Supporting Information for:

A safe and compact flow platform for the neutralization of a mustard gas simulant with air and light

Noémie Emmanuel,<sup>a,¶</sup> Pauline Bianchi,<sup>a,¶</sup> Julien Legros<sup>b</sup> and Jean-Christophe M. Monbaliu<sup>a,\*</sup>

a. Center for Integrated Technology and Organic Synthesis, MolSys Research Unit, University of Liège, B-4000 Liège (Sart Tilman), Belgium. <u>jc.monbaliu@uliege.be</u> <u>www.citos.uliege.be</u>

*b.* Normandie Université, INSA Rouen, UNIROUEN, CNRS COBRA laboratory (UMR 6014 & FR3038) 76000 Rouen (France)

### **Table of contents**

| 1. | Continu | ous flow setups                                                                   |
|----|---------|-----------------------------------------------------------------------------------|
|    | 1.1     | Microfluidic setups and parts3                                                    |
|    | 1.1.1   | Pumps3                                                                            |
|    | 1.1.2   | Gas module3                                                                       |
|    | 1.1.3   | Connectors, ferrules and mixers3                                                  |
|    | 1.1.4   | Check-valves3                                                                     |
|    | 1.1.5   | Back-pressure regulator3                                                          |
|    | 1.1.6   | Reactor setups                                                                    |
|    | 1.1.7   | Thermoregulatory devices3                                                         |
|    | 1.2     | Part numbers & vendors4                                                           |
|    | 1.3     | Detailed continuous flow setup5                                                   |
| 2. | Additio | nal experimental details6                                                         |
|    | 2.1     | Chemicals6                                                                        |
|    | 2.2     | Additional experimental data7                                                     |
|    | 2.2.1   | Analytical methods7                                                               |
|    | 2.2.2   | Representative GC results for <b>CEES</b> oxidation8                              |
|    | 2.2.3   | Continuous flow procedure for the photooxidation of sulfides18                    |
|    | 2.2.3.1 | Continuous flow procedure for the photooxidation of 2-chloroethylethyl sulfide18  |
|    | 2.2.3.2 | Continuous flow procedure for the photooxidation of dipropyl sulfide <b>1a</b> 18 |
|    | 2.2.3.3 | Continuous flow procedure for the photooxidation of benzyl methyl sulfide 1c18    |
|    | 2.2.3.4 | Continuous flow procedure for the photooxidation of thioanisole <b>1d</b> 18      |
|    | 2.2.3.5 | Continuous flow procedure for the photooxidation of diphenyl sulfide <b>1e</b> 19 |
|    | 2.2.3.6 | Continuous flow procedure for the photooxidation of dibenzothiophene <b>1f</b> 19 |

