Photochemical Synthesis of Acetals utilizing Schreiner's Thiourea as the Catalyst

Nikoleta Spiliopoulou, Nikolaos F. Nikitas and Christoforos G. Kokotos*

Laboratory of Organic Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Panepistimiopolis, Athens 15771, Greece

SUPPORTING INFORMATION

	Page
General Remarks	S2
Emission Spectrum of the Light Source	S3
Optimization of the Reaction Conditions for the Photochemical Reaction of 3-Phenyl-propanal with Methanol	S4
Mechanistic Investigations with Scavengers of the Photochemical Reaction of 3-Phenyl-propanal with Methanol	S6
Purification of the Product utilizing Extractions	S7
Synthesis of Starting Materials	S8
General Procedure for the Photochemical Synthesis of Acetals from Aldehydes	S9
Determination of the Quantum Yield	S20
Mechanistic Investigations with UV-Vis Absorption Spectra	S22
¹ H-NMR Mechanistic Experiments	S23
¹⁹ F-NMR Mechanistic Experiments	S26
References	S27
NMR Spectra	S28

Chromatographic purification of products was accomplished using forced-flow chromatography on Merck[®] Kieselgel 60 F₂₅₄ 230-400 mesh. Thin-layer chromatography (TLC) was performed on aluminum backed silica plates (0.2 mm, 60 F₂₅₄). Visualization of the developed chromatogram was performed by fluorescence quenching using phosphomolybdic acid, anisaldehyde or potassium permanganate stains. Mass spectra (ESI) were recorded on a Finningan[®] Surveyor MSQ LC-MS spectrometer. HRMS spectra were recorded on Bruker[®] Maxis Impact QTOF spectrometer. ¹H, ¹⁹F and ¹³C NMR spectra were recorded on Varian[®] Mercury (200 MHz, 188 MHz and 50 MHz respectively), or a Bruker 400 MHz, and are internally referenced to residual solvent signals. Data for ¹H-NMR are reported as follows: chemical shift (δ ppm), integration, multiplicity (s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet, br s = broad signal), coupling constant and assignment. Data for ¹⁹F-NMR are reported in terms of chemical shift (δ ppm) and are internally referenced to trifluoroacetic acid. Data for ¹³C-NMR reported in terms of chemical shift (δ ppm). Mass spectra and conversions of the reactions were recorded on a Shimadzu[®] GCMS-QP2010 Plus Gas Chromatograph Mass Spectrometer utilizing a MEGA® column (MEGA-5, F.T.: 0.25µm, I.D.: 0.25mm, L: 30m, T_{max}: 350 °C, Column ID# 11475). A Varian[®] Cary 50 UV-Vis spectrophotometer was used as the light source for the quantum yield measurements and the UV-Vis data.

Emission Spectrum of the Light Source

The emission spectrum of the lamps was measured with a SPIC-200 spectral irradiance colorimeter. The lamp was placed in a dark room in a 30 cm distance from the lamp.

Optimization of the Reaction Conditions for the Photochemical Reaction of 3-Phenyl-propanal with Methanol

[a] Yield of isolated product

[b] Reaction was kept in the dark

[c] Reaction took place at 50 °C

Entry	Solvent	Yield (%) ^a
1 ^b	МеОН	81
2	MeOH/MeCN (1:1)	24
3	MeOH/CHCl ₃ (1:1)	67
4	MeOH/EtOAc (1:1)	traces
5	MeOH/Pet.Ether (1:1)	61
6	MeOH/CH ₂ Cl ₂ (1:1)	63
7	MeOH/toluene (1:1)	50
8	MeOH/Et ₂ O (1:1)	50
9c	МеОН	72
10 ^d	MeOH	50

[a] Yield of isolated product [b] Reaction time: 3 h

[c] Blue LED instead of CFL lamps

[d] Green LED instead of CFL lamps

Mechanistic Investigations with Scavengers for the Photocatalytic Reaction of 3-Phenyl-propanal with Methanol

Entry	Quencher (equiv.)	Notes	Yield (%) ^a
1	Ar atmosphere	-	79
2	Open air	-	100 (81)

