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S1. Materials characterization

The detailed characterization of catalysts was performed by using various instruments.
The powder X-ray diffraction data was collected using a Rigaku SmartLab 9 kW rotating
anode X-ray diffractometer in a Bragg-Brentano configuration using a Cu-sealed tube (Cu K,
X-rays of 0.1541 nm) operating at 45 kV and 100 mA. The measurements were performed in
the scattering 206 range from 10° to 80° with a scan rate of 2° per min and a step size of
0.02°. Raman spectroscopy measurements were done on Horiba LabRaM high resolution
instrument using 785 nm laser excitation. FT-IR measurements were done on Agilent
K8002AA Cary 660 instrument. Thermogravimetric analysis (TGA) was performed using a
PerkinElmer Pyris 1 instrument. The samples were heated under a nitrogen atmosphere
from 25 °C to 800 °C with the heating rate of 10 °C min~! at a flow rate of 20 mL min~1. The
morphological analysis was done using a scanning electron microscope (SEM) FEI Nova SEM-
450 and transmission electron microscope (TEM) FEI Tecnai G2 20 S-twin microscope
operating at 200 kV. Energy dispersive X-ray spectra (EDAX) and elemental mapping data
were also obtained by using the same TEM instrument. The X-ray photoelectron
spectroscopy (XPS) measurements were done using Thermo Scientific NEXSA photoemission
spectrometer using Al-Ka (1486.6 eV) X-ray radiation. The XPS data were acquired with a
spot size 400 um having a standard lens mode. The obtained data from the instrument were
plotted and deconvoluted using Avantage software. The Brunauer—Emmett-Teller (BET)
specific surface area was measured on Quanta chrome Autosorb-iQ-MP-XR system at 77 K.
The temperature-programmed desorption (TPD) study was done using CHEMBET™ TPR/TPD,
QUANTACHROME. NMR spectra were measured using a JEOL-USA (JNMECX500)
spectrometer in DMSO-dg using TMS (tetramethyl silane) as an internal standard. The 'H
and 13C chemical shifts in NMR is reported in ppm relative to 2.50 and 39.50 of the DMSO-dg

IIJ ”

solvent as the standard. The coupling constant was calculated in Hz. All IH-NMR spectra
were recorded at 500 MHz frequency, wherein 13C-NMR spectra were recorded at 125 MHz

frequency.
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Table S1. Atomic percentage of elements in O-GCN catalyst from XPS analysis.

Atomic percentage

Sl. No. | Elements Binding energy (eV)
1 C1ls 289.30 43.00
2 N 1s 400.12 52.68
3 O1s 532.50 4.32
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Figure S1. (a) CO, TPD measurement of O-GCN nanosheets and (b) NH; TPD measurement

of O-GCN nanosheets.
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$2. Product yield calculation:
The product yield was calculated after purification of the product using column
chromatography. The yield of the product was calculated by using the following formula:
Actual yield (in mg)

Yield (%) = - , - %X 100
Theoretical yield (inmg)

Herein, theoretical yield = Molecular weight of product X mmol of reactants (Theoretical

yield is the 100 % yield)
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S3. Detailed calculation of number of active sites and turnover number (TON)

The term active site is referred to effective sites for a particular heterogeneous catalytic
reaction. The number of active sites can be used to describe an ensemble of sites at which a
catalytic reaction takes place.

The effectiveness of the catalyst is expressed in the catalytic reaction system as turnover

number (TON). TON is a unit less measure and can be calculated as below:
(Yoorwasn ) X Naroeofraxdorts
Naofrroesof atolyst

From the TPD analysis it was found that the amount of acidic sites present in O-GCN nanosheets

TON =

are 0.059 mmol g and basic sites are 0.051 mmol g. Since the active sites are acidic, therefore

only the moles corresponding to the acidic sites will account for TON calculations.

According to TPD analysis, 1 g of catalyst = 0.059 mmol of active sites.
Therefore, 1 mg of catalyst contains 5.9 X 10>mmol of active sites.
Since, 20 mg of catalyst is used in the catalytic reaction.

Therefore, for 20 mg of catalyst contains 1.18 X 103 mmol of active sites.

For the model reaction involving 4-chlorobenzaldehyde, TON can be calculated as below:
2 x1
TON = ———
u x10 -3
TON =77576

Similarly, TON for all the reactions was calculated and is given in Table 2 in main manuscript.



S4. Green metrics calculations

Green chemistry metrics calculations were performed for the developed catalytic
hydrogen transfer reaction of carbonyl compounds to study the environmental impact and
sustainability of the reaction. The important parameters for a Green and sustainable

reaction have been discussed in detail.