|    | 2.2.3.7  | Continuous flow procedure for the photooxidation of diethyl sulfide                                                   | 19 |
|----|----------|-----------------------------------------------------------------------------------------------------------------------|----|
|    | 2.2.3.8  | Continuous flow procedure for the photooxidation of thiodipropionic acid                                              | 19 |
|    | 2.2.3.9  | Continuous flow procedure for the photooxidation of tetrahydrothiophene                                               | 19 |
|    | 2.2.3.10 | Continuous flow procedure for the photooxidation of dibenzyl sulfide                                                  | 20 |
|    | 2.2.3.1  | 1 Continuous flow procedure for the photooxidation of benzyl phenyl sulfide                                           | 20 |
|    | 2.2.3.12 | 2 Continuous flow procedure for the photooxidation of 2-chloroethylphenyl sulfide                                     | 20 |
|    | 2.2.4    | Batch procedures for the synthesis of products and by-products resulting from 2-<br>chloroethylethylsulfide oxidation | 21 |
|    | 2.2.4.1  | Batch procedure for the synthesis of vinyl ethyl sulfoxide (EVSO, I-2)                                                | 21 |
|    | 2.2.4.2  | Batch procedure for the synthesis of 2-ethoxyethylethyl sulfane (I-1)                                                 | 21 |
|    | 2.2.4.3  | Batch procedure for the synthesis of 1-ethoxy-2-(ethylsulfinyl)ethane (I-3)                                           | 21 |
|    | 2.2.4.4  | Batch procedure for the synthesis of 1-ethoxy-2-(ethylsulfonyl)ethane                                                 | 21 |
|    | 2.3      | Characterization of compounds                                                                                         | 22 |
|    | 2.3.1    | In-line NMR                                                                                                           | 22 |
|    | 2.3.2    | In-line IR                                                                                                            | 23 |
|    | 2.4      | Structural identity of compounds                                                                                      | 24 |
|    | 2.5      | Copies of NMR spectra                                                                                                 | 26 |
| 3. | Detaile  | d data on the photooxidation trials                                                                                   | 29 |
|    | 3.1      | Photo oxidation of model thioethers                                                                                   | 29 |
|    | 3.2      | CEES photooxidation tests                                                                                             | 30 |
|    | 3.2.1    | Impact of the residence time                                                                                          | 30 |
|    | 3.2.2    | Comparison of oxygen and air                                                                                          | 30 |
|    | 3.2.3    | Comparison of photosensitizers                                                                                        | 31 |
|    | 3.2.4    | Comparison of light (wavelength and intensity)                                                                        | 31 |
| 4. | Compu    | tations                                                                                                               | 32 |
|    | 4.1      | Stationary points for compounds CEES, HD and 1a-f                                                                     | 32 |
|    | 4.2      | Selected transition states, peroxysulfoxides and sulfoxides                                                           | 35 |

## 1. **Continuous flow setu**ps

1.1 Microfluidic setups and parts

All microfluidic setups were assembled with commercially available parts.

# 1.1.1 Pumps

ThalesNano microHPLC<sup>®</sup> pumps (wetted parts: SS 316, ruby and sapphire) were utilized to handle the liquid feeds.

# 1.1.2 Gas module

The gas flow rate was controlled with a Bronkhorst® F210CTM mass flow controller (MFC).

# 1.1.3 Connectors, ferrules and mixers

1/8" PFA tubings (Swagelok<sup>®</sup>) were equipped with Super Flangeless PEEK nuts, ETFE ferrules and SS rings. 1/4" PFA tubings (Swagelok<sup>®</sup>) were equipped with 1/4" PFA Swagelok Tube Fitting unions and elbows. Connectors, ferrules and unions were purchased from IDEX/Upchurch (details in Table S1).

### 1.1.4 Check-valves

Check-valves (IDEX/Upchurch Scientific) were inserted between the pumps and the reactor.

# 1.1.5 Back-pressure regulator

A dome-type BPR (Zaiput Flow Technologies, BPR-10) was inserted downstream. The dometype BPR was connected to a compressed gas cylinder (air or nitrogen) to set the working pressure.

### 1.1.6 Reactor setups

The flow reactor setups were manufactured by Corning SAS. The preliminary experiments relied on a Corning<sup>®</sup> Advanced-Flow<sup>™</sup> Lab Photo Reactor (1 fluidic module, 2.6 mL internal volume) and the final optimized setup relied on a Corning<sup>®</sup> Advanced-Flow<sup>™</sup> LF/G1 skid Photo Reactor (5 fluidic modules integrated with static mixers and connected in series, 13 mL total internal volume).

### 1.1.7 Thermoregulatory devices

The reactor was maintained at reaction temperature with a LAUDA Integral XT 280 thermostat. The LED panels were maintained at 10 °C with a LAUDA RP845 (LAUDA Therm 180 silicone oil).

