134.6, 133.2, 132.1, 128.0, 118.9, 118.8, 118.6, 35.5, 31.5, 31.0, 28.8, 22.5, 14.0; IR (neat) 3456, 2926, 2855, 1701, 1625, 1445, 1209, 757, 657 cm⁻¹; HRMS m/z (M⁺) calcd for $C_{20}H_{22}O_3$: 310.1569. Found: 310.1570.

3-Ethyl-5-(2-hydroxy-4-methoxybenzoyl)benzaldehyde (21). Yield 72% (205 mg) as a brown solid: mp 66 – 68 °C; ¹H NMR (600 MHz, CDCl₃) δ 12.53 (1H, s), 10.04 (1H, s), 7.91 (1H, s), 7.89 (1H, s), 7.71 (1H, s), 7.42 (1H, d, *J* = 8.9 Hz), 6.52 (1H, d, *J* = 2.5 Hz), 6.42 (1H, dd, *J* = 9.0, 2.5 Hz), 3.86 (3H, s), 2.80 (2H, q, *J* = 7.6 Hz), 1.30 (3H, t, *J* = 7.6 Hz); ¹³C NMR (150 MHz, CDCl₃) δ 198.7, 191.5, 166.5, 166.4, 145.8, 139.1, 136.3, 134.8, 133.9, 131.2,

127.8, 112.8, 107.8, 101.2, 55.7, 28.5, 15.2; IR (neat) 3454, 2965, 2848, 1695, 1590, 1353, 1231, 957, 801, 612 cm⁻¹; HRMS m/z (M⁺) calcd for $C_{17}H_{16}O_4$: 284.1049. Found: 284.1049.

3-(2-Hydroxy-4-methoxybenzoyl)-5-propylbenzaldehyde (22). Yield 79% (236 mg) as a brown oil: ¹H NMR (600 MHz, CDCl₃) δ 12.51 (1H, s), 10.04 (1H, s), 7.91 (1H, s), 7.87 (1H, s), 7.68 (1H, s), 7.41 (1H, d, J = 8.9 Hz), 6.51 (1H, d, J = 2.5 Hz), 6.41 (1H, dd, J = 9.0, 2.5 Hz), 3.85 (3H, s), 2.73 (2H, t, J = 7.7 Hz), 1.73 – 1.67 (2H, m), 0.96 (3H, t, J = 7.3 Hz); ¹³C NMR (150 MHz, CDCl₃) δ 198.7, 191.5, 166.5, 166.4, 144.3, 139.0, 136.3, 134.8, 134.4,

131.7, 127.8, 112.8, 107.7, 101.2, 55.6, 37.5, 24.2, 13.6; IR (neat) 3468, 2959, 2869, 1700, 1611, 1350, 1231, 957, 778 cm⁻¹; HRMS m/z (M⁺) calcd for $C_{18}H_{18}O_4$: 298.1205. Found: 298.1205.

3-(5-Chloro-2-hydroxybenzoyl)-5-ethylbenzaldehyde (23). Yield 75% (215 mg) as a light yellow solid; mp 51 – 53 °C; ¹H NMR (600 MHz, CDCl₃) δ 11.75 (1H, s), 10.06 (1H, s), 7.95 (1H, s), 7.93 (1H, s), 7.73 (1H, s), 7.47 – 7.45 (2H, m), 7.04 (1H, d, J = 9.6 Hz), 2.82 (2H, q, J = 7.6 Hz), 1.32 (3H, t, J = 7.6 Hz); ¹³C NMR (150 MHz, CDCl₃) δ 199.6, 191.2, 161.7, 146.1, 138.1, 136.6, 136.5, 133.9, 132.0, 132.0, 127.8, 123.6, 120.3, 119.4, 28.5, 15.2; IR (neat) 3452, 3070, 2969,

1699, 1627, 1466, 1193, 986, 735 cm⁻¹; HRMS m/z (M⁺) calcd for $C_{16}H_{13}ClO_3$: 288.0553. Found: 288.0557.

3-(5-Chloro-2-hydroxybenzoyl)-5-propylbenzaldehyde (24). Yield 68% (206 mg) as a light

yellow solid; mp 75 – 77 °C; ¹H NMR (600 MHz, CDCl₃) δ 11.73 (1H, s), 10.06 (1H, s), 7.94 (1H, s), 7.93 (1H, s), 7.70 (1H, s), 7.46 - 7.44 (2H, m), 7.03 (1H, d, J = 9.6 Hz), 2.75 (2H,t, J = 7.8 Hz), 1.74 – 1.68 (2H, m) 0.97 (3H, t, J = 7.3 Hz); ¹³C NMR (150 MHz, CDCl₃) δ 199.5, 191.2, 161.7, 144.6, 138.0, 136.6, 136.5, 134.4, 132.5, 132.0, 127.9, 123.6, 120.2, 119.4, 37.5,

24.2, 13.6; IR (neat) 3465, 3063, 2960, 1700, 1634, 1463, 1322, 1179, 985, 728 cm⁻¹; HRMS m/z (M^+) calcd for $C_{17}H_{15}ClO_3$: 302.0710. Found: 302.0711.

5-(2-Hydroxybenzoyl)-[1,1'-biphenyl]-3-carbaldehyde (25). Yield 72% (218 mg) as a yellow

sticky liquid; ¹H NMR (600 MHz, CDCl₃) δ 11.87 (1H, s), 10.14 (1H, s), 8.30 (1H, s), 8.13 (1H, s), 8.11 (1H, s), 7.65 (2H, d, *J* = 7.6 Hz), 7.57 – 7.53 (2H, m), 7.49 (2H, t, J = 7.5 Hz), 7.43 (1H, t, J = 7.4 Hz), 7.10 (1H, d, J =8.4 Hz), 6.90 (1H t, J = 7.6 Hz); ¹³C NMR (150 MHz, CDCl₃) δ 200.2, 191.2, 163.4, 142.7, 139.3, 138.5, 137.0, 136.9, 133.2, 133.0, 130.7, 129.2, 129.0, 128.6, 127.2, 119.1, 118.8, 118.7; IR (neat) 3429, 3061, 2929, 1671, 1626,

1344, 1239, 1156, 760 cm⁻¹; HRMS m/z (M⁺) calcd for $C_{20}H_{14}O_3$: 302.0943. Found: 302.0945.

3-(2-Hydroxy-1-naphthoyl)-5-methylbenzaldehyde (27). Yield 65% (189 mg) as a brown solid:

mp 118 – 120 °C; ¹H NMR (600 MHz, CDCl₃) δ 11.22 (1H, s), 9.92 (1H, s), 7.97 (1H, d, J = 9.0 Hz), 7.89 (1H, s), 7.85 (1H, s), 7.77 (1H, d, J = 8.0 Hz), 7.73 (1H, s), 7.28 (1H, t, J = 7.4 Hz), 7.25 (2H, dd, J = 9.2, 4.0 Hz), 7.15 (1H, t, J = 7.7 Hz), 2.44 (3H, s); ¹³C NMR (150 MHz, CDCl₃) δ 199.1, 191.3, 161.8, 141.2, 139.8, 136.8, 136.6, 135.3, 132.9, 132.0, 128.8, 128.6, 128.5, 126.9, 125.9, 123.9, 119.2,

113.9, 21.1; IR (neat) 3266, 3073, 2922, 1698, 1625, 1591, 1262, 1192, 943, 819, 744 cm⁻¹; HRMS m/z (M⁺) calcd for $C_{19}H_{14}O_3$: 290.0943. Found: 290.0940.

3-Ethyl-5-(2-hydroxy-1-naphthoyl)benzaldehyde (28). Yield 69% (211 mg) as a brown oil; ¹H NMR (600 MHz, CDCl₃) δ 11.29 (1H, s), 9.94 (1H, s), 7.96 (1H, d, J = 9.0 Hz), 7.90 (2H, s), 7.76 (1H, d, J = 7.9 Hz), 7.70 (1H, s), 7.28 – 7.24 (2H, m), 7.23 (1H, d, J = 9.4 Hz), 7.14 (1H, t, J = 7.8 Hz), 2.70 (2H, q, J = 7.6 Hz), 1.20 (3H, J)t, J = 7.6 Hz); ¹³C NMR (150 MHz, CDCl₃) δ 199.0, 191.4, 161.9, 145.9, 141.1, 136.8, 136.7, 134.6, 132.0, 131.7, 128.9, 128.8, 128.4, 126.9, 125.9, 123.9,

119.2, 113.8, 28.4, 15.1; IR (neat) 3286, 2966, 2927, 1740, 1697, 1622, 1587, 1189, 818, 748 cm⁻¹; HRMS m/z (M⁺) calcd for $C_{20}H_{16}O_3$: 304.1099. Found: 304.1098.

3-(2-Hydroxy-1-naphthoyl)-5-propylbenzaldehyde (29). Yield 75% (238 mg) as a brown solid:

mp 114 – 116 °C; ¹H NMR (600 MHz, CDCl₃) δ 11.23 (1H, s), 9.89 (1H, s), 7.89 (1H, d, J = 9.0 Hz), 7.87 (1H, s), 7.82 (1H, s), 7.70 (1H, d, J = 8.1 Hz), 7.59 (1H, s), 7.22 – 7.18 (2H, m), 7.17 (1H, d, J = 8.5 Hz), 7.07 (1H, t, J = 7.8 Hz), 2.56 (2H, t, J = 7.6 Hz), 1.55 – 1.49 (2H, m), 0.82 (3H, t, J = 7.3 Hz);

¹³C NMR (150 MHz, CDCl₃) δ 199.1, 191.4, 161.9, 144.3, 141.1, 136.8, 136.7, 135.1 132.34,

132.0, 128.8 128.82, 128.4, 126.9, 125.9, 123.9, 119.2, 113.8, 37.3, 24.1, 13.5; IR (neat) 3324, 3018, 2968, 1740, 1701, 1645, 1373, 1215, 950, 821, 755 cm⁻¹; HRMS m/z (M⁺) calcd for $C_{21}H_{18}O_3$: 318.1256. Found: 318.1256.

3-(1-Hydroxy-2-naphthoyl)-5-methylbenzaldehyde (30). Yield 78% (226 mg) as a brown solid:

mp 102 – 104 °C; ¹H NMR (600 MHz, CDCl₃) δ 13.80 (1H, s), 10.06 (1H, s), 8.51 (1H, d, J = 8.3 Hz), 7.98 (1H, s), 7.90 (1H, s), 7.76 (2H, d, J = 9.0 Hz), 7.66 (1H, t, J = 7.5 Hz), 7.56 (1H, t, J = 7.6 Hz), 7.45 (1H, d, J = 8.9 Hz), 7.23 (1H, d, J = 9.7 Hz), 2.53 (3H, s); ¹³C NMR (150 MHz, CDCl₃) δ 200.1, 191.4, 164.1, 139.6, 139.0, 137.4, 136.3 135.1, 132.4, 130.6, 127.8, 127.4,

126.7, 126.1, 125.2, 124.5 118.3, 112.2 21.2; IR (neat) 3466, 3063, 2920, 1699, 1593, 1294, 1230, 803, 761 cm⁻¹; HRMS m/z (M⁺) calcd for $C_{19}H_{14}O_3$: 290.0943. Found: 290.0945.

3-Ethyl-5-(1-hydroxy-2-naphthoyl)benzaldehyde (31). Yield 72% (219 mg) as a yellow solid:

mp 93 – 95 °C; ¹H NMR (600 MHz, CDCl₃)) δ 13.81 (1H, s), 10.07 (1H, s), 8.52 (1H, d, J = 8.3 Hz), 8.00 (1H, s), 7.93 (1H, s), 7.80 (1H, s), 7.76 (1H, d, J = 8.1 Hz), 7.66 (1H, t, J = 7.5 Hz), 7.56 (1H, t, J = 7.6 Hz), 7.45 (1H, d, J = 8.8 Hz), 7.23 (1H, d, J = 8.8 Hz), 2.83 (2H, q, J = 7.6 Hz), 1.32 (3H, t, J = 7.6 Hz); ¹³C NMR (150 MHz, CDCl₃) δ 200.2, 191.5, 164.1,

145.8, 139.0, 137.4, 136.4, 134.1, 131.2, 130.6, 128.1, 127.4, 126.7, 126.1, 125.2, 124.5, 118.3, 112.3, 28.5, 15.2; IR (neat) 3457, 3025, 2969, 1739, 1626, 1353, 1230, 818, 764 cm⁻¹; HRMS m/z (M⁺) calcd for $C_{20}H_{16}O_3$: 304.1099. Found: 304.1102.

3-(1-Hydroxy-2-naphthoyl)-5-propylbenzaldehyde (32). Yield 83% (264 mg) as a brown oil: ¹H NMR (600 MHz, CDCl₃) δ 13.81 (1H, s), 10.06 (1H, s), 8.51 (1H, d, *J* = 8.3 Hz), 8.00 (1H, s), 7.91 (1H, s), 7.77 – 7.75 (2H, m), 7.66 (1H, t, *J* = 7.5 Hz), 7.56 (1H, t, *J* = 7.5 Hz), 7.45 (1H, d, *J* = 8.9 Hz), 7.23 (1H, d, *J*

7.5 Hz), 7.56 (1H, t, J = 7.5 Hz), 7.45 (1H, d, J = 8.9 Hz), 7.23 (1H, d, J = 8.9 Hz), 2.75(2H, t, J = 7.8 Hz), 1.75 – 1.69 (2H, m), 0.98 (3H, t, J = 7.3 Hz); ¹³C NMR (150 MHz, CDCl₃) δ 200.1, 191.5, 164.1, 144.3, 139.0,

137.4, 136.3, 134.6, 131.8, 130.6, 128.1, 127.4, 126.6, 126.1, 125.2, 124.5, 118.2, 112.3, 37.5, 24.2, 13.6; IR (neat) 3458, 3063, 2958, 1743, 1594, 1459, 1230, 763 cm⁻¹; HRMS m/z (M⁺) calcd for $C_{21}H_{18}O_3$: 318.1256. Found: 318.1255.

3-(2-Hydroxybenzoyl)benzaldehyde (33'). Yield 57% (129 mg) as a yellow solid: mp 65 – 67 °C; ¹H NMR (600 MHz, CDCl₃) δ 11.83 (1H, s), 10.07 (1H, s), 8.14 (1H, s), 8.08 (1H, d, J = 7.6 Hz), 7.91 (1H, d, J = 7.4 Hz), 7.68 (1H, t, J = 7.7 Hz), 7.52 – 7.48 (2H, m), 7.06 (1H, d, J = 8.4 Hz), 6.87 (1H, t, J = 7.5 Hz); ¹³C NMR (150 MHz, CDCl₃) δ 200.1, 191.1 163.2, 138.6, 136.8, 136.2, 134.4 133.1, 132.3, 130.2, 129.2 118.9, 118.6, 118.6; IR (neat) 3428, 3051, 2835, 1698, 1623, 1598, 1191, 972, 757, 646

cm⁻¹; HRMS m/z (M⁺) calcd for $C_{14}H_{10}O_3$: 226.0630. Found: 226.0628.