[a] Yield determined by ¹H-NMR, isolated yield in parentheses

Purification of the Product utilizing Extractions

¹H-NMR (in CDCl₃) of 2a, after purification by column chromatography

¹H-NMR in (CDCl₃) of the reaction mixture for 2a, after NaHCO₃ (aqueous, 10%) wash (without column chromatography)

Synthesis of Starting Materials

2-Cyclohexyl acetaldehyde (10)¹

A flame dry round-bottom flask was charged with a solution of oxalyl chloride (2M) (0.60 mL, 1.20 mmol, 1.2 equiv.) in dry CH₂Cl₂ (1.5 mL) under argon atmosphere at -78 °C. Dimethylsulfoxide (0.08 mL, 1.10 mmol, 1.1 equiv.) in dry CH₂Cl₂ (1.5 mL) was added dropwise and the reaction mixture was left stirring for 30 min. 2-Cyclohexyl ethanol (128 mg, 1.00 mmol, 1.0 equiv.) was dissolved in dry CH₂Cl₂ (1.5 mL) and was added in the reaction mixture. After 30 min, triethylamine (0.45 mL, 5.00 mmol, 5.0 equiv.) was added and the reaction mixture was stirred at -78 °C for 15 min. The reaction mixture was extracted with CH₂Cl₂ (3 x 5 mL) and ice-water (10 mL). The combined organic layers were washed with brine (2 x 5 mL) and dried over Na₂SO₄, filtered and concentrated *in vacuo*. The crude reaction mixture was purified by column chromatography eluting with petroleum ether:ethyl acetate (9:1- 8:2). Colorless Oil; 62% yield; ¹H NMR (200 MHz, CDCl₃) δ : 9.68 (1H, t, *J*= 2.3 Hz, CHO), 2.22 (2H, dd, *J* = 6.8 and 2.3 Hz, COCH₂), 1.87-1.74 (1H, m, CH), 1.72-1.55 (5H, m, 5 x CHH), 1.34-1.15 (2H, m, 2 x CHH), 1.06-0.98 (1H, m, CHH), 0.97-0.87 (2H, m, 2 x CHH); ¹³C NMR (50 MHz, CDCl₃) δ : 202.8, 51.4, 33.2, 32.7, 26.1, 26.1; MS 127 [M+H]⁺.

General Procedure for the Photochemical Synthesis of Acetals

In a glass vial with a screw cap containing N,N'-bis[3,5-bis(trifluoromethyl) phenyl]thiourea (**3a**) (Schreiner's thiourea) (50 mg, 0.10 mmol) in alcohol (2 mL), aldehyde (0.50 mmol) was added. The vial was sealed with a screw cap and left stirring under household bulb irradiation (2 x 80W household lamps, see photos below) for 3-18 h. The desired product was isolated after purification by column chromatography or base aqueous wash (when full consumption of aldehyde took place).

Scheme. A: 2 x 80W fluorescent household lamps utilized for the photocatalytic reaction. Bulbs are placed symmetrically 3 cm away from the reaction tube. B: Beginning of the reaction.

(3,3-Dimethoxypropyl)benzene (2a)²

Reaction time: 3 h; colorless oil; 81% yield; ¹H NMR (200 MHz, CDCl₃) δ : 7.38-7.08 (5H, m, ArH), 4.37 (1H, t, *J* = 5.8 Hz, OCH), 3.33 (6H, s, 2 x OCH₃), 2.68 (2H, t, *J* = 7.5 Hz, PhCH₂), 2.00-1.86 (2H, m, CH₂); ¹³C NMR (50 MHZ, CDCl₃) δ : 141.6, 128.4, 125.9, 103.7, 52.7, 34.0, 30.8; MS (ESI) m/z 181 [M+H]⁺.

(3,3-Diethoxypropyl)benzene (2b)³

Reaction time: 3 h; Colorless oil; 83% yield; ¹H NMR (200 MHz, CDCl₃) δ : 7.34- 7.15 (5H, m, ArH), 4.48 (1H, t, *J* = 5.7 Hz, OCH), 3.81-3.35 (4H, m, 2 x OCH₂), 2.69 (2H, t, *J* = 7.5 Hz, PhCH₂), 2.06-1.84 (2H, m, CH₂), 1.21 (6H, t, *J* = 7.1 Hz, 2 x CH₃); ¹³C NMR (50 MHz, CDCl₃) δ : 141.7, 128.4, 128.3, 125.8, 102.1, 61.0, 35.0, 31.0, 15.4; MS (ESI) m/z 209 [M+H]⁺.