# 1.2 Part numbers & vendors

Standard fluidic elements and connectors were purchased from IDEX/Upchurch Scientific or from Swagelok (Table S1).

| Item             | Details                                                                                              | Vendor                          | Reference          |
|------------------|------------------------------------------------------------------------------------------------------|---------------------------------|--------------------|
|                  | Super Flangeless <sup>™</sup> Nut PEEK, 1/4-28 Flat-Bottom,<br>for 1/8"                              | IDEX/<br>Upchurch<br>Scientific | P-331              |
| Connectors       | Super Flangeless <sup>™</sup> Ferrule Tefzel <sup>™</sup> (ETFE), 1/4-28<br>Flat-Bottom, for 1/8" OD | IDEX/<br>Upchurch<br>Scientific | P-359              |
| Connectors       | PFA Swagelok Tube Fitting, Union, 1/4 in. Tube<br>Fitting                                            | Swagelok                        | PFA-420-6          |
|                  | PFA Swagelok Tube Fitting, Union Elbow, 1/4 in.<br>Tube Fitting                                      | Swagelok                        | PFA-420-9          |
| Unions           | Large Bore Union PEEK for 3/16" OD                                                                   | IDEX/<br>Upchurch<br>Scientific | P-134              |
| Check-valve      | Check-valve inline cartridge 1.5 psi and cartridge holder, PEEK                                      | IDEX/<br>Upchurch<br>Scientific | CV-3000            |
| Dome-type<br>BPR | Dome-type BPR, metal-free, with adjustable set point                                                 | Zaiput Flow<br>Techn.           | BPR-10             |
| Tubing           | PFA Tubing, 1/8 in. OD x 0.030 in. wall x 100<br>feet                                                | Swagelok                        | PFA-T2-030-<br>100 |
|                  | PFA Tubing, 1/4 in. OD x 0.047 in. wall x 100<br>feet                                                | Swagelok                        | PFA-T4-047-<br>100 |

## 1.3 Detailed continuous flow setup

Photooxidation of thioethers in a Corning<sup>®</sup> Advanced-Flow<sup>™</sup> LF/G1 skid Photo Reactor. See manuscript for experimental details (Tables 2 and 3).



Figure S1. Detailed setup for the continuous flow photooxidation of sulfides.

# 2. Additional experimental details

# 2.1 Chemicals

Chemicals, purities, CAS numbers and suppliers are provided in Table S2.

| Solvents                                        | Purity (%)              | CAS number         | Supplier      |
|-------------------------------------------------|-------------------------|--------------------|---------------|
| Ethanol                                         | 99                      | 64-17-5            | VWR           |
| Acetonitrile                                    | ≥99.8                   | 75-05-8            | VWR           |
| 2-Methyltetrahydrofuran                         | ≥99                     | 96-47-9            | Merck         |
| Chemicals                                       | Purity (%)              | CAS number         | Supplier      |
| Thioanisole (methyl phenyl sulfide)             | >99                     | 100-68-5           | TCI           |
| Thioanisole sulfoxide (methyl phenyl sulfoxide) | >98                     | 1193-82-4          | TCI           |
| Thioanisole sulfone (methyl phenyl sulfone)     | >97                     | 3112-85-4          | TCI           |
| Dipropyl sulfide                                | >98                     | 111-47-7           | TCI           |
| Dipropyl sulfone                                | >99                     | 598-03-8           | TCI           |
| Thiodipropionic acid                            | >99                     | 111-17-1           | TCI           |
| Benzyl sulfide                                  | >98                     | 538-74-9           | TCI           |
| Benzyl sulfoxide                                | >98                     | 621-08-9           | TCI           |
| Benzyl sulfone                                  | >98                     | 620-32-6           | Alfa Aesar    |
| Diphenyl sulfide                                | >98                     | 139-66-2           | TCI           |
| Diphenyl sulfoxide                              | >99                     | 945-51-7           | TCI           |
| Diphenyl sulfone                                | >99                     | 127-63-9           | TCI           |
| Tetrahydrothiophene sulfide                     | >99                     | 110-01-0           | TCI           |
| Tetrahydrothiophene sulfoxide                   | >95                     | 1600-44-8          | TCI           |
| Tetrahydrothiophene sulfone                     | >99                     | 126-33-0           | TCI           |
| Benzyl phenyl sulfide                           | 98                      | 831-91-4           | Alfa Aesar    |
| Diethyl sulfide                                 | >98                     | 352-93-2           | TCI           |
| Benzyl methyl sulfide                           | >98                     | 766-92-7           | TCI           |
| Benzyl methyl sulfone                           | >98                     | 3112-90-1          | Alfa Aesar    |
| Dibenzothiophene sulfide                        | 98                      | 132-65-0           | Alfa Aesar    |
| Dibenzothiophene sulfone                        | >98                     | 1016-05-3          | TCI           |
| 2-Chloroethylethyl sulfide                      | >98                     | 693-07-2           | TCI           |
| 2-Chloroethylethyl sulfone                      | 95                      | 25027-40-1         | Sigma Aldrich |
| Ethyl vinyl sulfide                             | >93                     | 627-50-9           | TCI           |
| Ethyl vinyl sulfone                             | 98                      | 1889-59-4          | Sigma Aldrich |
| Methyl vinyl sulfone                            | 95                      | 3680-02-2          | Alfa Aesar    |
| 2-Chloroethylphenyl sulfide                     | >98                     | 5535-49-9          | TCI           |
| 2-Chloroethylphenyl sulfone                     | 98                      | 938-09-0           | abcr          |
| Phenyl vinyl sulfone                            | 99                      | 5535-48-8          | Sigma Aldrich |
| Gas                                             | Purity (%)              | Ref                | Supplier      |
| Alphagaz 1 Oxygen                               | O <sub>2</sub> ≥ 99.995 | P0361L50S2A<br>001 | Air Liquide   |
| Alphagaz 1 Air                                  | $N_2 + O_2 \ge 99.999$  | P0291L50S2A<br>001 | Air Liquide   |