3-(2-Hydroxybenzoyl)-1-naphthaldehyde (33). Yield 75% (206 mg) as a white solid: mp 125 – 127 °C; ¹H NMR (600 MHz, CDCl₃) δ 11.93 (1H, s), 10.17 (1H, s), 8.42 (1H, s), 8.31 (1H, s), 8.07 (1H, d, J = 8.4 Hz), 8.02 (2H, t, J = 7.2 Hz), 7.91 (1H, d, J = 8.5 Hz), 7.62 (1H, d, J = 8.0 Hz), 7.54 (1H, t, J = 7.8 Hz), 7.10 (1H, d, J = 8.4 Hz), 6.89 (1H, t, J = 7.6 Hz); ¹³C NMR (150 MHz, CDCl₃) δ 200.6, 191.6, 163.3, 137.6, 136.6, 136.3, 135.1, 134.9, 133.3, 131.5, 131.4, 129.0, 128.5, 128.4, 125.0, 119.0, 118.8, 118.6; IR (neat) 3463, 3060, 2922, 1691, 1623, 1216, 852, 758 cm⁻¹; HRMS m/z (M⁺) calcd for C₁₈H₁₂O₃: 276.0786. Found: 276.0784.

3-(2-Hydroxy-5-methylbenzoyl)-1-naphthaldehyde (34). Yield 68% (197 mg) as a yellow solid:

mp 172 – 174 °C; ¹H NMR (600 MHz, CDCl₃) δ 11.74 (1H, s), 10.19 (1H, s), 8.44 (1H, s), 8.30 (1H, s), 8.08 (1H, d, J = 8.5 Hz), 8.03 – 8.01 (2H, m), 7.91 (1H, d, J = 8.4 Hz), 7.37 – 7.34 (2H, m), 7.01 (1H, d, J = 8.4 Hz), 2.24 (3H, s); ¹³C NMR (150 MHz, CDCl₃) δ 200.6, 191.7, 161.2, 137.7,

137.6, 136.5, 135.1, 134.9, 132.9, 131.6, 131.2, 129.1, 128.5, 128.4, 128.0, 125.0, 118.8, 118.4, 20.5; IR (neat) 3468, 2922, 2853, 1736, 1684, 1481, 1203, 806, 785 cm⁻¹; HRMS m/z (M⁺) calcd for $C_{19}H_{14}O_3$: 290.0943. Found: 290.0941.

3-(2-Hydroxy-5-isopropylbenzoyl)-1-naphthaldehyde (35). Yield 73% (233 mg) as a yellow oil: ¹H NMR (600 MHz, CDCl₃) δ 11.75 (1H, s), 10.18 (1H, s), 8.42 (1H, s), 8.32 (1H, s), 8.08 (1H, d, *J* = 8.6 Hz), 8.03 – 8.01 (2H, m), 7.92 (1H, d, *J* = 8.4 Hz), 7.43 – 7.42 (2H, m), 7.04 (1H, d, *J* = 8.9 Hz), 2.82 – 2.78 (1H, m), 1.16 (6H, d, *J* = 6.6 Hz); ¹³C NMR (150 MHz, CDCl₃) δ 200.5, 191.6,

161.4, 139.2, 137.6, 136.5, 135.1, 135.0, 134.9, 131.6, 131.4 130.5, 129.1, 128.5, 128.4, 125.0, 118.7, 118.4, 33.1, 23.9; IR (neat) 3466, 3020, 2958, 1738, 1693, 1627, 1207, 830 cm⁻¹; HRMS m/z (M⁺) calcd for $C_{21}H_{18}O_3$: 318.1256. Found: 318.1253.

3-(2-Hydroxy-4-methoxybenzoyl)-1-naphthaldehyde (36). Yield 72% (219 mg) as a yellow solid: mp 137 – 139 °C; ¹H NMR (600 MHz, CDCl₃) δ 12.60 (1H, s), 10.18 (1H, s), 8.41 (1H, s), 8.26 (1H, s), 8.06 (1H, d, J = 8.6 Hz), 8.01 – 7.99 (2H, m), 7.87 (1H, d, J = 8.3 Hz), 7.52 (1H, d, J = 9.0 Hz), 6.55 (1H, d, J = 2.5 Hz), 6.43 (1H, dd, J = 9.0, 2.5 Hz), 3.87 (3H, s); ¹³C NMR (150 MHz, CDCl₃) δ 198.9, 191.7, 166.5, 137.4, 136.7, 135.0, 135.0, 134.9, 131.6, 130.8, 129.0, 128.5, 128.4, 125.9 124.8, 113.1, 107.7, 101.2, 55.7; IR (neat) 3466, 3012, 2970, 1738, 1688, 1368, 1207, 844, 794 cm⁻¹; HRMS m/z (M⁺) calcd for C₁₉H₁₄O₄: 306.0892. Found: 306.0893.

3-(5-Chloro-2-hydroxybenzoyl)-1-naphthaldehyde (37). Yield 69% (215 mg) as a white solid:

mp 172 – 174 °C; ¹H NMR (600 MHz, CDCl₃) δ 11.81 (1H, s), 10.19 (1H, s), 8.46 (1H, s), 8.31 (1H, s), 8.10 (1H, d, *J* = 8.6 Hz), 8.05 – 8.02 (2H, m), 7.90 (1H, d, *J* = 8.3 Hz), 7.58 (1H, d, *J* = 2.6 Hz), 7.48 (1H, dd, *J* = 8.9, 2.6 Hz), 7.07 (1H, d, *J* = 8.9 Hz); ¹³C NMR (150 MHz, CDCl₃) δ 199.7, 191.6,

161.7, 137.8, 136.5, 135.6, 135.1, 135.1, 132.1, 131.6, 131.5, 129.1, 128.8, 128.1, 125.3, 123.6, 120.3, 119.7; IR (neat) 3460, 3025, 2970, 1739, 1684, 1621, 1207, 865 cm⁻¹; HRMS m/z (M⁺) calcd for $C_{18}H_{11}ClO_3$: 310.0397. Found: 310.0398.

3-(5-Bromo-2-hydroxybenzoyl)-1-naphthaldehyde (38). Yield 85% (301 mg) as a yellow solid:

OH	0	H
\land	\sim	
\bigtriangledown		\checkmark
Br		

mp 179 – 181 °C; ¹H NMR (600 MHz, CDCl₃) δ 11.82 (1H, s), 10.20 (1H, s), 8.46 (1H, s), 8.31 (1H, s), 8.10 (1H, d, J = 8.5 Hz), 8.06 – 8.02 (2H, m), 7.90 (1H, d, J = 8.5 Hz), 7.72 (1H, d, J = 2.3 Hz), 7.61 (1H, dd, J = 9.1, 2.4 Hz), 7.02 (1H, d, J = 8.9 Hz); ¹³C NMR (150 MHz, CDCl₃) δ 199.6,

191.6, 162.2, 139.2, 137.8, 135.6, 135.1, 135.1, 131.6, 131.5, 129.1, 128.8, 128.1, 125.3, 120.7, 120.3, 110.5; IR (neat) 3482, 3073, 2923, 1743, 1684, 1619, 1465, 1205, 905, 826 cm⁻¹; HRMS m/z (M⁺) calcd for $C_{18}H_{11}BrO_3$: 353.9892. Found: 353.9887.

3-(1-Hydroxy-2-naphthoyl)-1-naphthaldehyde (39). Yield 81% (265 mg) as a yellow solid: mp H 173 – 175 °C; ¹H NMR (600 MHz, CDCl₃) δ 13.86 (1H, s), 10.18 (1H, s), 8.53 (1H, d, J = 8.4 Hz), 8.43 (1H, s), 8.34 (1H, s), 8.07 (1H, d, J= 8.6 Hz), 8.04 – 8.00 (2H, m), 7.95 (1H, d, J = 8.5 Hz), 7.77 (1H, d, J = 8.2 Hz), 7.66 (1H, t, J = 7.6 Hz), 7.56 (2H, t, J = 8.8 Hz), 7.23 (1H, d, J = 4.2 Hz); ¹³C NMR (150 MHz, CDCl₃) δ 200.3, 191.7, 164.1 137.5, 137.3, 136.6, 135.1, 134.9, 131.6, 131.2, 130.6, 129.1, 128.5, 127.4, 126.9, 126.1, 125.3, 124.9, 124.5, 118.2, 112.5; IR (neat) 3452, 3064, 2925, 1742, 1695, 1623, 1203, 835, 636 cm⁻¹; HRMS m/z (M⁺) calcd for C₂₂H₁₄O₃: 326.0943. Found: 326.0941.

3-(5-Chloro-2-hydroxybenzoyl)-5-methyl-1-naphthaldehyde (42). Yield 68% (221 mg) as a yellow solid: mp 38 - 140 °C; ¹H NMR (600 MHz, CDCl₃) δ 11.82 (1H, s), 10.20 (1H, s), 8.44 (1H, s), 8.18 (1H, d, J = 8.7 Hz), 8.14 – 8.11 (2H, m), 7.74 (1H, s), 7.60 (1H, d, J = 2.6 Hz), 7.48 (1H, dd, J = 9.0, 2.6 Hz), 7.07 (1H, d, J = 8.9 Hz), 2.80 (3H, s); ¹³C NMR (150 MHz, CDCl₃) δ 199.9,

191.6, 161.7, 137.2, 136.4, 136.2, 135.6, 135.3, 134.7, 132.2, 131.7, 129.9, 128.4, 125.5, 125.2, 123.6, 120.2, 119.8, 19.5; IR (neat) 3428, 3073, 2925, 1737, 1694, 1203, 818, 732 cm⁻¹; HRMS m/z (M⁺) calcd for $C_{19}H_{13}ClO_3$: 324.0553. Found: 324.0550.

3-(5-Chloro-2-hydroxybenzoyl)-5-ethyl-1-naphthaldehyde (43). Yield 73% (246 mg) as a yellow solid: mp 112 – 114 °C; ¹H NMR (600 MHz, CDCl₃) δ 11.83 (1H, s), 10.19 (1H, s), 8.44 (1H, s), 8.22 (1H, d, J = 8.8 Hz), 8.14 (1H, s), 8.11 (1H, d, J = 8.7 Hz), 7.75 (1H, s), 7.60 (1H, d, J = 2.6 Hz), 7.47 (1H, dd, J = 9.0, 2.4 Hz), 7.06 (1H, d, J = 9.0 Hz), 3.20 (2H, q, J = 7.6 Hz), 1.42 (3H,

t, J = 7.5 Hz); ¹³C NMR (150 MHz, CDCl₃) δ 200.0, 191.6, 161.7, 142.0, 136.4, 136.4, 135.9, 135.3, 134.5, 132.2, 132.0, 129.9, 126.8, 125.1, 125.0, 123.5, 120.2, 119.7, 25.9, 14.7; IR (neat) 3426, 2921, 2852, 1694, 1619, 1461, 1186, 817, 794 cm⁻¹; HRMS m/z (M⁺) calcd for C₂₀H₁₅ClO₃: 338.0710. Found: 338.0712.

(2-Hydroxyphenyl)(phenyl)methanone (44). Yield 74% (147 mg) as a yellow solid: mp 37 – 39 °C; ¹H NMR (600 MHz, CDCl₃) δ 12.01 (1H, s), 7.66 (2H, d, J = 7.6 Hz), 7.59 – 7.56 (2H, m), 7.49 (3H, t, J = 7.5 Hz), 7.06 (1H, d, J = 8.3 Hz), 6.86 (1H, t, J = 7.6 Hz); ¹³C NMR (150 MHz, CDCl₃) δ 201.6, 163.2, 137.9, 136.3, 133.5, 131.8, 129.1, 128.3, 119.1, 118.6, 118.4; IR (neat) 3466, 2921, 2852, 1738, 1456, 1216, 804 cm⁻¹; HRMS m/z (M⁺) calcd for C₁₃H₁₀O₂: 198.0681. Found: 198.0679.

(3-Ethylphenyl)(2-hydroxyphenyl)methanone (45). Yield 83% (188 mg) as a light yellow liquid; ¹H NMR (600 MHz, CDCl₃ δ 12.05 (1H, s), 7.59 (1H, dd, *J* = 8.1, 1.6 Hz), 7.50 (1H, s), 7.48 – 7.45 (2H, m), 7.41 – 7.37 (2H, m), 7.06 (1H, d, *J* = 8.3 Hz), 6.86 (1H, t, *J* = 7.6 Hz), 2.72 (2H, q, *J* = 7.6 Hz), 1.27 (3H, t, *J* = 7.6 Hz); ¹³C NMR (150 MHz, CDCl₃) δ 201.9, 163.1, 144.5, 137.9, 136.1, 133.6, 131.5, 128.4, 128.17, 126.5, 119.2, 118.5, 118.3, 28.7, 15.4; IR (neat) 3452, 2965, 2930, 1738, 1624, 1598, 1482, 1443, 1334, 1305, 1245, 1202, 1157 cm⁻¹; HRMS m/z (M⁺) calcd for C₁₅H₁₄O₂:

226.0994. Found: 226.0993.

(2-Hydroxyphenyl)(3-propylphenyl)methanone (46). Yield 86% (207 mg) as a light yellow liquid; ¹H NMR (600 MHz, CDCl₃) δ 12.06 (1H, s), 7.59 (1H, d, J = 7.9 Hz), 7.49 – 7.46 (3H, m), 7.39 – 7.38 (2H, m), 7.06 (1H, d, J = 8.4 Hz), 6.86 (1H, t, J = 7.5 Hz), 2.66 (2H, t, J = 7.6 Hz), 1.67 (2H, m), 0.96 (3H, t, J = 7.3 Hz); ¹³C NMR (150 MHz, CDCl₃) δ 201.8, 163.1 142.9, 137.8, 136.1, 133.5, 132.0, 129.0, 128.0, 126.5, 119.1, 118.5, 118.2, 37.7, 24.3, 13.6; IR (neat) 3361, 3043, 2959, 1740, 1624, 1482, 1245, 949, 756, 649 cm⁻¹; HRMS m/z (M⁺) calcd for C₁₆H₁₆O₂: 240.1150. Found:

240.1151.