(3,3-Diisopropoxypropyl)benzene (2c)⁴

Reaction time: 3 h; Colorless oil; 64% yield; ¹H NMR (200 MHz, CDCl₃) δ : 7.34-7.10 (5H, m, ArH), 4.56 (1H, t, J = 5.5 Hz, OCH), 3.86 (2H, hept, J = 6.1 Hz, 2 x OCH), 2.70 (2H, t, J = 7.6 Hz, PhCH₂), 1.97-1.87 (2H, m, CH₂), 1.21 (6H, d, J = 6.1 Hz, 2 x CH₃),

1.14 (2H, d, J = 6.1 Hz, 2 x CH₃); ¹³C NMR (50 MHz, CDCl₃) δ : 141.9, 128.3, 128.2, 125.7, 99.6, 67.7, 36.9, 31.0, 23.4, 22.6; MS (ESI) m/z 237 [M+H]⁺.

(3,3-Dipropoxypropyl)benzene (2d)⁵

Reaction time: 3 h; Colorless oil; 77% yield; ¹H NMR (200 MHz, CDCl₃) δ : 7.33-7.08 (5H, m, ArH), 4.49 (1H, t, J = 5.8 Hz, OCH), 3.62-3.51 (2H, m, OCH₂), 3.45- 3.32 (2H, m, OCH₂), 2.70 (2H, t, J = 7.6 Hz, PhCH₂), 2.06-1.89 (2H, m, CH₂), 1.71-1.50 (4H, m, 2 x CH₂), 0.95 (6H, t, J = 7.4 Hz, 2 x CH₃); ¹³C NMR (50 MHz, CDCl₃) δ : 141.8, 128.3, 128.2, 125.7, 102.3, 67.2, 35.0, 31.0, 23.1, 10.7; MS (ESI) m/z 237 [M+H]⁺.

(3,3-Bis(allyloxy)propyl)benzene (2e)⁵

Reaction time: 3 h; Colorless oil; 96% yield; ¹H NMR (200 MHz, CDCl₃) δ : 7.34-7.13 (5H, m, ArH), 6.10-5.82 (2H m, 2 x =CH), 5.44-5.11 (4H, m, 2 x =CH₂), 4.63 (1H, t, *J* = 6.1 Hz, OCH), 4.17-3.96 (4H, m, 2 x OCH₂), 2.73 (2H, t, *J* = 7.6 Hz, PhCH₂), 2.11-1.93 (2H, m, CH₂); ¹³C NMR (50 MHz, CDCl₃) δ : 141.5, 134.6, 128.3, 125.8, 116.7, 101.5, 66.3, 34.9, 30.9; MS (ESI) m/z 233 [M+H]⁺.

(3,3-Bis(prop-2-yn-1-yloxy)propyl)benzene (2f)⁵

Reaction time: 3 h; Colorless oil; 74% yield; ¹H NMR (200 MHz, CDCl₃) δ : 7.30-7.19 (5H, m, ArH), 4.83 (1H, t, J = 5.7 Hz, OCH), 4.25 (4H, d, J = 2.4 Hz, 2 x OCH₂), 2.73 (2H, t, J = 7.3 Hz, PhCH₂), 2.44 (2H, t, J = 2.4 Hz, ECH), 2.06-1.91 (2H, m, CH₂); ¹³C NMR (50 MHz, CDCl₃) δ : 141.2, 128.4, 128.3, 125.9, 100.9, 79.6, 74.3, 53.1, 34.7, 30.6; MS (ESI) m/z 229 [M+H]⁺.

