Supporting Information

for

Eco-friendly Upconversion of Limestone into Value-added Calcium Formate

Gunniya Hariyanandam Gunasekar, Hongjin Park, Sudakar Padmanaban, and Sungho Yoon

Contents

List of figures

Figure S1. Schematic representation for the importance of heterogeneous catalyst for the practical realization of CF synthesis

- Figure S2. SEM of PP-POP and 1
- Figure S3. STEM of 1
- Figure S4. N₂ sorption measurement of PP-POP
- Figure S5. EPR of **1**
- Figure S6. ¹H and ¹³C NMR of reaction mixture
- Figure S7. Gas chromatography results
- Figure S8. ¹H and ¹³C NMR of isolated CF
- Figure S9. Filtration test results
- Figure S10. Recyclability of 1
- Figure S11. SEM image and STEM-EDS mapping of recovered catalyst
- Figure S12. XPS of recovered catalyst
- Figure S13. IR of homogeneous [RuCl₃(P-P)(H₂O)]

List of Tables

- Table S1. Catalytic activity of [RuCl₃(P-P)(H₂O)] compared with Ferenc Joo's catalysts
- Table S2. Atomic composition of 1 by SEM-EDX
- Table S3. Results of CO chemisorption
- Table S4. Atomic composition of recovered catalyst by SEM-EDX

List of Scheme

Scheme S1. Synthesis of PP-POP

Figure S1. Schematic representation for the importance of heterogeneous catalyst for the practical realization of CF synthesis.

Figure S2. SEM measurement

Figure S3. STEM image and mapping of 1

Figure S4. N₂ sorption measurement of PP-POP

Figure S5. EPR of 1

Figure S7. Gas Chromatography results

Gas	Retention	Time
	(min)	
H ₂	1.40	
CH₄	3.20	
СО	3.86	
CO ₂	4.86	

Figure S8. ¹H and ¹³C NMR of isolated CF

Figure S9. Filtration test results

Figure S10. Recyclability of 1

Figure S11. SEM image and STEM-EDS mapping of recovered catalyst

Figure S12. XPS of recovered catalyst

Figure S13. IR of homogeneous [RuCl₃(P-P)(H₂O)]

The presence of a new peak at 2023 cm⁻¹ indicates the generation of Ru-H intermediate.

The peak at 1970 cm⁻¹ corresponds to Ru-CO species, which might have been arising through decarbonylation/dehydration of formate. The similar observation was previously reported by Palkovits *et. al.*¹

Catalyst	Ligand/	T (°C)	P (MPa)	time (h)	TON	Ref.
	Ru					
[RuCl ₃ (P-	1	60	6	15	800	This
P)(H ₂ O)]						work
[RhCl(tppms) ₃]	4.5	50	1	15	40	2
[RhCl(tppms) ₃]	4.5	60	1	15	32	2
[RhCl(tppms) ₃]	4.5	70	1	15	23	2
[RhCl(tppms) ₃]	4.5	50	1	15	300	2
[RhCl(tppms) ₃]	6	24	8	14	262	3
[RuCl ₂ (pta) ₄]	4	24	8	14	35	3
[RuCl ₂ (tppms) ₂] ₂	5	24	8	14	372	3

Table S1. Catalytic activity of $[RuCl_3(P-P)(H_2O)]$ compared with Ferenc Joo's catalysts

Table S2. Atomic composition of 1 by SEM-EDX analysis

С	0	Р	Ru	CI
82.87	7.04	8.15	0.50	1.44

Table S3. Results of CO chemisorption

Catalyst	Surface	atoms	by	CO
	chemisorption method			
Pd/C	6.9			
Ru/Al ₂ O ₃	3.5			

Table S4. Atomic composition of recovered catalyst by SEM-EDX analysis

С	0	Р	Ru	CI	Са
85.32	8.34	5.45	0.45	0.04	0.4

Scheme S1. Synthesis of PP-POP

References:

1. R. Sun, A. Kann, H. Hartmann, A. Besmehn, P. J. C., Hausoul, R. Palkovits, ChemSusChem, 2019, *12*, 3278 – 3285.

- 2. I. Joszai, F. Joo, J. Mol. Catal. A Chem., 2004, 224, 87–91.
- 3. F. Joo, G. Laurenczy, L. Nadasdi, J. Elek, Chem. Commun., 1999, 971–972.