# Table S2. Solvents, chemicals and suppliers

# 2.2 Additional experimental data

2.2.1 Analytical methods

Conversions and selectivities were determined by GC-FID or by HPLC-DAD using the following methods:

**GC method**: The GC-FID oven program consisted of the following steps: a 3 min hold at 50 °C, a 20 °C min<sup>-1</sup> ramp to 250 °C, and a 2 min hold at 250 °C. The temperature of the injector was set at 250 °C and the temperature of the FID detector was set at 270 °C. Prior to analysis unless specified otherwise, the sample was homogenized, 50  $\mu$ L of the sample was mixed with 1 mL of EtOH (denaturated with 5% MeOH) in a 1.5 mL Eppendorf<sup>®</sup> vial. Conversions and selectivities for compounds **1a** and **CEES** were determined using this method.

### HPLC method:

Eluent: A: Water + 0.1% CF<sub>3</sub>COOH (v:v) B: Acetonitrile Gradient Table:

| Time (min)           | A (%)                  | B (%)                |
|----------------------|------------------------|----------------------|
| 0                    | 100                    | 0                    |
| 20                   | 20                     | 80                   |
| 23                   | 20                     | 80                   |
| 25                   | 100                    | 0                    |
| 31                   | 100                    | 0                    |
| Flow:                | 1 mL min <sup>-1</sup> |                      |
| Injection Volume:    | 10 µL                  |                      |
| Column:              | C18, 100 × 4           | 1.6 mm, 3 μm         |
| Oven Temperature:    | 40 °C                  |                      |
| Diode Array Detector | r: 180-800 nm          | (processed at 240 nm |

Conversions and selectivities for compounds **1c**, **1d**, **1e** and **1f** were determined using this method.