((3-Phenylpropane-1,1-diyl)bis(oxy))dicyclohexane (2g)⁵

Reaction time: 3 h; Colorless oil; 61% yield; ¹H NMR (200 MHz, CDCl₃) δ : 7.31-7.12 (5H, m, ArH), 4.66 (1H, t, J = 5.5 Hz, OCH), 3.56-3.45 (2H, m, 2 x OCH), 2.69 (2H, t, J = 7.8 Hz, PhCH₂), 1.99-1.61 (10H, m, 5 x CH₂), 1.58-1.15 (12H, m, 6 x CH₂); ¹³C NMR (50 MHz, CDCl₃) δ : 142.0, 128.3, 128.2, 125.7, 99.2, 73.6, 37.1, 33.6, 32.8, 31.2, 25.7, 24.4, 24.2; MS (ESI) m/z 317 [M+H]⁺.

(3,3-Dibutoxypropyl)benzene (2h)⁶

Reaction time: 3 h; Colorless oil; 87% yield; ¹H NMR (200 MHz, CDCl₃) δ : 7.36-6.98 (5H, m, ArH), 4.49 (1H, t, J = 5.8 Hz, OCH), 3.67-3.50 (2H, m, OCH₂), 3.48-3.37 (2H, m, OCH₂), 2.70 (2H, t, J = 7.7 Hz, PhCH₂), 2.06-1.86 (2H, m, CH₂), 1.65-1.23 (8H, m, 4 x CH₂), 0.94 (6H, t, J = 7.2 Hz, 2 x CH₃); ¹³C NMR (50 MHz, CDCl₃) δ : 141.7, 128.3, 128.2, 125.7, 102.2, 65.2, 34.9, 31.9, 31.0, 19.4, 13.9; MS (ESI) m/z 265 [M+H]⁺.

(3,3-Bis(pentyloxy)propyl)benzene (2i)⁵

Reaction time: 3 h; Colorless oil; 83% yield; ¹H NMR (200 MHz, CDCl₃) δ : 7.43-7.03 (5H, m, ArH), 4.48(1H, t, J = 5.8 Hz, OCH), 3.70-3.53 (2H, m, OCH₂), 3.49-3.32 (2H, m, OCH₂), 2.69 (2H, t, J = 7.9 Hz, PhCH₂), 2.04-1.89 (2H, m, CH₂), 1.69-1.49 (4H, m, 2 x CH₂), 1.40-1.29 (8H, m, 4 x CH₂), 0.91 (6H, t, J = 6.9 Hz, 2 x CH₃); ¹³C NMR (50 MHz, CDCl₃) δ : 141.8, 128.4, 128.3, 125.7, 102.2, 65.5, 34.9, 31.0, 29.6, 28.4, 22.3, 14.1; MS (ESI) m/z 293 [M+H]⁺.

(3,3-Bis(2-chloroethoxy)propyl)benzene (2j)⁵

Reaction time: 3 h; Yellow oil; 94% yield; ¹H NMR (200 MHz, CDCl₃) δ : 7.34-7.08 (5H, m, ArH), 4.64 (1H, t, *J* = 5.9 Hz, OCH), 3.95-3.72 (4H, m, 2 x OCH₂), 3.65 (4H, t, *J* = 6.0 Hz, 2 x CH₂Cl), 2.73 (2H, t, *J* = 6.7 Hz, PhCH₂), 2.12-1.84 (2H, m, CH₂); ¹³C NMR (50 MHz, CDCl₃) δ : 141.1, 128.4, 128.3, 126.0, 102.3, 65.3, 43.3, 34.4, 30.8; MS (ESI) m/z 277 [M+H]⁺.

(3,3-Bis(2,2,2-trifluoroethoxy)propyl)benzene (2k)⁵

Reaction time: 18 h; Colorless oil; 45% yield; ¹H NMR (200 MHz, CDCl₃) δ : 7.33-7.11 (5H, m, ArH), 4.75 (1H, t, *J* = 5.9 Hz, OCH), 3.90 (4H, q, *J* = 8.6 Hz, 2 x CH₂CF₃), 2.71 (2H, t, *J* = 6.5 Hz, PhCH₂), 1.99 (2H, td, *J* = 6.5 and 5.9 Hz, CH₂); ¹³C NMR (50 MHz, CDCl₃) δ : 140.2, 128.6, 128.3, 126.3, 123.5 (q, *J* = 275 Hz), 102.3, 62.1 (q, *J* = 34 Hz), 33.9, 30.5; ¹⁹F (188 MHz, CDCl₃) δ : -32.3 (t, *J* = 8.5 Hz); MS (ESI) m/z 317 [M+H]⁺.