(3-Butylphenyl)(2-hydroxyphenyl)methanone (57). Yield 82% (209 mg) as a light yellow liquid; ¹H NMR (600 MHz, CDCl₃) δ 12.07 (1H, s), 7.59 (1H, d, *J* = 7.9 Hz), 7.49 – 7.44 (3H, m), 7.39 – 7.37 (2H, m), 7.06 (1H, d, *J* = 8.3 Hz), 6.86 (1H, t, *J* = 7.6 Hz), 2.68 (2H, t, *J* = 7.7 Hz), 1.65 – 1.60 (2H, m), 1.40 – 1.33 (2H, m), 0.93 (3H, t, *J* = 7.3 Hz); ¹³C NMR (150 MHz, CDCl₃) δ 201.8, 163.1, 143.2, 137.8, 136.1, 133.5, 132.0, 128.9, 128.0, 126.5, 119.1, 118.5, 118.2, 35.4, 33.4, 22.2, 13.8; IR (neat) 3396 2956 2928 1740 1625 1482 1443 1244 962 756 cm⁻¹; HRMS m/z (M⁺) calcd for

3396, 2956, 2928, 1740, 1625, 1482, 1443, 1244, 962, 756 cm⁻¹; HRMS m/z (M⁺) calcd for $C_{17}H_{18}O_2$: 254.1307. Found: 254.1303.

(2-Hydroxyphenyl)(3-pentylphenyl)methanone (48). Yield 86% (231 mg) as a light yellow liquid; ¹H NMR (600 MHz, CDCl₃) δ 12.05 (1H, s), 7.59 (1H, d, J = 7.9 Hz), 7.49 – 7.45 (3H, m), 7.39 – 7.38 (2H, m), 7.06 (1H, d, J = 8.4 Hz), 6.86 (1H, t, J = 7.6 Hz), 2.67 (2H, t, J = 7.8 Hz), 1.66 – 1.61 (2H, m), 1.35 – 1.31 (4H, m), 0.89 (3H, t, J = 7.2 Hz); ¹³C NMR (150 MHz, CDCl₃) δ 201.9, 163.1, 143.2 137.8 136.1, 133.6, 132.0, 129.0, 128.1, 126.5, 119.2, 118.5, 118.3, 35.7, 31.3, 30.9, 22.4, 13.9; IR (neat) 3433, 2927, 1740, 1625, 1482, 1245, 963, 756, 650 cm⁻¹; HRMS m/z (M⁺) calcd for C₁₈H₂₀O₂: 268.1463. Found: 268.1464.

(3-Hexylphenyl)(2-hydroxyphenyl)methanone (49). Yield 89% (251 mg) as a light yellow $\rho H \rho$ liquid; ¹H NMR (600 MHz, CDCl₃) δ 12.05 (1H, s), 7.59 (1H, d, J = 8.2 Hz), 7.49 – 7.45 (3H, m), 7.39 – 7.38 (2H, m), 7.06 (1H, d, J = 8.3 Hz), 6.86 (1H, t, J = 7.5 Hz), 2.67 (2H, t, J = 7.8 Hz), 1.65 – 1.60 (2H, m), 1.36 – 1.26 (6H, m), 0.87 (3H, t, J = 7.2 Hz); ¹³C NMR (150 MHz, CDCl₃) δ 201.9, 163.1, 143.2, 137.8, 136.1, 133.6, 132.0, 129.0, 128.1, 126.5, 119.2, 118.5, 118.3, 35.7, 31.6, 31.2, 28.8, 22.5, 14.0; IR (neat) 3385, 2926, 1739, 1625, 1483, 1245, 756, 650 cm⁻¹; HRMS m/z (M⁺) calcd for C₁₉H₂₂O₂: 282.1620. Found: 282.1621.

(2-Hydroxyphenyl)(p-tolyl)methanone (50). Yield 91% (194 mg) as a yellow solid: mp 38 – 40 ^{OH} O ^{OF} ; ¹H NMR (600 MHz, CDCl₃) δ 12.01 (1H, s), 7.60 – 7.58 (3H, m), 7.48 (1H, t, J = 7.8 Hz), 7.29 (2H, d, J = 7.8 Hz), 7.05 (1H, d, J = 8.4 Hz), 6.85 (1H, t, J = 7.6Hz), 2.44 (3H, s); ¹³C NMR (150 MHz, CDCl₃) δ 201.3, 163.0, 142.7, 136.0, 135.1, 133.5, 129.4, 128.9, 119.2, 118.5, 118.3, 21.6; IR (neat) 3036, 2920, 1739, 1623 1482 1242 934 757 cm⁻¹: HBMS m/z (M⁺) calcd for Cull-Oci 212.0837 Found:

1623, 1482, 1242, 934, 757 cm⁻¹; HRMS m/z (M⁺) calcd for $C_{14}H_{12}O_2$: 212.0837. Found: 212.0838.

[1,1'-Biphenyl]-3-yl(2-hydroxyphenyl)methanone (51). Yield 82% (225 mg) as a brown liquid;

^{OH} O ^IH NMR (600 MHz, CDCl₃) δ 12.02 (1H, s), 7.87 (1H, s), 7.80 (1H, d, J = 7.4Hz), 7.63 (2H, d, J = 7.7 Hz), 7.60 (2H, d, J = 7.4 Hz), 7.56 (1H, t, J = 7.6 Hz), 7.51 (1H, t, J = 7.8 Hz), 7.45 (2H, t, J = 7.7 Hz), 7.37 (1H, t, J = 7.5 Hz), 7.08 (1H, d, J = 8.4 Hz), 6.87 (1H, t, J = 7.6 Hz); ¹³C NMR (150 MHz, CDCl₃) δ 201.6, 163.2, 141.4, 139.9, 138.4, 136.4, 133.5, 130.5, 128.9, 128.8, 127.9, 127.8, 127.7, 127.1, 119.1, 118.7, 118.4; IR (neat) 3385, 2923, 1736, 1624, 1479, 1217, 950, 752, 695 cm⁻¹; HRMS m/z (M⁺) calcd for C₁₉H₁₄O₂: 274.0994. Found: 274.0991.

(2-Hydroxy-5-methylphenyl)(*p*-tolyl)methanone (52). Yield 72% (163 mg) as a brown solid: mp 85 - 89 °C; ¹H NMR (600 MHz, CDCl₃) δ 11.84 (1H, s), 7.58 (2H, d, *J* = 7.6 Hz), 7.37 (1H, s), 7.29 (3H, d, *J* = 7.9 Hz), 6.96 (1H, d, *J* = 8.5 Hz), 2.44 (3H, s), 2.24 (3H, s); ¹³C NMR (150 MHz, CDCl₃) δ 201.2, 160.9, 142.5, 137.0, 135.2, 133.1, 129.3, 128.9, 127.6, 118.9, 118.0, 21.5, 20.43; IR (neat) 3368, 3015, 2921, 1739, 1600, 1478, 1224, 950, 758 cm⁻¹; HRMS m/z (M⁺) calcd for C₁₅H₁₄O₂: 226.0994. Found: 226.0995.

(2-Hydroxy-5-isopropylphenyl)(*p*-tolyl)methanone (53). Yield 70% (155 mg) as a light yellow liquid: ¹H NMR (600 MHz, CDCl₃) δ 11.85 (1H, s), 7.60 (2H, d, *J* = 8.1 Hz), 7.44 (1H, d, *J* = 2.3 Hz), 7.37 (1H, dd, *J* = 8.5, 2.4 Hz), 7.30 (2H, d, *J* = 7.8 Hz), 6.99 (1H, d, *J* = 8.5 Hz), 2.85 – 2.78 (1H, m), 2.44 (3H, s), 1.18 (6H, d, *J* = 6.9 Hz); ¹³C NMR (150 MHz, CDCl₃) δ 201.1, 161.1, 142.5, 138.7, 135.2, 134.4, 130.7, 129.4, 128.9, 118.8, 118.0, 33.1, 23.9, 21.5; IR (neat) 3386, 2958, 1737, 1628 1479 1223 962 779 cm⁻¹: HRMS m/z (M⁺) calcd for CyrHuOs: 254 1307 Found:

1628, 1479, 1223, 962, 779 cm⁻¹; HRMS m/z (M⁺) calcd for $C_{17}H_{18}O_2$: 254.1307. Found: 254.1305.

(2-Hydroxy-5-methoxyphenyl)(*p*-tolyl)methanone (54). Yield 81% (197 mg) as a yellow solid: mp 82 – 84 °C; ¹H NMR (600 MHz, CDCl₃) δ 11.56 (1H, s), 7.60 (2H, d, J = 8.0 Hz), 7.28 (2H, d, J = 7.8 Hz), 7.11 (1H, dd, J = 9.1, 3.1 Hz), 7.07 (1H, d, J = 3.1 Hz), 6.98 (1H, d, J = 9.1 Hz), 3.68 (3H, s), 2.43 (3H, s); ¹³C NMR (150 MHz, CDCl₃) δ 200.7, 157.2, 151.3, 142.7, 135.0, 129.3, 128.9, 123.7, 119.0,

118.7, 116.2, 55.8, 21.5; IR (neat) 3426, 3004, 2919, 1736, 1598, 1482, 1229, 775 cm⁻¹; HRMS m/z (M⁺) calcd for C₁₅H₁₄O₃: 242.0943. Found: 242.0940.

(2-Hydroxy-4-methoxyphenyl)(phenyl)methanone (55). Yield 82% (186 mg) as a white solid:

mp 57 – 59 °C; ¹H NMR (600 MHz, CDCl₃) δ 12.68 (1H, s), 7.61 (2H, d, J =7.5 Hz), 7.54 (1H, t, J = 7.4 Hz), 7.49 – 7.45 (3H, m), 6.50 (1H, d, J = 2.6 Hz), 6.39 (1H, dd, J = 8.9, 2.5 Hz), 3.84 (3H, s); ¹³C NMR (150 MHz, CDCl₃) δ 199.9, 166.2, 166.1, 138.2, 135.2, 131.4, 128.8, 128.2, 113.0, 107.3, 101.0,

55.6; IR (neat) 3433, 3068, 1738, 1626, 1434, 1252, 912, 813, 706 cm⁻¹; HRMS m/z (M⁺) calcd for C₁₄H₁₂O₃: 228.0786. Found: 228.0785.

(2-Hydroxy-4-methoxyphenyl)(m-tolyl)methanone (56). Yield 88% (212 mg) as a light yellow

liquid: ¹H NMR (600 MHz, CDCl₃) δ 12.70 (1H, s), 7.49 (1H, d, J = 8.9 Hz), 7.42 (1H, s), 7.39 - 7.38 (1H, m), 7.34 - 7.33 (2H, m), 6.49 (1H, d, J = 2.5 Hz), 6.39 (1H, dd, J = 9.0, 2.5 Hz), 3.83 (3H, s), 2.40 (3H, s); ¹³C NMR (150 MHz, $CDCl_3$) δ 200.1, 166.2, 166.0, 138.2, 138.1, 135.2, 132.1, 129.2, 128.0, 125.9, 113.1, 107.2, 100.9, 55.5, 21.3; IR (neat) 3369, 2921, 1727, 1619, 1440, 1260, 947, 789 cm⁻¹;

HRMS m/z (M⁺) calcd for $C_{15}H_{14}O_3$: 242.0943. Found: 242.0940.

(2-Hydroxy-4-methoxyphenyl)(p-tolyl)methanone (57). Yield 89% (216 mg) as a white solid: mp 93 – 95 °C; ¹H NMR (600 MHz, CDCl₃) δ 12.70 (1H, s), 7.53 – 7.50 (3H, m), 7.27 (2H, d, J = 7.8 Hz), 6.49 (1H, d, J = 2.5 Hz), 6.39 (1H, dd, J = 8.9, 2.5 Hz), 3.84 (3H, s), 2.42 (3H, s); ¹³C NMR (150 MHz, CDCl₃) δ 199.7, 166.1, 165.9, 142.0, 135.4, 135.1, 129.0, 128.9, 113.1, 107.1, 101.0, 55.5, 21.5; IR (neat) 3425, 2920, 1727, 1629, 1442, 1256, 915, 792 cm⁻¹; HRMS m/z (M⁺) calcd for C₁₅H₁₄O₃: 242.0943. Found: 242.0940.

(5-Chloro-2-hydroxyphenyl)(m-tolyl)methanone (58). Yield 69% (170 mg) as a yellow solid: mp 85 – 87 °C; ¹H NMR (600 MHz, CDCl₃) δ 11.90 (1H, s), 7.54 (1H, d, J = 2.6Hz), 7.46 (1H, s), 7.43 – 7.37 (4H, m), 7.01 (1H, d, J = 8.8 Hz), 2.43 (3H, s); ¹³C NMR (150 MHz, CDCl₃) δ 200.8, 161.6, 138.6, 137.2, 136.0, 133.1, 132.4, 129.4, 128.3, 126.3, 123.3, 119.9, 119.8, 21.3; IR (neat) 3379, 3068, 2923, 1739, 1621, 1467, 1248, 954, 770 cm⁻¹; HRMS m/z (M⁺) calcd for $C_{14}H_{11}ClO_2$: 246.0448.

Found: 246.0448.

(5-Chloro-2-hydroxyphenyl)(p-tolyl)methanone (59). Yield 85% (209 mg) as a yellow solid: mp 85 - 87 °C; ¹H NMR (600 MHz, CDCl₃) δ 11.89 (1H, s), 7.58 - 7.56 (3H, m), 7.42 (1H, d, J = 9.0 Hz), 7.31 (2H, d, J = 7.8 Hz), 7.00 (1H, d, J = 8.9 Hz), 2.44 (3H, s); ¹³C NMR (150 MHz, CDCl₃) δ 200.1, 161.5, 143.2, 135.8, 134.4, 132.3, 129.3, 129.2, 123.2, 119.9, 119.8, 21.62; IR (neat) 3365, 3047, 2969, 1743, 1661, 1467, 1284, 1215, 819 cm⁻¹; HRMS m/z (M⁺) calcd for $C_{14}H_{11}ClO_2$: 246.0448.

Found: 246.0449.

(5-Bromo-2-hydroxyphenyl)(p-tolyl)methanone (60). Yield 76% (220 mg) as a white solid: mp 103 - 105 °C; ¹H NMR (600 MHz, CDCl₃) δ 11.90 (1H, s), 7.70 (1H, d, J = 2.8Hz), 7.57 (2H, d, J = 7.8 Hz), 7.54 (1H, dd, J = 8.9, 2.4 Hz), 7.31 (2H, d, J = 7.8Hz), 6.95 (1H, d, J = 8.8 Hz), 2.44 (3H, s); ¹³C NMR (150 MHz, CDCl₃) δ 200.0, 161.9, 143.2, 138.6, 135.2, 134.4, 129.3, 129.2, 120.4, 120.3, 110.1, 21.6; IR (neat) 3392, 3061, 1739, 1622, 1463, 1223, 943, 828, 699 cm⁻¹; HRMS m/z (M⁺) calcd for C₁₄H₁₁BrO₂: 289.9942. Found: 289.9943.