2.2.2 Representative GC results for **CEES** oxidation GC chromatogram – see manuscript: Table 3, Entry 1



Figure S2. GC chromatogram of the oxidation of **CEES**. See manuscript for experimental details (Table 3, Entry 1).

|                    | Ret. time (min) | Conversion (%) |
|--------------------|-----------------|----------------|
| CEES               | 5.9             | 0.10           |
| EVSO (I-2)         | 7.2             | 0.94           |
| I-3                | 8.2             | 3.39           |
| CEESO              | 9.75            | 94.70          |
| CEESO <sub>2</sub> | 10.15           | 0.85           |

Conversion 99.92%

Selectivity for **CEESO** = 94.8%

GC chromatogram – see manuscript: Table 3, Entry 6



Figure S3. GC chromatogram of the oxidation of **CEES**. See manuscript for experimental details (Table 3, Entry 6).

|                    | Ret. time (min) | Conversion (%) |
|--------------------|-----------------|----------------|
| CEES               | 5.9             | 0.79           |
| I-1                | 6.3             | 2.79           |
| EVSO (I-2)         | 7.2             | 0.95           |
| I-3                | 8.2             | 3.36           |
| CEESO              | 9.75            | 91.69          |
| CEESO <sub>2</sub> | 10.15           | 0.43           |

Conversion 99.26%

Selectivity for **CEESO** = 92.4%

GC chromatogram – see manuscript: Table 3, Entry 4



Figure S4. GC chromatogram of the oxidation of **CEES**. See manuscript for experimental details (Table 3, Entry 4).

|                    | Ret. time (min) | Conversion (%) |
|--------------------|-----------------|----------------|
| CEES               | 5.9             | 0.27           |
| EVSO (I-2)         | 7.2             | 0.79           |
| I-3                | 8.2             | 14.56          |
| CEESO              | 9.75            | 83.81          |
| CEESO <sub>2</sub> | 10.15           | 0.57           |

Conversion 99.74%

Selectivity for **CEESO** = 84.0%



Figure S5. GC chromatogram of the oxidation of **CEES**. See manuscript for experimental details (Table 3, Entry 5).

|                    | Ret. time (min) | Conversion (%) |
|--------------------|-----------------|----------------|
| CEES               | 5.9             | 0.13           |
| I-1                | 6.3             | 0.43           |
| EVSO (I-2)         | 7.2             | 0.76           |
| I-3                | 8.2             | 13.71          |
| CEESO              | 9.75            | 84.71          |
| CEESO <sub>2</sub> | 10.15           | 0.27           |

Conversion 99.88%

Selectivity for **CEESO** = 84.8%

GC chromatogram – see manuscript: Table 3, Entry 2



Figure S6. GC chromatogram of the oxidation of **CEES**. See manuscript for experimental details (Table 3, Entry 2).

|                    | Ret. time (min) | Conversion (%) |
|--------------------|-----------------|----------------|
| CEES               | 5.9             | 0.12           |
| I-1                | 6.3             | 0.49           |
| EVSO (I-2)         | 7.2             | 1.58           |
| I-3                | 8.2             | 1.26           |
| CEESO              | 9.75            | 95.94          |
| CEESO <sub>2</sub> | 10.15           | 0.60           |

Conversion 99.91%

Selectivity for **CEESO** = 96.1%

GC chromatogram – see manuscript: Table 3, Entry 3



Figure S7. GC chromatogram of the oxidation of **CEES**. See manuscript for experimental details (Table 3, Entry 3).

|                    | Ret. time (min) | Conversion (%) |
|--------------------|-----------------|----------------|
| CEES               | 5.9             | 0.10           |
| I-1                | 6.3             | 0.12           |
| EVSO (I-2)         | 7.2             | 1.41           |
| I-3                | 8.2             | 2.51           |
| CEESO              | 9.75            | 95.30          |
| CEESO <sub>2</sub> | 10.15           | 0.56           |

Conversion 99.92%

Selectivity for **CEESO** = 95.4%



Figure S8. GC chromatogram of the oxidation of **CEES**. See manuscript for experimental details (Table 3, Entry 10).

|                    | Ret. time (min) | Conversion (%) |  |  |
|--------------------|-----------------|----------------|--|--|
| CEES               | 5.9             | 28.15          |  |  |
| I-1                | 6.3             | 2.02           |  |  |
| EVSO (I-2)         | 7.2             | 1.28           |  |  |
| CEESO              | 9.75            | 68.47          |  |  |
| CEESO <sub>2</sub> | 10.15           | 0.08           |  |  |