2-Phenethyl-1,3-dioxolane (2l)³

Reaction time: 3 h; Colorless oil; 85% yield; ¹H NMR (200 MHz, CDCl₃) δ : 7.36-7.05 (5H, m, ArH), 4.89 (1H, t, J = 4.8 Hz, OCH), 4.06-3.81 (4H, m, 2 x OCH₂), 2.75 (2H, t, J = 7.6 Hz, PhCH₂), 2.05-1.91 (2H, m, CH₂); ¹³C NMR (50 MHz, CDCl₃) δ : 141.5, 128.5, 128.4, 125.8, 103.8, 64.9, 35.5, 30.1; MS (ESI) m/z 179 [M+H]⁺.

1,1-Dimethoxyoctane (2m)²

Reaction time: 18 h; Colorless oil; 81% yield; ¹H NMR (200 MHz, CDCl₃) δ : 4.34 (1H, t, J = 5.7 Hz, OCH), 3.29 (6H, s, 2 x OCH₃), 1.63-1.51 (2H, m, CH₂), 1.29-1.25 (10H, m, 5 x CH₂), 0.84 (3H, t, J = 6.4 Hz, CH₃); ¹³C NMR (50 MHz, CDCl₃) δ : 104.5, 52.5, 32.4, 31.8, 29.4, 29.2, 24.6, 22.6, 14.1; MS (ESI) m/z 175 [M+H]⁺.

Dimethoxymethyl)cyclohexane (2n)⁷

Reaction time: 18 h; Colorless oil; 74% yield; ¹H NMR (200 MHz, CDCl₃) δ : 3.99 (1H, d, *J* = 7.1 Hz, OCH), 3.33 (6H, s, 2 x OCH₃), 1.77-1.59 (6H, m, 5 x CHH and CH), 1.26-0.95 (5H, m, 5 x CH*H*); ¹³C NMR (50 MHz, CDCl₃) δ : 108.5, 53.5, 40.0, 28.0, 26.3, 25.7; MS (ESI) m/z 84 [M+H]⁺.

(2,2-Dimethoxyethyl)cyclohexane (20)⁸

Reaction time: 18 h; Colorless oil; 63% yield; ¹H NMR (200 MHz, CDCl₃) δ : 4.46 (1H, t, J = 5.7 Hz, OCH), 3.29 (6H, s, 2 x OCH₃), 1.79-1.59 (5H, m, 2 x CH₂ and CH), 1.48-1.32 (2H, m, CH₂), 1.25-1.04 (4H, m, 2 x CH₂), 0.99-0.83 (2H, m, CH₂); ¹³C NMR (50 MHz, CDCl₃) δ : 102.7, 52.3, 39.9, 33.7, 33.5, 26.5, 26.2; MS (ESI) m/z 173 [M+H]⁺.

(Dimethoxymethyl)benzene (2p)²

Reaction time: 18 h; Colorless oil, 80% yield; ¹H NMR (200 MHz, CDCl₃) δ: 7.54-7.20 (5H, m, ArH), 5.40 (1H, s, OCH), 3.33 (6H, s, 2 x OCH₃); ¹³C NMR (50 MHz, CDCl₃) δ: 138.0, 128.4, 128.2, 126.6, 103.1, 52.7; MS (ESI) m/z 153 [M+H]⁺.

1-(Dimethoxymethyl)-4-nitrobenzene (2q)²

Reaction time: 18 h; Colorless oil, 94% yield; ¹H NMR (200 MHz, CDCl₃) δ : 8.22 (2H, d, J = 7.7 Hz, ArH), 7.63 (2H, d, J = 7.7 Hz, ArH), 5.47 (1H, s, OCH), 3.32 (6H, s, 2 x OCH₃); ¹³C NMR (50 MHz, CDCl₃) δ : 145.0, 127.8, 123.4, 120.6, 101.5, 52.7; MS (ESI) m/z 198 [M+H]⁺.