(5-Fluoro-2-hydroxyphenyl)(p-tolyl)methanone (61). Yield 90% (207 mg) as a yellow solid: mp 73 - 75 °C; ¹H NMR (600 MHz, CDCl₃) δ 11.72 (1H s), 7.58 (2H, d, J = 7.9 Hz), 7.29 - 7.26 (3H, m), 7.20 (1H, td, J = 8.4, 3.2 Hz), 7.00 (1H, dd, J = 9.1, 4.5 Hz), 2.43 (3H, s); ¹³C NMR (150 MHz, CDCl₃) δ 200.1, 200.1, 159.1, 155.2, 153.6, 143.1, 134.5, 129.3, 129.1, 123.5, 123.3, 119.5, 119.4, 118.7, 118.7, 118.2, 118.0, 21.5; IR (neat) 3348, 2969, 1739, 1600, 1474, 1223, 825, 780 cm⁻¹; HRMS m/z (M⁺) calcd for C₁₄H₁₁FO₂: 230.0743. Found: 230.0741.

(2-Hydroxy-5-nitrophenyl)(p-tolyl)methanone (62). Yield 83% (214 mg) as an off-white solid: mp 104 – 106 °C; ¹H NMR (600 MHz, CDCl₃) δ 12.66 (1H, s), 8.59 (1H, d, J = 2.7 Hz), 8.35 (1H, dd, J = 9.2, 2.8 Hz), 7.61 (2H, d, J = 8.0 Hz), 7.36 (2H, d, J =7.9 Hz), 7.15 (1H, d, J = 9.2 Hz), 2.47 (3H, s); ¹³C NMR (150 MHz, CDCl₃) δ 200.1, 167.9, 144.2, 139.3, 133.6, 130.6, 129.5, 129.5, 129.5, 119.4, 118.1, 21.7; IR (neat) 3415, 3029, 1737, 1626, 1467, 1201, 958, 766 cm⁻¹; HRMS m/z (M⁺)

calcd for C₁₄H₁₁NO₄: 257.0688.Found:257.0686.

[1,1'-Biphenvl]-3-vl(5-chloro-2-hvdroxyphenvl)methanone (63). Yield 73% (225 mg) as a brown solid: mp 72 – 74 °C; ¹H NMR (600 MHz, CDCl₃) δ 11.93 (1H, s), 7.88 (1H, s), 7.83 (1H, d, J = 7.2 Hz), 7.62 – 7.60 (4H, m), 7.58 (1H, t, J =7.6 Hz), 7.48 - 7.44 (3H, m), 7.39 (1H, t, J = 7.5 Hz), 7.05 (1H, d, J = 8.9Hz); ¹³C NMR (150 MHz, CDCl₃) δ 200.4, 161.6, 141.7, 139.7, 137.7, 136.2, 132.3, 130.9, 128.9, 128.8, 127.9, 127.8, 127.5, 127.1, 123.4, 120.0, 119.7; IR (neat) 3379, 2924, 1740, 1628, 1462, 1209, 960, 752 cm⁻¹; HRMS m/z (M⁺) calcd for

C₁₉H₁₃ClO₂: 308.0604. Found: 308.0605.

[1,1'-Biphenyl]-3-yl(2-hydroxy-5-nitrophenyl)methanone (64). Yield 75% (239 mg) as a light brown solid: mp 182 – 184 °C; ¹H NMR (600 MHz, CDCl₃) δ 12.65 (1H, s), 8.67 (1H, d, J = 2.8 Hz), 8.38 (1H, dd, J = 9.3, 2.7 Hz), 7.90 (1H, d, J = 1.9 Hz), 7.88 (1H, d, J = 7.4 Hz), 7.66 (1H, d, J = 7.5 Hz), 7.64 (1H, d, J = 7.5 Hz), 7.61 - 7.59 (2H, m), 7.46 (2H, t, J = 7.6 Hz), 7.39 (1H, t, J = 7.4 Hz), 7.18 (1H, d, J = 9.2 Hz); ¹³C NMR (150 MHz, CDCl₃) δ 200.4, 167.9, 142.2, 139.5, 139.4, 136.8, 131.8, 130.9, 129.6, 129.2, 129.0, 128.1, 127.9, 127.9, 127.2, 119.5, 117.9; IR (neat) 3371, 2921, 1740, 1613, 1468, 1215, 964, 754, 699 cm⁻¹ HRMS m/z (M⁺) calcd for C₁₉H₁₃NO₄: 319.0845. Found: 319.0844.

(3,5-Dichloro-2-hydroxyphenyl)(*m*-tolyl)methanone (65). Yield 73% (205 mg) as a yellow solid: mp 143 – 145 °C; ¹H NMR (600 MHz, CDCl₃) δ 12.41 (1H, s), 7.57 (1H, d, J = 2.6 Hz), 7.49 (1H, d, J = 2.5 Hz), 7.46 (1H, s), 7.43 – 7.38 (3H, m), 2.43 (3H, s); ¹³C NMR (150 MHz, CDCl₃) δ 200.5, 157.4, 138.7, 136.7, 135.6, 133.5, 131.0, 129.5, 128.4, 126.4, 123.9 123.13, 120.3, 21.3; IR (neat), 3422, 3066, 2976, 1738, 1624, 1583, 1425, 1210, 880, 753 cm⁻¹ HRMS m/z (M⁺) calcd for

C₁₄H₁₀Cl₂O₂: 280.0058. Found: 280.0054.

(3,5-Dichloro-2-hydroxyphenyl)(p-tolyl)methanone (66). Yield 88% (247 mg) as a yellow solid:

mp 92 – 94 °C; ¹H NMR (600 MHz, CDCl₃) δ 12.38 (1H, s), 7.56 (2H, d, J =7.9 Hz), 7.53 (1H, d, J = 2.5 Hz), 7.49 (1H, d, J = 2.5 Hz), 7.30 (2H, d, J = 7.8Hz), 2.44 (3H, s); ¹³C NMR (150 MHz, CDCl₃) δ 199.6, 157.2, 143.7 135.3, 133.8, 130.8, 129.4, 129.2, 123.7, 122.9, 120.3, 21.5; IR (neat) 3361, 3075,

2924, 1740, 1625, 1425, 1233, 975, 754 cm⁻¹; HRMS m/z (M⁺) calcd for C₁₄H₁₀Cl₂O₂: 280.0058. Found: 280.0060.

(5-Chloro-2-hydroxy-4-methylphenyl)(p-tolyl)methanone (67). Yield 82% (213 mg) as an offwhite solid: mp 89 – 91 °C; ¹H NMR (600 MHz, CDCl₃) δ 11.91 (1H, s), 7.56 – 7.54 (3H, m), 7.30 (2H, d, J = 7.8 Hz), 6.93 (1H, s), 2.43 (3H, s), 2.37 (3H, s); 13 C NMR (150 MHz, CDCl₃) δ 199.8, 161.4, 145.2, 142.9, 134.6, 132.6, 129.2, 129.1, 123.8, 120.3, 118.1, 21.5, 20.7; IR (neat) 3398, 3032, 2922, 1737, 1634, 1473, 1245, 1228, 915, 778 cm⁻¹; HRMS m/z (M⁺) calcd for $C_{15}H_{13}ClO_2$:

260.0604. Found: 260.0603.

(3-Ethylphenyl)(2-hydroxynaphthalen-1-yl)methanone (68). Yield 91% (251 mg) as a yellow solid: mp 40 – 42 °C; ¹H NMR (600 MHz, CDCl₃) δ 11.10 (1H, s), 7.78 (1H, d, J =8.9 Hz), 7.60 (1H, d, J = 8.0 Hz), 7.39 (1H, s), 7.29 (1H, d, J = 7.7 Hz), 7.25 (1H, d, *J* = 7.6 Hz), 7.20 (1H, d, *J* = 8.6 Hz), 7.16 – 7.10 (3H, m), 7.01 (1H, t, *J* = 7.8 Hz), 2.50 (2H, q, J = 7.6 Hz), 1.05 (3H, t, J = 7.6 Hz); ¹³C NMR (150 MHz, CDCl₃) δ

200.4, 161.0, 144.6, 140.1, 136.0, 132.3, 132.2, 128.6, 128.4, 128.3, 128.3, 126.9, 126.5, 126.2, 123.5, 119.0, 114.5, 28.5, 15.3; IR (neat) 3349, 3057, 2965, 1743, 1596, 1461, 1203, 755 cm⁻¹; HRMS m/z (M⁺) calcd for $C_{19}H_{16}O_2$: 276.1150. Found: 276.1153.

(2-Hydroxynaphthalen-1-yl)(p-tolyl)methanone (69). Yield 75% (197 mg) as a yellow solid: mp 120 - 122 °C; ¹H NMR (600 MHz, CDCl₃) δ 10.83 (1H, s), 7.78 (1H, d, J = 8.9Hz), 7.62 (1H, d, J = 8.0 Hz), 7.43 (2H, d, J = 7.7 Hz), 7.25 (1H, d, J = 8.5 Hz), 7.14 (1H, t, J = 7.5 Hz), 7.11 (1H, d, J = 9.2 Hz), 7.06 – 7.03 (3H, m), 2.28 (3H, s); ¹³C NMR (150 MHz, CDCl₃) δ 199.8, 160.5, 143.6, 137.3, 135.7, 132.3, 129.6,

129.1, 128.4, 128.3, 126.5, 126.1, 123.5, 118.9, 114.7 21.6; IR (neat) 3382, 3054, 2926, 1734, 1600, 1457, 1202, 915, 827, 767 cm⁻¹; HRMS m/z (M⁺) calcd for $C_{18}H_{14}O_2$: 262.0994. Found: 262.0992.

[1,1'-Biphenyl]-3-yl(2-hydroxynaphthalen-1-yl)methanone (70). Yield 87% (281 mg) as a yellow solid: mp 65 – 67 °C; ¹H NMR (600 MHz, CDCl₃) δ 13.87 (1H, s), 8.44 (1H, d, *J* = 8.3 Hz), 7.83 (1H, s), 7.71 (1H, d, *J* = 7.4 Hz), 7.66 (1H, d, *J* = 8.1 Hz,), 7.58 (1H, d, J = 7.7 Hz), 7.55 - 7.52 (3H, m), 7.49 (2H, d, J = 8.3

Hz,), 7.47 – 7.43 (1H, m), 7.36 (2H, t, *J* = 7.6 Hz), 7.28 (1H, t, *J* = 7.4 Hz),

7.12 (1H, d, J = 9.0 Hz); ¹³C NMR (150 MHz, CDCl₃) δ 201.3, 163.9, 141.4, 140.0, 138.7, 137.3, 130.3, 130.2, 128.9, 128.7, 127.8, 127.6, 127.4, 127.2, 127.1, 125.9, 125.2,

124.4, 117.9, 112.5; IR (neat) 3465, 3057, 2923, 1753, 1628, 1461, 1203, 993, 748 cm⁻¹; HRMS m/z (M⁺) calcd for C₂₃H₁₆O₂: 324.1150. Found: 324.1149.

(3-Ethylphenyl)(1-hydroxynaphthalen-2-yl)methanone (71). Yield 93% (257 mg) as a vellow

solid: mp 64 – 66 °C; ¹H NMR (600 MHz, CDCl₃)) δ 13.98 (1H, s), 8.52 (1H, d, J = 8.4 Hz), 7.75 (1H, d, J = 8.1 Hz), 7.64 – 7.62 (1H, m), 7.55 – 7.53 (3H, m), 7.51 – 7.50 (1H, m), 7.43 – 7.41 (2H, m), 7.21 (1H, d, J = 8.9 Hz), 2.74 (2H, q, J = 7.6 Hz), 1.29 (3H, t, J = 7.5 Hz); ¹³C NMR (150 MHz, CDCl₃) δ

201.7, 163.8, 144.5, 138.2, 137.2, 131.2, 130.2, 128.4, 128.1, 127.4, 127.3, 126.5, 125.8, 125.2, 124.4, 117.7, 112.6, 28.7, 15.4; IR (neat) 3246, 2969, 1745, 1638, 1433, 1240, 968, 814 cm⁻¹; HRMS m/z (M⁺) calcd for $C_{19}H_{16}O_2$: 276.1150. Found: 276.1153.

(1-Hydroxynaphthalen-2-yl)(p-tolyl)methanone (72). Yield 85% (224 mg) as a yellow solid: mp QH Q 67 - 69 °C; ¹H NMR (600 MHz, CDCl₃) δ 8.53 (1H, d, J = 8.3 Hz), 7.74 (1H, d, J = 8.1 Hz), 7.64 - 7.61 (3H, m), 7.57 (1H, d, J = 8.8 Hz), 7.54 (1H, d, J = 8.1 Hz),t, J = 7.6 Hz), 7.31 (2H, d, J = 7.8 Hz), 7.20 (1H, d, J = 8.8 Hz), 2.45 (3H, s); ¹³C NMR (150 MHz, CDCl₃) δ 200.9, 163.6, 142.2, 137.1, 135.3, 130.0, 129.2, 128.8, 127.3, 127.2, 125.7, 125.2, 124.3, 117.6, 112.5, 21.5; IR (neat) 3281, 3034, 2916, 1743, 1594, 1459, 1255, 990, 757 cm⁻¹; HRMS m/z (M⁺) calcd for $C_{18}H_{14}O_2$: 262.0994. Found: 262.0993.

[1,1'-Biphenyl]-3-yl(1-hydroxynaphthalen-2-yl)methanone (73). Yield 84% (271 mg) as a grey semi-solid paste: ¹H NMR (600 MHz, CDCl₃) δ 11.29 (1H, s), 7.94 (1H, d, J = 9.0 Hz), 7.89 (1H, s), 7.77 (2H, t, J = 8.2 Hz), 7.57 (1H, d, J = 7.7 Hz), 7.49 (2H, d, J = 7.7 Hz), 7.45 (1H, t, J = 7.7 Hz), 7.42 – 7.38 (3H, m), 7.34 (1H, t, J = 7.3 Hz), 7.28 (1H, t, J = 7.4 Hz), 7.25 (1H, d, J = 9.0 Hz), 7.18 (1H, t, J = 7.7 Hz); ¹³C NMR (150 MHz, CDCl₃) δ 200.1, 161.5, 141.6, 140.7, 139.9, 136.4, 132.3, 131.2, 128.9, 128.8, 128.6, 128.4, 128.3, 127.9, 127.7, 127.0, 126.7, 126.2, 123.7, 119.1, 114.3; IR (neat) 3326, 3058, 1739, 1620, 1457, 1205, 931, 744, 695 cm⁻¹; HRMS m/z (M⁺) calcd for $C_{23}H_{16}O_2$: 324.1150. Found: 324.1146.

Methyl (E)-3-(2-(2-hydroxy-4-methoxybenzoyl)phenyl)acrylate (74). Yield 82% (256 mg) as a

white solid: mp 69 – 71 °C; ¹H NMR (600 MHz, CDCl₃) δ 12.59 (1H, s), 7.70 (1H, d, J = 7.9 Hz), 7.66 (1H, d, J = 15.9 Hz), 7.48 (1H, t, J = 7.6 Hz), 7.42 (1H, t, J = 7.5 Hz), 7.32 (1H, d, J = 7.5 Hz), 7.10 (1H, d, J = 8.9 Hz), 6.47 (1H, d, J = 2.4 Hz), 6.38 (1H, d, J = 15.9 Hz), 6.30 (1H, dd, J = 9.0, 2.4 Hz)Hz,), 3.81 (3H, s), 3.70 (3H, s); ¹³C NMR (150 MHz, CDCl₃) δ 200.3, 166.7, 166.5, 166.3, 141.1, 138.6, 135.1, 132.5, 130.2, 129.2, 128.2, 126.8, 120.4, 113.9, 107.8, 100.8, 55.5, 51.6; IR (neat) 3395, 2933, 1705, 1597, 1344, 1258, 1197, 921, 807, 767 cm⁻¹; HRMS m/z (M^+) calcd for $C_{18}H_{16}O_5$: 312.0998. Found: 312.0998.