Conversion 81.88%

Selectivity for **CEESO** = 95.3%

GC chromatogram – see manuscript: Table 3, Entry 7



Figure S9. GC chromatogram of the oxidation of **CEES**. See manuscript for experimental details (Table 3, Entry 7).

|            | Ret. time (min) | Conversion (%) |  |  |
|------------|-----------------|----------------|--|--|
| CEES       | 5.9             | 81.06          |  |  |
| I-1        | 6.3             | 4.48           |  |  |
| EVSO (I-2) | 7.2             | 0.44           |  |  |
| CEESO      | 9.75            | 14.02          |  |  |

Conversion 51.42%

Selectivity for **CEESO** = 74.0%

GC chromatogram – see manuscript: Table 3, Entry 8



Figure S10. GC chromatogram of the oxidation of **CEES**. See manuscript for experimental details (Table 3, Entry 8).

|                    | Ret. time (min) | Conversion (%) |  |  |
|--------------------|-----------------|----------------|--|--|
| EVSO (I-2)         | 7.2             | 1.68           |  |  |
| CEESO              | 9.75            | 97.79          |  |  |
| CEESO <sub>2</sub> | 10.15           | 0.53           |  |  |

Conversion 100%

Selectivity for **CEESO** = 97.8%

GC chromatogram – See manuscript: Table 3, Entry 9



Figure S11. GC chromatogram of the oxidation of **CEES**. See manuscript for experimental details (Table 3, Entry 9).

|            | Ret. time (min) | Conversion (%) |
|------------|-----------------|----------------|
| CEES       | 5.9             | 41.43          |
| I-1        | 6.3             | 2.56           |
| EVSO (I-2) | 7.2             | 1.27           |
| CEESO      | 9.75            | 54.74          |

Conversion 68.23%

Selectivity for **CEESO** = 93.5%

2.2.3 Continuous flow procedure for the photooxidation of sulfides

2.2.3.1 Continuous flow procedure for the photooxidation of 2-chloroethylethyl sulfide (CEES)

A solution of **CEES** (1 M) and MB (560  $\mu$ M) was prepared in EtOH. The pump used to deliver the solution of sulfide/catalyst and the gas flow meter used to deliver oxygen were set to 1 mL min<sup>-1</sup> and 20 mL<sub>N</sub> min<sup>-1</sup>, respectively. Both streams were mixed in the fluidic modules (5 x 2.6 mL internal volume, estimated 4 min residence time) at room temperature under 9 bar of counterpressure. White LEDs (4000K) were selected and used at 100% of their maximum intensity. The reactor effluent was collected at steady state, diluted with ethanol and analyzed by GC-FID (>99% conversion, 97.8% selectivity). Photooxidation of 2-chloroethylethyl sulfide with air was conducted following the same procedure with conditions described in Table 3 (>99% conversion, 84% selectivity).

2.2.3.2 Continuous flow procedure for the photooxidation of dipropyl sulfide 1a

A solution of dipropyl sulfide (**1a**, 1 M) and MB (560  $\mu$ M) was prepared in EtOH. The pump used to deliver the solution of sulfide/catalyst and the gas flow meter used to deliver oxygen were set to 0.5 mL min<sup>-1</sup> and 10 mL<sub>N</sub> min<sup>-1</sup>, respectively. Both streams were mixed in the fluidic modules (5 x 2.6 mL internal volume, estimated 10 min residence time) at room temperature under 9 bar of counterpressure. Orange LEDs (610 nm) were selected and used at 70% of their maximum intensity. The reactor effluent was collected at steady state, diluted with ethanol and analyzed by GC-FID (>99% conversion, 97.2% selectivity).