(1) Environmental factor (E-factor): E-factor is a popular Green chemistry metrics which
defines the ratio of mass of waste to mass of product. It tells us about how much waste
formed is generated in a chemical process. For an ideal Green chemical reaction, E-factor
should be 0. Higher the E-factor means more amount of waste is generated which can have
a detrimental impact on environment.
E - factor = (mass of waste)/(mass of product)
Mass of waste = Total mass of raw materials — Total mass of product

The E- Factor calculated for our model reaction was found to 0.087.

(2) Atom economy (AE): AE of a reaction describes the total number of atoms resides in the
product from the starting materials. It is considered as an important parameter to
determine the efficiency of a reaction. The ideal value of AE factor is 100%.

AE = Mol. wt. of product/ Z(Mol. wt. of stoichiometric reactants) X 100

AE calculated for the model reaction was found to be 100% as all atoms from the starting

materials still resides in the product.

(3) Mass intensity (Ml): Ml is the total mass involves in process divided by the mass of
product. Lower the mass intensity value, lower will be the cost and the process will be more
sustainable.

MI = (Total mass in process) / (Mass of product)

Ml value calculated for the model reaction was 1.087.

(4) Process mass intensity (PMI): PMI is the total mass used in a chemical process including
the mass of the solvents used divided by the mass of product.

PMI = [Total mass in process (including solvent)] / [Mass of product]



The solvent used in the model reaction was 2-propanol which is itself a green solvent and

the PMI value was calculated to be 2.016.

(5) Reaction mass efficiency (RME): Reaction mass efficiency is defined as the mass of
product divided by the sum of total mass of stoichiometric reactants. RME measures the
“cleanness” of a chemical reaction. Values of RME range from 0-100%.

RME (%) = mass of product /X(mass of stoichiometric reactants) X 100

RME value for the model reaction was found to be 91.99%. Higher value of RME is

considered better for an ideal green chemical reaction.

(6) Carbon economy (CE): CE is the measure of the carbon content in product with respect
to the carbon content in reactant.

CE (%) = [Total carbon in product]| / [Total carbon in reactant] X 100

CE for the model reaction was found to be 100% which indicates that the carbon content in

reactant and the product remain unchanged.
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Table S2. Summary of green metrics parameters calculated for the model reaction.

CHO CH,OH
e 0-GCN T
+ HO _ - > +
| KOH, 4 h, 80 °C HsC” CH,3
CH;
Cl Cl
4-chlorobenzaldehyde 2-propanol 4-chlorobenzyl alcohol Acetone
Sl. No. Green metric parameters Calculated values
1 Environmental factor (E-factor) 0.087
2 Atom economy (AE) 100%
3 Mass intensity (M) 1.087
4 Process mass intensity (PMlI) 2.016
5 Reaction mass efficiency (RME) 92%
6 Carbon economy (CE) 100%
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Table S3. Optimization of catalyst amount for model reaction involving 4-
chlorobenzaldehyde
SI. No. | Catalyst Amount of catalyst Temperature Time Yield
(mg) (°C) (h) (%)
1 O-GCN 10 60 8 56
2 O-GCN 20 60 8 78
3 O-GCN 30 60 8 82
4 O-GCN 20 80 4 92
5 O-GCN 30 80 4 92
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$5. Mechanistic Study
The detailed mechanistic study was done by performing several control reactions as

mentioned below.

(i) Reaction of 2-propanol with KOH without O-GCN catalyst

The reaction of 2-propanol with KOH was carried out under the model reaction conditions,
i.e. at 80 °C for 4 hours. After the completion of reaction, NMR of crude reaction mixture
was recorded and it was found that the reaction results in the formation of potassium salt
with 2-propanol. The NMR signal for O-H proton was missing in the formed product, which
clearly indicates proton abstraction and the formation of potassium salt of 2-propanol. No

other product was observed in the reaction mixture.

CH CH

| KOH (e
H | OH > HI—O K

CHs 4 h, 80 °C CHs
2-propanol Pottassium salt

Furthermore to confirm the formation of potassium salt the reaction mixture was extracted
with CHCl3/ H,0 which again resulted in formation of 2-propanol, which was confirmed by

NMR spectra.

(ii) Reaction of 2-propanol with KOH and O-GCN catalyst

Further the reaction of 2-propanol with KOH was carried out in presence O-GCN catalyst.
The reaction again resulted in the formation of potassium salt with 2-propanol, which was
confirmed by NMR. In order to examine the next step of the proposed mechanism,
formaldehyde was added to the same reaction mixture and allowed to react. The reaction
mixture was analyzed using NMR. It was observed that on addition of carbonyl substrate
(i.e. hydrogen acceptor), the second hydrogen was also released from the potassium salt of
2-propanol resulting in the formation of the corresponding alcohol. Alcohol formation was
confirmed via NMR spectra. This confirms that carbonyl substrate triggers the concerted

hydrogen transfer step in the proposed mechanism.
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CH3 CH3