1-Bromo-4-(dimethoxymethyl)benzene (2r)²

Reaction time: 18 h; Colorless oil, 46% yield; ¹H NMR (200 MHz, CDCl₃) δ : 7.48 (2H, d, J = 8.5 Hz, ArH), 7.31 (2H, d, J = 8.5 Hz, ArH), 5.34 (1H, s, OCH), 3.29 (6H, s, 2 x OCH₃); ¹³C NMR (50 MHz, CDCl₃) δ : 137.0, 131.3, 128.4, 122.4, 102.2, 52.5; MS (ESI) m/z 231 [M+H]⁺.

1-Chloro-4-(dimethoxymethyl)benzene (2s)²

Reaction time: 18 h; Colorless oil, 36% yield; ¹H NMR (200 MHz, CDCl₃) δ : 7.38 (2H, d, J = 8.8 Hz, ArH), 7.32 (2H, d, J = 8.8 Hz, ArH), 5.36 (1H, s, OCH), 3.30 (6H, s, 2 x OCH₃); ¹³C NMR (50 MHz, CDCl₃) δ : 136.6, 134.2, 128.3, 128.1, 102.2, 52.5; MS (ESI) m/z 187 [M+H]⁺.

1-(Dimethoxymethyl)-2-fluorobenzene (2t)⁹

Reaction time: 18 h; Colorless oil, 87% yield; ¹H NMR (200 MHz, CDCl₃) δ : 7.60-7.52 (1H, m, ArH), 7.37-7.27 (1H, m, ArH), 7.19-6.99 (2H, m, ArH), 5.61 (1H, s, OCH), 3.37 (6H, s, 2 x OCH₃); ¹³C NMR (50 MHz, CDCl₃) δ : 160.3 (d, J = 248.0 Hz), 130.1 (d, J = 8.3 Hz), 127.9 (d, J = 3.8 Hz), 125.2 (d, J = 12.5 Hz), 123.7 (d, J = 3.6 Hz), 115.3 (d, J =

21.2 Hz), 98.5 (d, J = 3.6 Hz), 53.5; ¹⁹F (188 MHz, CDCl₃) δ : -77.6 (m); MS (ESI) m/z 171 [M+H]⁺.

1-(*o*-Nitrophenyl)-1,1-dimethoxymethane (2u)¹⁰

Reaction time: 18 h; Colorless oil, 88% yield; ¹H NMR (200 MHz, CDCl₃) δ: 7.85-7.72 (2H, m, ArH), 7.63-7.55 (1H, m, ArH), 7.52-7.38 (1H, m, ArH) 5.91 (1H, s, OCH), 3.99 (6H, s, 2 x OCH₃); ¹³C NMR (50 MHz, CDCl₃) δ: 149.0, 132.7, 132.5, 129.4, 128.1, 124.2, 99.9, 54.6; MS (ESI) m/z 198 [M+H]⁺.

1-(Dimethoxymethyl)-3-nitrobenzene (2v)¹⁰

Reaction time: 18 h; Colorless oil, 44% yield; ¹H NMR (200 MHz, CDCl₃) δ : 8.29 (1H, s, ArH), 8.14 (1H, d, J = 7.7 Hz, ArH), 7.75 (1H, d, J = 7.7 Hz, ArH), 7.51 (1H, t, J = 7.7 Hz, ArH), 5.44 (1H, s, OCH), 3.31 (6H, s, 2 x OCH₃); ¹³C NMR (50 MHz, CDCl₃) δ : 148.2, 140.3, 132.8, 129.1, 123.3, 121.9, 101.4, 52.6; MS (ESI) m/z 198 [M+H]⁺.

3-(Dimethoxymethyl)benzonitrile (2w)¹¹

Reaction time: 18 h; Colorless oil, 80% yield; ¹H NMR (200 MHz, CDCl₃) δ: 7.75-7.73 (1H, m, ArH), 7.69-7.55 (2H, m, ArH), 7.45-7.41 (1H, m, ArH), 5.39 (1H, s, OCH), 3.29 (6H, s, 2 x CH₃); ¹³C NMR (50 MHz, CDCl₃) δ: 139.6, 132.0, 131.1, 130.5, 129.0, 118.6, 112.4, 101.4, 52.6; MS (ESI) m/z 178 [M+H]⁺.