Ethyl (E)-3-(2-(2-hydroxy-4-methoxybenzoyl)phenyl)acrylate (75). Yield 71% (231 mg) as a colorless liquid; ¹H NMR (600 MHz, CDCl₃) δ 12.60 (1H, s), 7.72 (1H, d, J

= 7.9 Hz), 7.66 (1H, d, J = 15.9 Hz), 7.50 – 7.47 (1H, m), 7.43 (1H, t, J = 7.5 Hz), 7.34 (1H, dd, J = 7.5, 1.4 Hz), 7.11 (1H, d, J = 9.0 Hz), 6.49 (1H, d, J = 2.5 Hz), 6.38 (1H, d, J = 15.9 Hz), 6.31 (1H, dd, J = 9.0, 2.5 Hz), 4.18 (2H, q, J = 7.1 Hz), 3.83 (3H, s), 1.25 (3H, t, J = 7.1 Hz); ¹³C NMR (150 MHz, CDCl₃) δ 200.4, 166.8, 166.4, 166.2, 141.0, 138.6, 135.2, 132.7, 130.3, 129.2, 128.3, 126.9, 120.9, 114.0, 107.9, 100.9, 60.5, 55.6, 14.1; IR (neat) 3344, 3073, 1704, 1598, 1259, 1179, 920, 811, 764 cm⁻¹; HRMS m/z (M⁺) calcd for C₁₉H₁₈O₅: 326.1154. Found: 326.1156.

Phenyl (*E*)-3-(2-(2-hydroxy-4-methoxybenzoyl)phenyl)acrylate (76). Yield 79% (295 mg) as a white solid: mp 125 – 127 °C; ¹H NMR (600 MHz, CDCl₃) δ 12.59 (1H, s), 7.87 (1H, d, *J* = 15.8 Hz), 7.81 (1H, d, *J* = 7.9 Hz), 7.55 (1H, t, *J* = 7.7 Hz), 7.49 (1H, t, *J* = 7.5 Hz), 7.40 – 7.33 (3H, m), 7.21 (1H, t, *J* = 7.5 Hz), 7.15 (1H, d, *J* = 9.0 Hz), 7.10 (2H, d, *J* = 7.9 Hz), 6.59 (1H, d, *J* = 15.8 Hz), 6.49 (1H, s), 6.34 (1H, dd, *J* = 9.0, 2.3 Hz), 3.84 (3H, s); ¹³C NMR (150 MHz, CDCl₃) δ 200.2, 166.9, 166.5, 164.6, 150.6, 143.0, 138.9, 135.2, 132.5, 130.4, 129.7, 129.3, 128.5, 127.1, 125.7, 121.5, 120.0, 114.0, 108.11,

100.9, 55.7; IR (neat) 3395, 2844, 1731, 1634, 1590, 1265, 1136, 970, 763 cm⁻¹; HRMS m/z (M⁺) calcd for $C_{23}H_{18}O_5$: 374.1154. Found: 374.1152.

Benzyl (E)-3-(2-(2-hydroxy-4-methoxybenzoyl)phenyl)acrylate (77). Yield 85% (331 mg) as a

yellow liquid; ¹H NMR (600 MHz, CDCl₃) δ 12.62 (1H, s), 7.77 – 7.71 (2H, m), 7.50 (1H, t, J = 7.6 Hz), 7.44 (1H, t, J = 7.5 Hz), 7.37 – 7.28 (6H, m), 7.12 (1H, d, J = 8.9 Hz), 6.50 (1H, d, J = 2.5 Hz), 6.45 (1H, d, J = 15.8 Hz), 6.32 (1H, dd, J = 8.9, 2.5 Hz), 5.18 (2H, s), 3.83 (3H, s); ¹³C NMR (150 MHz, CDCl₃) δ 200.3, 166.8, 166.3, 165.9, 141.6, 138.7, 135.8, 135.2, 132.5, 130.3, 129.4, 128.4, 128.3, 128.1, 128.0, 126.8, 120.4, 114.0, 107.9, 100.9, 66.2, 55.6; IR (neat) 3428, 2938, 1711,

1620, 1256, 1205, 1159, 968, 764 cm⁻¹; HRMS m/z (M⁺) calcd for $C_{24}H_{20}O_5$: 388.1311. Found: 388.1312.

(E)-(2-Hydroxy-4-methoxyphenyl)(2-styrylphenyl)methanone (78). Yield 92% (304 mg) as a

white solid: mp 84 – 86 °C; ¹H NMR (600 MHz, CDCl₃) δ 12.86 (1H, s), 7.83 (1H, d, J = 7.9 Hz), 7.52 (1H, t, J = 7.5 Hz), 7.40 (2H, d, J = 7.7 Hz), 7.38 – 7.34 (2H, m), 7.32 (2H, t, J = 7.6 Hz), 7.26 – 7.23 (2H, m), 7.17 – 7.09 (2H, m), 6.54 (1H, d, J = 2.4 Hz), 6.36 (1H, dd, J = 9.1, 2.5 Hz), 3.85 (3H, s); ¹³C NMR (150 MHz, CDCl₃) δ 201.7, 166.5, 166.1, 137.2, 136.8, 135.4, 135.2, 131.2, 130.1, 128.5, 127.9, 127.9, 126.8, 126.6, 125.6, 125.2, 114.2, 107.7,

100.8, 55.5; IR (neat) 3469, 3018, 1738, 1597, 1501, 1255, 1201, 961, 758, 687 cm⁻¹; HRMS m/z (M⁺) calcd for $C_{22}H_{18}O_3$: 330.1256. Found: 330.1252.

(*R*)-3-(2-(2-Hydroxy-4-methoxybenzoyl)phenyl)-1-phenylpyrrolidine-2,5-dione (79). Yield 58% (234 mg) as a white solid: mp 71 – 73 °C; ¹H NMR (600 MHz, CDCl₃) δ

12.43 (1H, s), 7.55 – 7.52 (1H, m), 7.44 (2H, t, J = 7.6 Hz), 7.41 – 7.39 (2H, m), 7.38 – 7.35 (3H, m), 7.26 (2H, d, J = 7.8 Hz), 6.47 (1H, d, J = 2.4 Hz), 6.38 (1H, dd, J = 9.0, 2.4 Hz), 4.36 (1H, dd, J = 9.9, 6.0 Hz), 3.84 (3H, s), 3.34 (1H, dd, J = 18.5, 9.8 Hz), 3.07 (1H, dd, J = 19.0, 5.8 Hz); ¹³C NMR (150 MHz, CDCl₃) δ 201.0, 176.5, 174.8, 166.8, 166.5, 137.2, 136.2, 135.6, 131.9, 131.2, 129.9, 129.1, 128.6, 127.2, 126.5, 113.6, 107.9, 101.0, 55.7, 44.8, 38.4; IR (neat) 3489, 2923, 1710, 1597, 1497, 1257, 1201, 758, 691 cm⁻¹; HRMS m/z (M⁺) calcd for C₂₄H₁₉NO₅: 401.1263. Found: 401.1264.

(2*E*,4*E*)-5-(6-Chloro-4-oxo-4*H*-chromen-3-yl)-4-methylpenta-2,4-dienal (80). Yield 91% (237 mg) as a yellow solid: mp 208 – 210 °C; ¹H NMR (600 MHz, CDCl₃) δ 9.64 (1H, d, *J* = 7.7 Hz), 8.20 (1H, s), 8.01 (1H, s), 7.62 (1H, d, *J* = 8.9 Hz), 7.44 (1H, d, *J* = 8.9 Hz), 7.31 (1H, d, *J* = 15.6 Hz), 6.88 (1H, s), 6.24 (1H, dd, *J* = 15.7, 7.8 Hz), 2.03 (3H, s); ¹³C NMR (150 MHz, CDCl₃) δ 193.7, 175.2, 156.1,

154.5, 154.3, 136.2, 134.2, 131.6, 129.3, 129.1, 125.5, 124.7, 121.1, 119.9, 14.3; IR (neat) 3083, 2970, 1740, 1695, 1643, 1465, 1216, 1130, 969, 817, 664 cm⁻¹; HRMS m/z (M⁺) calcd for $C_{15}H_{11}ClO_3$: 274.0397. Found: 274.0393.

1- Methylanthracene-9,10-dione (82). Yield 76% (169 mg) as a yellow solid: mp 171 – 173 °C; ¹H NMR (600 MHz, CDCl₃) δ 8.21 – 8.18 (3H, m), 7.75 – 7.70 (2H, m), 7.59 (1H, t, J = 7.7 Hz), 7.53 (1H, d, J = 7.6 Hz), 2.81 (3H, s); ¹³C NMR (150 MHz, CDCl₃) δ 184.9, 183.5, 141.9, 138.1, 134.9, 134.7, 134.0, 133.4, 133.0, 132.7, 131.1, 127.1, 126.6, 126.0, 23.3; IR (neat) 2822, 1665, 1580, 1454, 1317, 1273, 1159, 968, 807, 702 cm⁻¹; HRMS m/z (M⁺) calcd for C₁₅H₁₀O₂: 222.0681. Found: 222.0683.

 $((S)-1-((1E,3E)-penta-1,3-dien-1-yl)pyrrolidin-2-yl)diphenylmethanol/ ((S)-1-((1E,3Z)-penta-1,3-dien-1-yl)pyrrolidin-2-yl)diphenylmethanol (II). ¹H NMR (600 MHz, DMSO-d₆) <math>\delta$ 7.74 - 7.08 (Ar-H), 5.77 - 4.47 (olefinic-H), 1.55 - 1.51 (Methyl-H); HRMS (FAB) m/z (M+H)⁺ calcd for C₂₂H₂₆NO: 320.2014. Found: 320.2011.

1-((1*E*, 3*E*)-Penta-1,3-dien-1-yl)piperidine/1-((1*E*, 3*Z*)-Penta-1,3-dien-1-yl)piperidine (VII, 1:1) ¹H NMR (600 MHz, DMSO-d₆) δ 6.16 (1H, d, J = 13.5 Hz), 6.05 (1H, d, J = 13.6 Hz), 5.89 – 5.82 (2H, m), 5.19 (dd, J = 13.4, 10.9 Hz, 1H), 5.15 – 5.11 (1H, m), 5.02 (dd, J = 13.6, 10.3 Hz, 1H), 4.89 – 4.83 (1H, m), 2.90 – 2.89 (4H, m), 2.82 – 2.81 (4H, m), 1.64 (3H, dd, J = 6.6, 1.6 Hz), 1.60 (3H, dd, J = 6.9, 1.7 Hz), 1.48 – 1.46 (12H, m); ¹³C NMR (150 MHz, DMSO-d₆) δ 143.4, 141.7, 131.4, 129.6, 116.7, 113.7, 100.5, 95.8, 48.9, 48.8, 24.7, 24.7, 23.8, 17.9, 12.9; IR (neat) 2930, 2852, 1686, 1640, 1448, 1386, 1193, 1115, 968, 858, 710 cm⁻¹; HRMS m/z (M⁺) calcd for C₁₀H₁₇N: 151.1361. Found: 151.1359. **3-(2-Hydroxybenzoyl)-5-methylbenzaldehyde-2,4-d2 (d-3).** Yield 90% (216 mg) as a yellow oil: ¹H NMR (600 MHz, CDCl₃) δ 11.86 (1H, s), 10.04 (1H, s), 7.89 (1H, s), 7.53 – 7.49 (2H, m), 7.07 (1H, d, J = 8.3 Hz), 6.88 (1H, t, J = 7.6 Hz), 2.51 (3H, s); ¹³C NMR (150 MHz, CDCl₃) δ 200.4, 191.3, 163.2, 139.6, 138.5, 136.7, 136.2, 134.9 (t, J = 24.1 Hz), 133.1, 132.8, 127.5 (t, J = 24.7 Hz), 118.9, 118.8, 118.6, 21.1; IR (neat) 2826, 1698, 1623, 1483, 1205, 1154, 758, 654 cm⁻¹; HRMS m/z (M⁺) calcd for C₁₅H₁₀D₂O₃: 242.0912. Found: 242.0910.

(2-Hydroxyphenyl)(3-methylphenyl-2-d)methanone (d-4). Yield 86% (182 mg) as a yellow liquid: ¹H NMR (600 MHz, CDCl₃) δ 12.04 (1H, s), 7.58 (1H, d, J = 8.0 Hz), 7.49 (1H, t, J = 7.8 Hz), 7.44 (1H, dd, J = 6.6, 2.2 Hz), 7.39 – 7.35 (2H, m), 7.05 (1H, d, J = 8.3 Hz), 6.86 (1H, t, J = 7.5 Hz), 2.42 (3H, s); ¹³C NMR (150 MHz, CDCl₃) δ 201.8, 163.1, 138.1, 137.8, 136.2, 133.6, 132.6, 129.2 (t, J = 24.6 Hz), 128.1, 126.3, 119.1, 118.5, 118.3, 21.3; IR (neat) 3049, 1623, 1482, 1330, 1243, 1149, 1033, 755 cm⁻¹; HRMS m/z (M⁺) calcd for C₁₄H₁₁DO₂: 213.0900. Found:

213.0898.

7. ¹H NMR and ¹³C NMR spectra of synthesized compounds

120 110 f1 (ppm)

120 110 f1 (ppm)

140 130 120 110 f1 (ppm)

220 210 140 130 120 110 100 f1 (ppm)

120 110 100 f1 (ppm) 140 130

¹H NMR of **39** 600 MHz, CDCl₃

0 II OH

¹H NMR of **51** 600 MHz, CDCl₃

CI Ò

¹H NMR of **80** 600 MHz, CDCl₃

The intermediate **II** could not be isolated by column chromatography, but was confirmed by NMR study through mixing of **2a** and Cat. **II** in DMSO- d_6 . In the ¹H NMR of the mixture, an aldehyde peak of **2a** was disappeared and newly-made double bond peaks adjacent to the methyl peak in related to intermediate **II** were shown. The formation of **II** was also confirmed by HRMS analysis.

The ¹H NMR spectra of crude reaction mixture for intermediate **II**:

HRMS spectra of intermediate II:

The intermediate **VII** was confirmed by the crude ¹H NMR through the reaction of **2a** with Cat. **VI** in benzene. The formation of **II** was also confirmed by HRMS analysis.