H:—OH + CH,0 O-GCN > H—: oK 4 CH3OH
o

CH, KOH, 80 °C CH,

2-propanol Formladehyde Pottassium salt Methanol

(iii) Reaction with tert-butyl alcohol

In order to confirm transfer hydrogenation, a non-hydrogen donor alcohol was used instead
of 2-propanol. The model reaction was carried out in presence of tert-butyl alcohol and O-
GCN catalyst for 4 hours at 80°C. The reaction showed no formation of alcohol product

which confirms that the hydrogen is coming from 2-propanol and not from KOH.
CHO

CH,
[ 0-GCN .
+ H3C OH P No corresponding alcohol product was formed.

| o
CH, KOH, 80 °C

Cl
4-chlorobenzaldehyde 2-propanol

(iv) Reaction with K,CO;

The model reaction was carried out using K,COs as base and O-GCN catalyst for 4 hours at
80°C. The reaction resulted in corresponding alcohol product but the yield obtained (72%)
was comparatively less as compared to KOH (92%). This can be attributed to the reason that

K,COs3 is a weaker base than KOH.

CHO CH,OH
?Hs O-GCN 0
+ HO H . » -
I K,CO;, 80 °C HisC™ “CH;
CH,
Cl Ci
4-chlorobenzaldehyde 2-propanol 4-chlorobenzyl alcohol Acetone
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Figure S2. NMR spectra of the compounds

1H-NMR spectra of Phenylmethanol (3a) [500 MHz, DMSO-d¢]
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1H-NMR spectra of (4-chlorophenyl)methanol (3b) [500 MHz, DMSO-dg]
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13C-NMR spectra of (4-chlorophenyl)methanol (3b) [125 MHz, DMSO-d¢]
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1H-NMR spectra of (4-nitrophenyl)methanol (3c) [S00 MHz, DMSO-d¢]
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1H-NMR spectra of p-tolylmethanol (3d) [500 MHz, DMSO-dg]
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13C-NMR spectra of p-tolylmethanol (3d) [125 MHz, DMSO-d¢]
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1H-NMR spectra of (4-(dimethylamino)phenyl)methanol (3e) [500 MHz, DMSO-d¢]
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13C-NMR spectra of (4-(dimethylamino)phenyl)methanol (3e) [125 MHz, DMSO-d¢]
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1H-NMR spectra of (4-methoxyphenyl)methanol (3f) [500 MHz, DMSO-dg]
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13C-NMR spectra of (4-methoxyphenyl)methanol (3f) [125 MHz, DMSO-d¢]
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1H-NMR spectra of (2-methoxyphenyl)methanol (3g) [500 MHz, DMSO-dg]

_ oo < on wa-aar CH,0H
#
OCH;
H
;.
o
2
1 =} -
ud . J_..j | o

100 o ) 10 0

AN ' AT
LU @wa 11 W

X : pares per Million : IH

13C-NMR spectra of (2-methoxyphenyl)methanol (3g) [125 MHz, DMSO-d¢]
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1H-NMR spectra of (2-nitrophenyl)methanol (3h) [500 MHz, DMSO-d;]
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13C-NMR spectra of (2-nitrophenyl)methanol (3h) [125 MHz, DMSO-d¢]
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1H-NMR spectra of (3-bromophenyl)methanol (3i) [500 MHz, DMSO-d¢]
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13C-NMR spectra of (3-bromophenyl)methanol (3i) [125 MHz, DMSO-dg]
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1H-NMR spectra of (3,5-dibromophenyl)methanol (3j) [500 MHz, DMSO-d¢]
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13C-NMR spectra of (3,5-dibromophenyl)methanol (3j) [125 MHz, DMSO-d¢]
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1H-NMR spectra of Naphthalen-2-ylmethanol (3k) [500 MHz, DMSO-d¢]
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13C-NMR spectra of Naphthalen-2-ylmethanol (3k) [125 MHz, DMSO-d¢]
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1H-NMR spectra of (5-bromo-1H-indol-3-yl)methanol (3I) [500 MHz, DMSO-d¢]
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13C-NMR spectra of (5-bromo-1H-indol-3-yl)methanol (31) [125 MHz, DMSO-d¢]
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1H-NMR spectra of Thiophen-2-ylmethanol (3m) [500 MHz, DMSO-d¢]
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1H-NMR spectra of Hexan-1-ol (3n) [500 MHz, DMSO-dg]
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1H-NMR spectra of Diphenylmethanol (30) [500 MHz, DMSO-d¢]
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1H NMR spectra of crude reaction mixture (S5 (i) ) [500 MHz, DMSO-d¢]
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1H NMR spectra of reaction mixture extracted with CHCl3/ H,0 with (S5 (i))
[500 MHz, DMSO-dg]
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1H NMR spectra of reaction mixture with O-GCN catalyst and formaldehyde (S5 (ii))
[500 MHz, DMSO-dg]
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[125 MHz, DMSO-d]
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