4-(Dimethoxymethyl)benzonitrile (2x)¹⁰

Reaction time: 18 h; Colorless oil, 78% yield; ¹H NMR (200 MHz, CDCl₃) δ: 7.66-7.52 (4H, m, ArH), 5.40 (1H, s, OCH), 3.29 (6H, s, 2 x OCH₃); ¹³C NMR (50 MHz, CDCl₃) δ: 143.1, 132.0, 127.5, 118.6, 112.2, 101.6, 52.6; MS (ESI) m/z 178 [M+H]⁺.

Determination of the Quantum Yield

Determination of the photon flux of the lamps

The photon flux of the spectrophotometer was determined following the procedure described in *Green Chem.*, **2019**, *21*, 669-674. A 0.006M solution of potassium ferrioxalate was prepared by dissolving 120 mg of potassium ferrioxalate hydrate in 40 mL of 0.05M H₂SO₄. A buffered solution of phenanthroline was prepared by dissolving 10 mg of phenanthroline and 2.25 g of sodium acetate in 250 mL of 0.5 M H₂SO₄. Both solutions were stored in the dark. To determine the photon flux of the lamps, 2.0 mL of the solution of potassium ferrioxalate was placed in the cuvette, UV-Vis absorbance recorded (absorbance of interest at 510 nm), and irradiated for 90 seconds at lamps. After irradiation, 0.35 mL of the phenanthroline solution was added to the cuvette. The solution was allowed to rest for 1 h (complete coordination of ferrous ions to phenanthroline). The absorbance of the solution was then measured at 510 nm.

The fraction of light absorbed (f) by this solution was calculated, using this absorbance (A):

$$f = 1 - 10^{-A} = 1 - 10^{-4.9987} = 0.99999$$

In order to measure the photon flux, the mol of Fe^{2+} are required:

Mol Fe²⁺ =
$$\frac{V \times \Delta A}{1 \times \epsilon}$$
 = $\frac{0.00235 \text{ L} \times 0.382}{1.0 \text{ cm} \times 11.100 \text{ L} \text{ mol}^{-1} \text{ cm}^{-1}}$ = 8.09 × 10⁻⁸ mol

In this equation, V is the total volume of the solution after addition of the phenanthroline (0.00235 L), ΔA is the difference in the absorbance at 510 nm between the irradiated and the non-irradiated solutions, 1 is the path length (1.0 cm), and ε is the molar absorptivity at 510 nm (11.100 L mol⁻¹ cm⁻¹). The photon flux is then calculated:

Mol Fe²⁺ =
$$\frac{\text{Mol Fe}^{2+}}{\Phi \times t \times f}$$
 = $\frac{8.09 \times 10^{-8} \text{ mol}}{1.35 \times 90 \text{ sec} \times 0.9999}$ = 6.66 × 10-¹⁰ einstein s⁻¹

In this equation, Φ is the quantum yield of the ferrioxalate actinometer,¹² t is the time of the irradiation (90 seconds), and f is the fraction of the light absorbed at lamps (that is calculated above). Thus, the photon flux of the spectrophotometer was calculated to be 6.66×10^{-10} einstein s⁻¹.

Determination of the quantum yield

A cuvette was charged with 3-phenyl-propanal (1a) (13.5 mg, 0.10 mmol), Schreiner's thiourea (3a) (10 mg, 0.02 mmol) in methanol (0.5 mL). The reaction mixture was stirred and irradiated under CFL irradiation for 1800 s (0.5 h). After irradiation, the solvent was removed and the yield of the product was determined by ¹H-NMR (55%). The quantum yield was determined with the following equation:

Mechanistic Investigations with UV-Vis Absorption Spectra

UV absorbance of 3-phenyl-propanal (1a) (1 x 10^{-3} M) in MeOH, Schreiner's thiourea **3a** (6 x 10^{-5} M) in MeOH and the reaction mixture (3-phenyl-propanal 1 x 10^{-3} M and Schreiner's thiourea 6 x 10^{-5} M) in MeOH

UV absorbance of the reaction mixture [3-phenyl-propanal (4 x 10^{-3} M) and Schreiner's thiourea catalyst (6 x 10^{-5} M)] in MeOH, after consecutive irradiation

¹H-NMR (in CDCl₃) of **A**) Schreiner's thiourea **3a**, **B**) 3-phenyl-propanal (**1a**), **C**) reaction mixture before irradiation and **D**) reaction mixture after irradiation.