¹H NMR and ¹³C NMR spectra of intermediate II

HRMS spectra of intermediate VII

8. GCMS analysis:

The samples of pure formic acid and crude reaction mixture were analyzed over Shimadzu GCMS-QP2010 Ultra to determine the presence of HCOOH by a gas chromatography equipped with a SH-Rxi-1ms column (I.D: 0.25 mm, length 30 m, film thickness 0.25 μ m) and a flame ionization detector (280 °C max.). The temperature was initially set at 40 °C (5 min) and was then increased with a rate of 5 °C/min (42 min) upto 250 °C. The retention time for reference formic acid in EtOH was observed at 5.53 min. In order to confirm the presence of formic acid in the reaction mixture, we analyzed the crude sample using the same parameters. The peak observed at 5.48 min confirmed the presence of formic acid in the reaction mixture.

Figure S1. GC spectra of the pure formic acid in ethanol.

Figure S2. Mass spectrum of the GC peak at 5.53 min of retention time for pure Formic acid.

Figure S3. GC specta of the crude reaction mixture obtained from reaction between 1a and 2a in the presence of Cat VI with ethanol as solvent.

Figure S4. Mass spectrum of the GC peak at 5.48 min of retention time for crude reaction mixture.

9. Energy-minimization calculation:

s-Trans intermediate II

- (a) Stable s-*trans* sturcure of \mathbf{II}
- (b) Other possible s-*trans* stucture of **II** (2.4 kcal more unstable than (a))

s-Cis intermediate II

- (c) Stable s-*cis* sturcure of II(2.4 kcal more unstable than (a))
- (d) Other possible s-*cis* stucture of II (5.76 kcal more unstable than (a))

s-Trans and s-cis intermediate VII

- (e) Stable s-*trans* sturcure of VII

Figure S5. Energy minimized structures of II and VII by MM2 of ChemBio3D

(f) Stable s-*cis* sturcure of **VII** (3.05 kcal more unstable than (e))

Chemoselectivity Control

(a) Less possibility of Diels-Alder reaction from intermediate \mathbf{II}

(b) High possibility of Diels-Alder reaction from intermediate VII

Figure S6. Chemoselectivity control through intermediate II and VII

9. UV-Absorption studies

Absorbance spectra of the tested compounds were recorded at room temperature (298 K) using UV/Vis spectrophotometer (Optizen UV-3200). The samples were prepared using ethanol as solvent (Sigma-Aldrich, HPLC Grade) at a concentration of 25 μ M. The data were corrected for solvent background by the instrument's calibration using ethanol as a blank. The absorption spectra of samples in solution were obtained in the range of 220-500 nm at 1 nm interval in triplicates. The critical wavelength (λ_c) and UVA/UVB ratio were calculated using equation (1) and (2), respectively, as shown below.

$$\int_{290}^{\lambda_c} A(\lambda) d\lambda = 0.9 \int_{290}^{400} A(\lambda) d\lambda(1)$$

$$\frac{UVA}{UVB} = \frac{\int_{320}^{400} A(\lambda)d\lambda / \int_{320}^{400} d\lambda}{\int_{290}^{320} A(\lambda)d\lambda / \int_{290}^{320} d\lambda}$$
(2)

Determination of Sun Protection Factor (SPF)

Five milligrams of each sample were weighed and dissolved in 25 mL of ethanol followed by ultrasonication for 5 min to prepare solution of 200 μ g/ml. The absorption spectra of samples in solution were obtained in the range of 290 to 450 nm using 1 cm quartz cell, and ethanol as a blank. The absorption data were obtained in the range of 290 to 320, every 5 nm, and 3 determinations were made at each point, followed by the application of Mansur equation.

$$SPF_{spectrophootometric} = CF \times \sum_{290}^{320} EE(\lambda) \times I(\lambda) \times Abs(\lambda)$$
(3)

Where: CF – correction factor (= 10); EE (λ) – erythemal effect spectrum; I (λ) –solar intensity spectrum; Abs (λ)- spectrophotometric absorbance values at corresponding wavelength. The values of [EE (λ) x I (λ)] are constants as shown in Table S1.

Wavelength (λ nm)	EE x I (normalized)
290	0.0150
295	0.0817
300	0.2874
305	0.3278
310	0.1864
315	0.0839
320	0.0180
Total	1

Table S1. Normalized product function used in the calculation of SPF

 $\mathrm{EE}-\mathrm{erythemal}\ \mathrm{effect}\ \mathrm{spectrum};\ \mathrm{I}-\mathrm{solar}\ \mathrm{intensity}\ \mathrm{spectrum}$

Figure S7. Structure-activity relationship of 44 and OBZ

Figure S8. Structure-activity relationship of 51, 63, 64

Figure S9. Structure-activity relationship of 44 and 51

10. X-ray structure and data for compound 5

Empirical Formula C₁₆ H₁₄ O₃, M = 254.27, Monoclinic, Space group $P_{21/c}$, a = 13.6722(4) Å, b = 21.2561(6) Å, c = 8.9159(2) Å, V = 2577.50(12) Å³, Z = 8, T = 223(2) K, $\rho_{calcd} =$ 1.311 Mg/m³, 2 Θ_{max} = 25.242°, Refinement of 349 parameters on 6382 independent reflections out of 81761 collected reflections (R_{int} = 0.0330) led to R1 = 0.0499 [I > 2 σ (I)], wR₂ = 0.1507 (all data) and S = 1.067 with the largest difference peak and hole of 0.297 and -0.198 e.Å⁻³ respectively. The crystal structure has been deposited at the Cambridge Crystallographic Data Centre (CCDC 1991823). The data can be obtained free of charge via the Internet at <u>www.ccdc.cam.ac.uk/data_request/cif</u>.

Figure S10. X-ray crystal structure of compound 5.

Identification code	5	
Empirical formula	$C_{16} H_{14} O_3$	
Formula weight	254.27	
Temperature	223(2) K	
Wavelength	0.71073 Å	
Crystal system	Monoclinic	
Space group	$P2_1/c$	
Unit cell dimensions	a = 13.6722(4) Å	$\alpha = 90^{\circ}$.
	b = 21.2561(6) Å	$\beta = 95.8770(10)^{\circ}$.
	c = 8.9159(2) Å	$\gamma = 90^{\circ}$.
Volume	2577.50(12) Å ³	
Z	8	
Density (calculated)	1.311 Mg/m ³	
Absorption coefficient	0.090 mm ⁻¹	
F(000)	1072	
Crystal size	0.444 x 0.262 x 0.114 n	nm ³
Theta range for data collection	1.778 to 28.317°.	
Index ranges	-18<=h<=18, -28<=k<=	=28, -11<=l<=11
Reflections collected	81761	
Independent reflections	6382 [R(int) = 0.0330]	
Completeness to theta = 25.242°	99.4 %	
Absorption correction	Semi-empirical from eq	uivalents
Max. and min. transmission	0.7457 and 0.7191	
Refinement method	Full-matrix least-square	es on F ²
Data / restraints / parameters	6382 / 0 / 349	
Goodness-of-fit on F ²	1.067	
Final R indices [I>2sigma(I)]	R1 = 0.0499, wR2 = 0.1	428
R indices (all data)	R1 = 0.0580, wR2 = 0.1	507
Extinction coefficient	n/a	
Largest diff. peak and hole	0.297 and -0.198 e.Å ⁻³	

Table S2. Crystal data and structure refinement for 5.

	Х	У	Z	U(eq)	
C(1)	3748(1)	5836(1)	8937(2)	31(1)	
O(1)	3660(1)	5760(1)	10292(1)	44(1)	
C(2)	3780(1)	5299(1)	7905(2)	29(1)	
C(3)	3865(1)	4685(1)	8489(2)	35(1)	
C(4)	3898(1)	4180(1)	7500(2)	44(1)	
C(5)	3835(1)	4275(1)	5972(2)	41(1)	
C(6)	3720(1)	4877(1)	5345(2)	33(1)	
C(7)	3693(1)	5376(1)	6329(2)	29(1)	
O(2)	3910(1)	4561(1)	9981(1)	50(1)	
C(8)	3629(1)	4972(1)	3665(2)	43(1)	
C(9)	3823(1)	6496(1)	8375(1)	31(1)	
C(10)	3186(1)	6950(1)	8861(2)	34(1)	
C(11)	3247(1)	7579(1)	8439(2)	36(1)	
C(12)	3969(1)	7746(1)	7521(2)	37(1)	
C(13)	4619(1)	7301(1)	7050(2)	34(1)	
C(14)	4551(1)	6672(1)	7479(2)	32(1)	
C(15)	2563(1)	8060(1)	9011(2)	50(1)	
C(16)	5371(1)	7494(1)	6067(2)	42(1)	
O(3)	5996(1)	7155(1)	5673(2)	63(1)	
C(17)	1342(1)	4127(1)	5581(1)	29(1)	
O(4)	1469(1)	4142(1)	4226(1)	39(1)	
C(18)	1295(1)	4708(1)	6464(1)	27(1)	
C(19)	1203(1)	5291(1)	5710(2)	32(1)	
C(20)	1115(1)	5838(1)	6541(2)	41(1)	
C(21)	1140(1)	5815(1)	8088(2)	42(1)	
C(22)	1274(1)	5246(1)	8881(2)	35(1)	
C(23)	1349(1)	4704(1)	8046(2)	31(1)	
O(5)	1186(1)	5347(1)	4201(1)	42(1)	
C(24)	1328(1)	5228(1)	10576(2)	49(1)	
C(25)	1209(1)	3498(1)	6290(1)	29(1)	
C(26)	1808(1)	3001(1)	5917(2)	33(1)	

Table S	S3 .	Atomic coo	ordinates	(x 104) a	nd equivalent	isotro	pic displace	ment param	eters (Å ² x	10 ³)
for 5 . U	U(ec	q) is defined	1 as one th	ird of the	e trace of the	orthogo	onalized U ^{ij}	tensor.		

C(27)	1679(1)	2394(1)	6453(2)	35(1)
C(28)	930(1)	2295(1)	7375(2)	36(1)
C(29)	330(1)	2785(1)	7755(2)	33(1)
C(30)	460(1)	3391(1)	7205(2)	30(1)
C(31)	2320(1)	1860(1)	6022(2)	51(1)
C(32)	-429(1)	2662(1)	8782(2)	42(1)
O(6)	-987(1)	3046(1)	9198(2)	56(1)

C(1)-O(1)	1.2375(16)
C(1)-C(2)	1.4695(18)
C(1)-C(9)	1.4961(18)
C(2)-C(3)	1.4055(18)
C(2)-C(7)	1.4076(18)
C(3)-O(2)	1.3515(18)
C(3)-C(4)	1.393(2)
C(4)-C(5)	1.372(2)
C(4)-H(4)	0.9400
C(5)-C(6)	1.398(2)
C(5)-H(5)	0.9400
C(6)-C(7)	1.3800(18)
C(6)-C(8)	1.504(2)
C(7)-H(7)	0.9400
O(2)-H(2)	0.8300
C(8)-H(8A)	0.9700
C(8)-H(8B)	0.9700
C(8)-H(8C)	0.9700
C(9)-C(14)	1.3904(18)
C(9)-C(10)	1.3982(18)
C(10)-C(11)	1.394(2)
C(10)-H(10)	0.9400
C(11)-C(12)	1.391(2)
C(11)-C(15)	1.509(2)
C(12)-C(13)	1.393(2)
C(12)-H(12)	0.9400
C(13)-C(14)	1.3956(19)
C(13)-C(16)	1.476(2)
C(14)-H(14)	0.9400
C(15)-H(15A)	0.9700
C(15)-H(15B)	0.9700
C(15)-H(15C)	0.9700
C(16)-O(3)	1.199(2)
C(16)-H(16)	0.9400

Table S4. Bond lengths [Å] and angles [°] for 5.

_

C(17)-O(4)	1.2380(16)
C(17)-C(18)	1.4700(17)
C(17)-C(25)	1.4980(17)
C(18)-C(23)	1.4045(18)
C(18)-C(19)	1.4078(17)
C(19)-O(5)	1.3490(17)
C(19)-C(20)	1.392(2)
C(20)-C(21)	1.377(2)
C(20)-H(20)	0.9400
C(21)-C(22)	1.404(2)
C(21)-H(21)	0.9400
C(22)-C(23)	1.3805(18)
C(22)-C(24)	1.506(2)
C(23)-H(23)	0.9400
O(5)-H(5A)	0.8300
C(24)-H(24A)	0.9700
C(24)-H(24B)	0.9700
C(24)-H(24C)	0.9700
C(25)-C(30)	1.3923(18)
C(25)-C(26)	1.3971(18)
C(26)-C(27)	1.3925(19)
C(26)-H(26)	0.9400
C(27)-C(28)	1.393(2)
C(27)-C(31)	1.509(2)
C(28)-C(29)	1.390(2)
C(28)-H(28)	0.9400
C(29)-C(30)	1.3951(18)
C(29)-C(32)	1.476(2)
C(30)-H(30)	0.9400
C(31)-H(31A)	0.9700
C(31)-H(31B)	0.9700
C(31)-H(31C)	0.9700
C(32)-O(6)	1.201(2)
C(32)-H(32)	0.9400
O(1)-C(1)-C(2)	121.50(12)

O(1)-C(1)-C(9)	117.72(12)
C(2)-C(1)-C(9)	120.78(11)
C(3)-C(2)-C(7)	118.23(12)
C(3)-C(2)-C(1)	119.76(12)
C(7)-C(2)-C(1)	121.98(12)
O(2)-C(3)-C(4)	118.12(13)
O(2)-C(3)-C(2)	122.67(13)
C(4)-C(3)-C(2)	119.21(13)
C(5)-C(4)-C(3)	120.84(14)
C(5)-C(4)-H(4)	119.6
C(3)-C(4)-H(4)	119.6
C(4)-C(5)-C(6)	121.66(13)
C(4)-C(5)-H(5)	119.2
C(6)-C(5)-H(5)	119.2
C(7)-C(6)-C(5)	117.28(13)
C(7)-C(6)-C(8)	121.69(13)
C(5)-C(6)-C(8)	121.03(13)
C(6)-C(7)-C(2)	122.73(12)
C(6)-C(7)-H(7)	118.6
С(2)-С(7)-Н(7)	118.6
C(3)-O(2)-H(2)	109.5
C(6)-C(8)-H(8A)	109.5
C(6)-C(8)-H(8B)	109.5
H(8A)-C(8)-H(8B)	109.5
C(6)-C(8)-H(8C)	109.5
H(8A)-C(8)-H(8C)	109.5
H(8B)-C(8)-H(8C)	109.5
C(14)-C(9)-C(10)	119.81(13)
C(14)-C(9)-C(1)	121.51(12)
C(10)-C(9)-C(1)	118.51(12)
C(11)-C(10)-C(9)	121.45(13)
С(11)-С(10)-Н(10)	119.3
C(9)-C(10)-H(10)	119.3
C(12)-C(11)-C(10)	118.07(13)
C(12)-C(11)-C(15)	121.80(14)
C(10)-C(11)-C(15)	120.10(14)

C(11)-C(12)-C(13)	121.08(13)
С(11)-С(12)-Н(12)	119.5
C(13)-C(12)-H(12)	119.5
C(12)-C(13)-C(14)	120.40(13)
C(12)-C(13)-C(16)	119.67(13)
C(14)-C(13)-C(16)	119.92(13)
C(9)-C(14)-C(13)	119.17(13)
C(9)-C(14)-H(14)	120.4
C(13)-C(14)-H(14)	120.4
C(11)-C(15)-H(15A)	109.5
C(11)-C(15)-H(15B)	109.5
H(15A)-C(15)-H(15B)	109.5
С(11)-С(15)-Н(15С)	109.5
H(15A)-C(15)-H(15C)	109.5
H(15B)-C(15)-H(15C)	109.5
O(3)-C(16)-C(13)	124.61(15)
O(3)-C(16)-H(16)	117.7
C(13)-C(16)-H(16)	117.7
O(4)-C(17)-C(18)	121.33(11)
O(4)-C(17)-C(25)	117.96(11)
C(18)-C(17)-C(25)	120.69(11)
C(23)-C(18)-C(19)	118.57(12)
C(23)-C(18)-C(17)	122.14(11)
C(19)-C(18)-C(17)	119.29(12)
O(5)-C(19)-C(20)	117.58(12)
O(5)-C(19)-C(18)	123.12(12)
C(20)-C(19)-C(18)	119.30(13)
C(21)-C(20)-C(19)	120.56(14)
C(21)-C(20)-H(20)	119.7
C(19)-C(20)-H(20)	119.7
C(20)-C(21)-C(22)	121.60(13)
C(20)-C(21)-H(21)	119.2
C(22)-C(21)-H(21)	119.2
C(23)-C(22)-C(21)	117.39(13)
C(23)-C(22)-C(24)	121.41(14)
C(21)-C(22)-C(24)	121.19(13)

C(22)-C(23)-C(18)	122.47(13)
C(22)-C(23)-H(23)	118.8
C(18)-C(23)-H(23)	118.8
C(19)-O(5)-H(5A)	109.5
C(22)-C(24)-H(24A)	109.5
C(22)-C(24)-H(24B)	109.5
H(24A)-C(24)-H(24B)	109.5
C(22)-C(24)-H(24C)	109.5
H(24A)-C(24)-H(24C)	109.5
H(24B)-C(24)-H(24C)	109.5
C(30)-C(25)-C(26)	119.91(12)
C(30)-C(25)-C(17)	121.45(12)
C(26)-C(25)-C(17)	118.44(12)
C(27)-C(26)-C(25)	121.44(13)
C(27)-C(26)-H(26)	119.3
C(25)-C(26)-H(26)	119.3
C(26)-C(27)-C(28)	117.97(13)
C(26)-C(27)-C(31)	120.87(14)
C(28)-C(27)-C(31)	121.15(13)
C(29)-C(28)-C(27)	121.22(12)
C(29)-C(28)-H(28)	119.4
C(27)-C(28)-H(28)	119.4
C(28)-C(29)-C(30)	120.39(13)
C(28)-C(29)-C(32)	119.26(12)
C(30)-C(29)-C(32)	120.32(13)
C(25)-C(30)-C(29)	119.06(12)
C(25)-C(30)-H(30)	120.5
C(29)-C(30)-H(30)	120.5
C(27)-C(31)-H(31A)	109.5
C(27)-C(31)-H(31B)	109.5
H(31A)-C(31)-H(31B)	109.5
C(27)-C(31)-H(31C)	109.5
H(31A)-C(31)-H(31C)	109.5
H(31B)-C(31)-H(31C)	109.5
O(6)-C(32)-C(29)	125.47(14)
O(6)-C(32)-H(32)	117.3

С(29)-С(32)-Н(32) 117.3

	U ¹¹	U ²²	U ³³	U ²³	U ¹³	U ¹²	
C(1)	32(1)	33(1)	30(1)	0(1)	4(1)	-2(1)	
O(1)	58(1)	45(1)	30(1)	1(1)	10(1)	-3(1)	
C(2)	27(1)	29(1)	31(1)	1(1)	3(1)	-1(1)	
C(3)	34(1)	33(1)	38(1)	7(1)	2(1)	1(1)	
C(4)	48(1)	28(1)	56(1)	4(1)	4(1)	6(1)	
C(5)	39(1)	33(1)	51(1)	-11(1)	4(1)	3(1)	
C(6)	26(1)	38(1)	35(1)	-7(1)	2(1)	0(1)	
C(7)	28(1)	29(1)	31(1)	0(1)	3(1)	0(1)	
O(2)	67(1)	43(1)	40(1)	14(1)	6(1)	2(1)	
C(8)	40(1)	57(1)	34(1)	-11(1)	4(1)	-1(1)	
C(9)	34(1)	30(1)	28(1)	-4(1)	3(1)	-2(1)	
C(10)	34(1)	35(1)	32(1)	-7(1)	4(1)	-2(1)	
C(11)	38(1)	33(1)	36(1)	-8(1)	-3(1)	2(1)	
C(12)	45(1)	29(1)	35(1)	-3(1)	-2(1)	-2(1)	
C(13)	40(1)	32(1)	31(1)	-3(1)	3(1)	-6(1)	
C(14)	36(1)	30(1)	32(1)	-5(1)	6(1)	-3(1)	
C(15)	51(1)	40(1)	58(1)	-13(1)	1(1)	9(1)	
C(16)	52(1)	35(1)	40(1)	-3(1)	9(1)	-13(1)	
O(3)	64(1)	54(1)	76(1)	-4(1)	35(1)	-9(1)	
C(17)	30(1)	27(1)	30(1)	1(1)	4(1)	-2(1)	
O(4)	54(1)	34(1)	30(1)	-1(1)	9(1)	-5(1)	
C(18)	25(1)	25(1)	32(1)	0(1)	4(1)	-2(1)	
C(19)	29(1)	29(1)	38(1)	4(1)	4(1)	0(1)	
C(20)	42(1)	25(1)	57(1)	2(1)	7(1)	3(1)	
C(21)	38(1)	31(1)	57(1)	-13(1)	10(1)	1(1)	
C(22)	30(1)	39(1)	38(1)	-10(1)	7(1)	-4(1)	
C(23)	30(1)	30(1)	32(1)	-1(1)	4(1)	-3(1)	
O(5)	54(1)	35(1)	36(1)	10(1)	4(1)	1(1)	
C(24)	51(1)	60(1)	37(1)	-15(1)	9(1)	-7(1)	
C(25)	35(1)	24(1)	29(1)	-1(1)	3(1)	-3(1)	
C(26)	36(1)	29(1)	34(1)	-2(1)	5(1)	0(1)	

Table S5. Anisotropic displacement parameters (Å²x 10³) for **5**. The anisotropic displacement factorexponent takes the form: $-2\pi^2$ [$h^2 a^{*2}U^{11} + ... + 2 h k a^* b^* U^{12}$]

C(27)	42(1)	27(1)	36(1)	-2(1)	-1(1)	3(1)	
C(28)	49(1)	25(1)	33(1)	2(1)	-1(1)	-3(1)	
C(29)	41(1)	28(1)	29(1)	1(1)	3(1)	-6(1)	
C(30)	35(1)	25(1)	31(1)	-1(1)	4(1)	-2(1)	
C(31)	58(1)	33(1)	63(1)	-3(1)	8(1)	11(1)	
C(32)	54(1)	34(1)	40(1)	1(1)	11(1)	-12(1)	
O(6)	62(1)	52(1)	57(1)	-2(1)	26(1)	-5(1)	

	Х	у	Z	U(eq)	
H(4)	3964	3769	7885	53	
H(5)	3871	3927	5329	49	
H(7)	3613	5784	5931	35	
H(2)	3846	4893	10451	75	
H(8A)	3315	5373	3418	65	
H(8B)	3234	4636	3177	65	
H(8C)	4278	4967	3315	65	
H(10)	2706	6828	9486	40	
H(12)	4018	8167	7213	44	
H(14)	4993	6372	7166	39	
H(15A)	2795	8172	10041	75	
H(15B)	1907	7884	8980	75	
H(15C)	2548	8432	8380	75	
H(16)	5358	7913	5726	51	
H(20)	1038	6227	6042	49	
H(21)	1064	6189	8626	50	
H(23)	1440	4318	8555	37	
H(5A)	1261	4995	3824	63	
H(24A)	676	5290	10889	74	
H(24B)	1762	5559	10995	74	
H(24C)	1581	4823	10936	74	
H(26)	2308	3077	5291	40	
H(28)	830	1889	7748	43	
H(30)	48	3721	7449	37	
H(31A)	2123	1474	6490	77	
H(31B)	3001	1951	6364	77	
H(31C)	2247	1810	4935	77	
H(32)	-480	2249	9141	51	

Table S6. Hydrogen coordinates ($x \ 10^4$) and isotropic displacement parameters (Å²x 10³) for **5**.

Table S7.	Torsion	angles	[°]	for 5 .
-----------	---------	--------	-----	----------------

O(1)-C(1)-C(2)-C(3)	-9.9(2)
C(9)-C(1)-C(2)-C(3)	170.00(12)
O(1)-C(1)-C(2)-C(7)	167.78(13)
C(9)-C(1)-C(2)-C(7)	-12.27(19)
C(7)-C(2)-C(3)-O(2)	-177.17(12)
C(1)-C(2)-C(3)-O(2)	0.6(2)
C(7)-C(2)-C(3)-C(4)	2.5(2)
C(1)-C(2)-C(3)-C(4)	-179.73(13)
O(2)-C(3)-C(4)-C(5)	178.73(14)
C(2)-C(3)-C(4)-C(5)	-0.9(2)
C(3)-C(4)-C(5)-C(6)	-1.0(2)
C(4)-C(5)-C(6)-C(7)	1.3(2)
C(4)-C(5)-C(6)-C(8)	-178.54(14)
C(5)-C(6)-C(7)-C(2)	0.32(19)
C(8)-C(6)-C(7)-C(2)	-179.81(12)
C(3)-C(2)-C(7)-C(6)	-2.2(2)
C(1)-C(2)-C(7)-C(6)	-179.96(12)
O(1)-C(1)-C(9)-C(14)	131.50(14)
C(2)-C(1)-C(9)-C(14)	-48.45(18)
O(1)-C(1)-C(9)-C(10)	-43.84(18)
C(2)-C(1)-C(9)-C(10)	136.22(13)
C(14)-C(9)-C(10)-C(11)	1.5(2)
C(1)-C(9)-C(10)-C(11)	176.93(12)
C(9)-C(10)-C(11)-C(12)	-0.4(2)
C(9)-C(10)-C(11)-C(15)	-178.63(13)
C(10)-C(11)-C(12)-C(13)	-0.8(2)
C(15)-C(11)-C(12)-C(13)	177.45(14)
C(11)-C(12)-C(13)-C(14)	0.8(2)
C(11)-C(12)-C(13)-C(16)	179.54(13)
C(10)-C(9)-C(14)-C(13)	-1.4(2)
C(1)-C(9)-C(14)-C(13)	-176.72(12)
C(12)-C(13)-C(14)-C(9)	0.3(2)
C(16)-C(13)-C(14)-C(9)	-178.41(13)
C(12)-C(13)-C(16)-O(3)	175.63(16)

C(14)-C(13)-C(16)-O(3)	-5.6(2)
O(4)-C(17)-C(18)-C(23)	-166.96(13)
C(25)-C(17)-C(18)-C(23)	14.69(19)
O(4)-C(17)-C(18)-C(19)	12.35(19)
C(25)-C(17)-C(18)-C(19)	-166.00(12)
C(23)-C(18)-C(19)-O(5)	177.19(12)
C(17)-C(18)-C(19)-O(5)	-2.1(2)
C(23)-C(18)-C(19)-C(20)	-3.49(19)
C(17)-C(18)-C(19)-C(20)	177.17(12)
O(5)-C(19)-C(20)-C(21)	-179.15(13)
C(18)-C(19)-C(20)-C(21)	1.5(2)
C(19)-C(20)-C(21)-C(22)	1.4(2)
C(20)-C(21)-C(22)-C(23)	-2.1(2)
C(20)-C(21)-C(22)-C(24)	178.30(14)
C(21)-C(22)-C(23)-C(18)	0.0(2)
C(24)-C(22)-C(23)-C(18)	179.57(13)
C(19)-C(18)-C(23)-C(22)	2.8(2)
C(17)-C(18)-C(23)-C(22)	-177.88(12)
O(4)-C(17)-C(25)-C(30)	-133.28(14)
C(18)-C(17)-C(25)-C(30)	45.13(18)
O(4)-C(17)-C(25)-C(26)	41.65(18)
C(18)-C(17)-C(25)-C(26)	-139.95(13)
C(30)-C(25)-C(26)-C(27)	-0.5(2)
C(17)-C(25)-C(26)-C(27)	-175.56(12)
C(25)-C(26)-C(27)-C(28)	0.1(2)
C(25)-C(26)-C(27)-C(31)	179.02(14)
C(26)-C(27)-C(28)-C(29)	-0.1(2)
C(31)-C(27)-C(28)-C(29)	-179.01(14)
C(27)-C(28)-C(29)-C(30)	0.5(2)
C(27)-C(28)-C(29)-C(32)	-177.67(13)
C(26)-C(25)-C(30)-C(29)	0.93(19)
C(17)-C(25)-C(30)-C(29)	175.78(12)
C(28)-C(29)-C(30)-C(25)	-0.9(2)
C(32)-C(29)-C(30)-C(25)	177.26(12)
C(28)-C(29)-C(32)-O(6)	179.60(16)
C(30)-C(29)-C(32)-O(6)	1.4(2)

Symmetry transformations used to generate equivalent atoms:

D-HA	d(D-H)	d(HA)	d(DA)	<(DHA)	
O(5)-H(5A)O(4)	0.83	1.87	2.5905(15)	145.1	
O(2)-H(2)O(1)	0.83	1.87	2.5919(17)	145.5	

Table S8. Hydrogen bonds for 5 [Å and $^{\circ}$].

X-ray structure and data for compound 34

Empirical Formula C₁₉ H₁₄ O₃, M = 290.30, Monoclinic, Space group $P_{21/c}$, a = 7.3618(3) Å, b = 7.4104(2) Å, c = 25.4612(9) Å, V = 1383.11(8) Å³, Z = 4, T = 223(2) K, $\rho_{calcd} = 1.394 \text{ Mg/m}^3$, $2\Theta_{max.} = 25.242^\circ$, Refinement of 201 parameters on 3455 independent reflections out of 42946 collected reflections (R_{int} = 0.0371) led to R1 = 0.0429 [I > 2 σ (I)], wR₂ = 0.1157 (all data) and S = 1.069 with the largest difference peak and hole of 0.313 and -0.188 e.Å⁻³ respectively. The crystal structure has been deposited at the Cambridge Crystallographic Data Centre (CCDC 1991825). The data can be obtained free of charge via the Internet at <u>www.ccdc.cam.ac.uk/data request/cif</u>.