Zoom in (8.70-7.00 ppm) of 1 H –NMR (in CDCl₃) of **A**) Schreiner's thiourea **3a**, **B**) 3-phenyl-propanal (**1a**), **C**) reaction mixture before irradiation and **D**) reaction mixture after irradiation.

For better understanding of the hydrogen bond effect, several mechanistic experiments were performed. Initially, the ¹H-NMR (in CDCl₃) of Schreiner's thiourea **3a** was recorded (**A**). Two sets of aromatic signals were recorded at 7.92 ppm and 7.81 ppm, while the *NH* appeared at 7.29 ppm. The addition of 3-phenyl-propanal (**1a**) (**B**) to a solution of thiourea in CDCl₃, led to remarkable changes in ¹H-NMR chemical shifts of the catalyst, as it is presented above (**C**). The peak at 7.92 ppm shifted downfield to 7.96 ppm, the peak at 7.81 ppm shifted upfield to 7.78 ppm, while the *NH* protons shifted downfield from 7.29 ppm to 8.31 ppm. These results confirm the presence of hydrogen bonds among the substrate and the thiourea, supporting the formation of an aldehydecatalyst complex. After irradiation, similar observations can be drawn in (**D**).

¹⁹F-NMR Mechanistic Experiments

¹⁹F-NMR (in CDCl₃) of **A**) Schreiner's thiourea **3a**, **B**) reaction mixture before irradiation and **C**) reaction mixture after irradiation.

References

- 1. C. P. Lakeland, D. W. Watson, J. P. A. Harrity, Chem. Eur. J., 2020, 26, 155-159.
- Q. Zhou, T. Jia. X.-X. Li, L. Zhou, C.-J. Li, Y. S. Feng, Synth. Commun., 2018, 48, 1068-1075.
- 3. R. A. Ugarte, T. W. Hudnail, Green Chem., 2017, 19, 1990-1198.
- 4. A. Bauer, N. Maulide, Org. Lett., 2018, 20, 1461-1464.
- 5. N. F. Nikitas, I. Triandafillidi, C. G. Kokotos, Green Chem., 2019, 21, 669-674.
- M. Kunishima, D. Nakata, T. Sakuma, K. Kono, S. Sato, S. Tani, *Chem. Pharm.* Bull., 2001, 49, 97-100.
- H. M. Liu, C. Y. Chang, Y. C. Lai, M. D. Yang, C. Y. Chang, *Tetrahedron:* Asymmetry, 2014, 25, 187-192.
- F. J. Fananás, M. Álvarez-Pérez, F. Rodríquez, Chem. Eur. J., 2005, 11, 5938-5944.
- H. Li, Y.-F. Han, Y.-Ji. Lin, Z.-W. Guo, G.-X. Jin, J. Am. Chem. Soc., 2014, 136, 2982-2985.
- 10. M. Subaramanian, V. G. Landge, A. Mondal, V.Gupta, E. Balaraman, *Chem. Asian J.*, **2019**, *14*, 4557-4562.
- J. C. Sheldon, M. S. Taylor, J. H. Bowie, S. Dua, C. S. Brian Chia, P. C. H. Eichinger, J. Chem. Soc., Perkin Trans. 2, 1999, 333-340.
- 12. (a) J. Lee, H. H. Seliger, J. Chem. Phys., 1964, 40, 519. (b) J. N. Demas, W. D. Bowman, E. F. Zalewskl, R. A. Velapoldl, J. Phys. Chem., 1981, 85, 2766. (c) J. R. Bolton, M. I. Stefan, P.-S. Shaw, K. R. Lykke, J. Photochem. Photobiol. A: Chemistry, 2011, 222, 166.