Figure S11. X-ray crystal structure of compound 34.

Identification code	34	
Empirical formula	$C_{19} H_{14} O_3$	
Formula weight	290.30	
Temperature	223(2) K	
Wavelength	0.71073 Å	
Crystal system	Monoclinic	
Space group	P2 ₁ /c	
Unit cell dimensions	a = 7.3618(3) Å	α= 90°.
	b = 7.4104(2) Å	β= 95.2808(14)°.
	c = 25.4612(9) Å	$\gamma = 90^{\circ}$.
Volume	1383.11(8) Å ³	
Ζ	4	
Density (calculated)	1.394 Mg/m ³	
Absorption coefficient	0.094 mm ⁻¹	
F(000)	608	
Crystal size	0.259 x 0.248 x 0.166 r	nm ³
Theta range for data collection	2.864 to 28.591°.	
Index ranges	-9<=h<=9, -9<=k<=9, -	-33<=1<=34
Reflections collected	42946	
Independent reflections	3455 [R(int) = 0.0371]	
Completeness to theta = 25.242°	99.2 %	
Absorption correction	Semi-empirical from ec	luivalents
Max. and min. transmission	0.7457 and 0.7171	
Refinement method	Full-matrix least-square	es on F ²
Data / restraints / parameters	3455 / 0 / 201	
Goodness-of-fit on F ²	1.069	
Final R indices [I>2sigma(I)]	R1 = 0.0429, wR2 = 0.	1088
R indices (all data)	R1 = 0.0504, wR2 = 0.	1157
Extinction coefficient	n/a	
Largest diff. peak and hole	0.313 and -0.188 e.Å ⁻³	

Table S9. Crystal data and structure refinement for 34.

	Х	У	Z	U(eq)	
C(1)	5489(2)	6522(2)	8219(1)	28(1)	
C(2)	4238(2)	5351(2)	8432(1)	23(1)	
C(3)	2499(2)	5138(2)	8165(1)	24(1)	
C(4)	1989(2)	6012(2)	7692(1)	27(1)	
C(5)	3282(2)	7125(2)	7485(1)	31(1)	
C(6)	4998(2)	7378(2)	7742(1)	32(1)	
O(1)	7184(1)	6851(2)	8457(1)	42(1)	
C(7)	4725(2)	4482(2)	8948(1)	24(1)	
O(2)	5876(1)	5172(1)	9268(1)	34(1)	
C(8)	3856(2)	2743(2)	9082(1)	24(1)	
C(9)	3561(2)	2413(2)	9601(1)	24(1)	
C(10)	2853(2)	738(2)	9751(1)	24(1)	
C(11)	2518(2)	374(2)	10280(1)	27(1)	
C(12)	1845(2)	-1267(2)	10418(1)	28(1)	
C(13)	1479(2)	-2629(2)	10032(1)	31(1)	
C(14)	1781(2)	-2321(2)	9520(1)	30(1)	
C(15)	2477(2)	-629(2)	9364(1)	25(1)	
C(16)	2813(2)	-259(2)	8836(1)	27(1)	
C(17)	3474(2)	1383(2)	8697(1)	26(1)	
C(18)	133(2)	5749(2)	7404(1)	39(1)	
C(19)	1516(2)	-1583(2)	10973(1)	36(1)	
O(3)	969(2)	-2987(2)	11145(1)	48(1)	

Table S10. Atomic coordinates ($x \ 10^4$) and equivalent isotropic displacement parameters (Å²x 10³) for **34**. U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor.

C(1)-O(1)	1.3588(17)
C(1)-C(6)	1.3879(19)
C(1)-C(2)	1.4093(17)
C(2)-C(3)	1.4022(17)
C(2)-C(7)	1.4786(16)
C(3)-C(4)	1.3884(17)
C(3)-H(3)	0.9400
C(4)-C(5)	1.3977(19)
C(4)-C(18)	1.503(2)
C(5)-C(6)	1.381(2)
C(5)-H(5)	0.9400
C(6)-H(6)	0.9400
O(1)-H(1)	0.8300
C(7)-O(2)	1.2314(16)
C(7)-C(8)	1.4920(18)
C(8)-C(9)	1.3805(17)
C(8)-C(17)	1.4159(17)
C(9)-C(10)	1.4117(17)
C(9)-H(9)	0.9400
C(10)-C(11)	1.4186(17)
C(10)-C(15)	1.4231(17)
C(11)-C(12)	1.3706(19)
С(11)-Н(11)	0.9400
C(12)-C(13)	1.416(2)
C(12)-C(19)	1.4756(18)
C(13)-C(14)	1.3634(19)
С(13)-Н(13)	0.9400
C(14)-C(15)	1.4252(18)
C(14)-H(14)	0.9400
C(15)-C(16)	1.4155(17)
C(16)-C(17)	1.3683(18)
С(16)-Н(16)	0.9400
С(17)-Н(17)	0.9400
C(18)-H(18A)	0.9700

 Table S11.
 Bond lengths [Å] and angles [°] for 34.

C(18)-H(18B)	0.9700
C(18)-H(18C)	0.9700
C(19)-O(3)	1.2113(19)
С(19)-Н(19)	0.9400
O(1)-C(1)-C(6)	117.56(12)
O(1)-C(1)-C(2)	122.99(12)
C(6)-C(1)-C(2)	119.44(12)
C(3)-C(2)-C(1)	118.83(11)
C(3)-C(2)-C(7)	121.22(11)
C(1)-C(2)-C(7)	119.79(11)
C(4)-C(3)-C(2)	122.04(12)
C(4)-C(3)-H(3)	119.0
C(2)-C(3)-H(3)	119.0
C(3)-C(4)-C(5)	117.49(12)
C(3)-C(4)-C(18)	121.60(12)
C(5)-C(4)-C(18)	120.90(12)
C(6)-C(5)-C(4)	121.86(12)
C(6)-C(5)-H(5)	119.1
C(4)-C(5)-H(5)	119.1
C(5)-C(6)-C(1)	120.30(12)
C(5)-C(6)-H(6)	119.8
C(1)-C(6)-H(6)	119.8
C(1)-O(1)-H(1)	109.5
O(2)-C(7)-C(2)	120.22(12)
O(2)-C(7)-C(8)	119.41(11)
C(2)-C(7)-C(8)	120.36(11)
C(9)-C(8)-C(17)	119.83(12)
C(9)-C(8)-C(7)	118.70(11)
C(17)-C(8)-C(7)	121.25(11)
C(8)-C(9)-C(10)	120.56(11)
C(8)-C(9)-H(9)	119.7
С(10)-С(9)-Н(9)	119.7
C(9)-C(10)-C(11)	121.63(12)
C(9)-C(10)-C(15)	119.48(11)
C(11)-C(10)-C(15)	118.89(12)

C(12)-C(11)-C(10)	120.65(12)
C(12)-C(11)-H(11)	119.7
C(10)-C(11)-H(11)	119.7
C(11)-C(12)-C(13)	120.41(12)
C(11)-C(12)-C(19)	118.72(13)
C(13)-C(12)-C(19)	120.87(13)
C(14)-C(13)-C(12)	120.43(13)
С(14)-С(13)-Н(13)	119.8
С(12)-С(13)-Н(13)	119.8
C(13)-C(14)-C(15)	120.59(12)
C(13)-C(14)-H(14)	119.7
C(15)-C(14)-H(14)	119.7
C(16)-C(15)-C(10)	118.68(12)
C(16)-C(15)-C(14)	122.28(12)
C(10)-C(15)-C(14)	119.04(11)
C(17)-C(16)-C(15)	120.94(12)
C(17)-C(16)-H(16)	119.5
C(15)-C(16)-H(16)	119.5
C(16)-C(17)-C(8)	120.50(11)
С(16)-С(17)-Н(17)	119.8
C(8)-C(17)-H(17)	119.8
C(4)-C(18)-H(18A)	109.5
C(4)-C(18)-H(18B)	109.5
H(18A)-C(18)-H(18B)	109.5
C(4)-C(18)-H(18C)	109.5
H(18A)-C(18)-H(18C)	109.5
H(18B)-C(18)-H(18C)	109.5
O(3)-C(19)-C(12)	124.88(15)
O(3)-C(19)-H(19)	117.6
С(12)-С(19)-Н(19)	117.6

	U^{11}	U ²²	U ³³	U ²³	U ¹³	U ¹²
C(1)	30(1)	26(1)	29(1)	-1(1)	7(1)	-3(1)
C(2)	28(1)	20(1)	22(1)	-1(1)	5(1)	1(1)
C(3)	28(1)	19(1)	24(1)	-1(1)	5(1)	0(1)
C(4)	33(1)	22(1)	25(1)	0(1)	3(1)	3(1)
C(5)	42(1)	26(1)	25(1)	5(1)	6(1)	2(1)
C(6)	39(1)	28(1)	32(1)	4(1)	13(1)	-5(1)
O(1)	34(1)	50(1)	41(1)	7(1)	1(1)	-14(1)
C(7)	26(1)	25(1)	22(1)	-2(1)	4(1)	3(1)
O(2)	37(1)	37(1)	28(1)	-1(1)	-3(1)	-7(1)
C(8)	25(1)	23(1)	23(1)	2(1)	2(1)	4(1)
C(9)	26(1)	26(1)	21(1)	-1(1)	1(1)	2(1)
C(10)	23(1)	26(1)	23(1)	1(1)	2(1)	4(1)
C(11)	27(1)	31(1)	23(1)	1(1)	3(1)	3(1)
C(12)	25(1)	33(1)	27(1)	7(1)	5(1)	6(1)
C(13)	30(1)	27(1)	36(1)	6(1)	5(1)	2(1)
C(14)	33(1)	24(1)	32(1)	0(1)	3(1)	3(1)
C(15)	26(1)	23(1)	25(1)	1(1)	2(1)	6(1)
C(16)	35(1)	23(1)	24(1)	-3(1)	2(1)	5(1)
C(17)	33(1)	26(1)	20(1)	1(1)	3(1)	5(1)
C(18)	40(1)	37(1)	37(1)	7(1)	-7(1)	-1(1)
C(19)	38(1)	40(1)	31(1)	8(1)	10(1)	6(1)
O(3)	60(1)	45(1)	41(1)	15(1)	21(1)	3(1)

Table S12. Anisotropic displacement parameters (Å²x 10³) for **34**. The anisotropicdisplacement factor exponent takes the form: $-2\pi^2$ [h² a^{*2}U¹¹ + ... + 2 h k a^{*} b^{*} U¹²]

	Х	У	Z	U(eq)		
H(3)	1653	4380	8310	28		
H(5)	2974	7718	7163	37		
H(6)	5839	8134	7593	39		
H(1)	7290	6369	8753	63		
H(9)	3835	3310	9857	29		
H(11)	2760	1267	10540	32		
H(13)	1025	-3753	10131	37		
H(14)	1527	-3233	9267	36		
H(16)	2579	-1153	8577	33		
H(17)	3677	1609	8344	32		
H(18A)	102	4612	7214	58		
H(18B)	-123	6731	7156	58		
H(18C)	-780	5735	7655	58		
H(19)	1747	-624	11211	43		

Table S13. Hydrogen coordinates ($x \ 10^4$) and isotropic displacement parameters (Å²x 10³) for **34**.

Table S14.	Torsion angles	; [°]	for 34 .
------------	----------------	-------	-----------------

O(1)-C(1)-C(2)-C(3)	178.13(12)	
C(6)-C(1)-C(2)-C(3) -2.47(18)		
O(1)-C(1)-C(2)-C(7)	2.72(19)	
C(6)-C(1)-C(2)-C(7)	-177.89(12)	
C(1)-C(2)-C(3)-C(4)	1.51(18)	
C(7)-C(2)-C(3)-C(4)	176.86(11)	
C(2)-C(3)-C(4)-C(5)	0.15(18)	
C(2)-C(3)-C(4)-C(18)	178.94(12)	
C(3)-C(4)-C(5)-C(6)	-0.9(2)	
C(18)-C(4)-C(5)-C(6)	-179.68(13)	
C(4)-C(5)-C(6)-C(1)	-0.1(2)	
O(1)-C(1)-C(6)-C(5)	-178.77(13)	
C(2)-C(1)-C(6)-C(5)	1.8(2)	
C(3)-C(2)-C(7)-O(2)	-151.40(12)	
C(1)-C(2)-C(7)-O(2)	23.90(18)	
C(3)-C(2)-C(7)-C(8)	29.91(17)	
C(1)-C(2)-C(7)-C(8)	-154.79(11)	
O(2)-C(7)-C(8)-C(9)	33.64(17)	
C(2)-C(7)-C(8)-C(9)	-147.66(12)	
O(2)-C(7)-C(8)-C(17)	-141.09(13)	
C(2)-C(7)-C(8)-C(17)	37.60(17)	
C(17)-C(8)-C(9)-C(10)	-1.05(18)	
C(7)-C(8)-C(9)-C(10)	-175.86(11)	
C(8)-C(9)-C(10)-C(11)	-179.25(11)	
C(8)-C(9)-C(10)-C(15)	1.30(18)	
C(9)-C(10)-C(11)-C(12)	-179.41(11)	
C(15)-C(10)-C(11)-C(12)	0.04(18)	
C(10)-C(11)-C(12)-C(13)	0.22(19)	
C(10)-C(11)-C(12)-C(19)	-179.90(12)	
C(11)-C(12)-C(13)-C(14)	-0.4(2)	
C(19)-C(12)-C(13)-C(14)	179.71(13)	
C(12)-C(13)-C(14)-C(15)	0.3(2)	
C(9)-C(10)-C(15)-C(16) -0.55(18)		
C(11)-C(10)-C(15)-C(16)	179.98(11)	

C(9)-C(10)-C(15)-C(14)	179.35(11)
C(11)-C(10)-C(15)-C(14)	-0.12(18)
C(13)-C(14)-C(15)-C(16)	179.83(12)
C(13)-C(14)-C(15)-C(10)	-0.07(19)
C(10)-C(15)-C(16)-C(17)	-0.43(19)
C(14)-C(15)-C(16)-C(17)	179.67(12)
C(15)-C(16)-C(17)-C(8)	0.69(19)
C(9)-C(8)-C(17)-C(16)	0.06(19)
C(7)-C(8)-C(17)-C(16)	174.73(12)
C(11)-C(12)-C(19)-O(3)	-178.06(14)
C(13)-C(12)-C(19)-O(3)	1.8(2)

D-HA	d(D-H)	d(HA)	d(DA)	<(DHA)
O(1)-H(1)O(2)	0.83	1.96	2.6657(15)	142.2

Table S15. Hydrogen bonds for 34 [Å and °].