2.2.3.3 Continuous flow procedure for the photooxidation of benzyl methyl sulfide **1c** A solution of benzyl methyl sulfide (**1c**, 1 M) and MB (560  $\mu$ M) was prepared in EtOH. The pump used to deliver the solution of sulfide/catalyst and the gas flow meter used to deliver oxygen were set to 0.5 mL min<sup>-1</sup> and 10 mL<sub>N</sub> min<sup>-1</sup>, respectively. Both streams were mixed in the fluidic modules (5 x 2.6 mL internal volume, estimated 10 min residence time) at room temperature under 9 bar of counterpressure. Orange LEDs (610 nm) were selected and used at 70% of their maximum intensity. The reactor effluent was collected at steady state, diluted with ethanol and analyzed by HPLC-DAD (>99% conversion, >99% selectivity).

# 2.2.3.4 Continuous flow procedure for the photooxidation of thioanisole **1d**

A solution of thioanisole (**1d**, 1 M) and MB (560  $\mu$ M) was prepared in EtOH. The pump used to deliver the solution of sulfide/catalyst and the gas flow meter used to deliver oxygen were set to 0.5 mL min<sup>-1</sup> and 10 mL<sub>N</sub> min<sup>-1</sup>, respectively. Both streams were mixed in the fluidic modules (5 x 2.6 mL internal volume, estimated 10 min residence time) at room temperature under 9 bar of counterpressure. Orange LEDs (610 nm) were selected and used at 70% of their maximum intensity. The reactor effluent was collected at steady state, diluted with ethanol and analyzed by HPLC-DAD (>99% conversion, >99% selectivity).

2.2.3.5 Continuous flow procedure for the photooxidation of diphenyl sulfide **1e** A solution of diphenyl sulfide (**1e**, 0.1 M) and 9,10-dicyanoanthracene (56  $\mu$ M) was prepared in MeCN. The pump used to deliver the solution of sulfide/catalyst and the gas flow meter used to deliver oxygen were set to 0.5 mL min<sup>-1</sup> and 10 mL<sub>N</sub> min<sup>-1</sup>, respectively. Both streams were mixed in the fluidic modules (5 x 2.6 mL internal volume, estimated 10 min residence time) at room temperature under 9 bar of counterpressure. Purple LEDs (395 nm) were selected and used at 70% of their maximum intensity. The reactor effluent was collected at steady state, diluted with MeCN and analyzed by HPLC-DAD (46.6% conversion, >99% selectivity).

# 2.2.3.6 Continuous flow procedure for the photooxidation of dibenzothiophene ${\bf 1f}$

A solution of dibenzothiophene (**1f**, 0.1 M) and 9,10-dicyanoanthracene (56  $\mu$ M) was prepared in MeCN. The pump used to deliver the solution of sulfide/catalyst and the gas flow meter used to deliver oxygen were set to 0.5 mL min<sup>-1</sup> and 10 mL<sub>N</sub> min<sup>-1</sup>, respectively. Both streams were mixed in the fluidic modules (5 x 2.6 mL internal volume, estimated 10 min residence time) at room temperature under 9 bar of counterpressure. Orange LEDs (610 nm) were selected and used at 70% of their maximum intensity. The reactor effluent was collected at steady state, diluted with MeCN and analyzed by HPLC-DAD (48.9% conversion, 20.3% selectivity).

# 2.2.3.7 Continuous flow procedure for the photooxidation of diethyl sulfide

A solution of diethyl sulfide (1 M) and MB (560  $\mu$ M) was prepared in EtOH. The pump used to deliver the solution of sulfide/catalyst and the gas flow meter used to deliver oxygen were set to 0.5 mL min<sup>-1</sup> and 10 mL<sub>N</sub> min<sup>-1</sup>, respectively. Both streams were mixed in the fluidic modules (5 x 2.6 mL internal volume, estimated 10 min residence time) at room temperature under 9 bar of counterpressure. Orange LEDs (610 nm) were selected and used at 70% of their maximum intensity. The reactor effluent was collected at steady state, diluted with ethanol and analyzed by GC-FID (>99% conversion, 97.3% selectivity).

### 2.2.3.8 Continuous flow procedure for the photooxidation of thiodipropionic acid

A solution of thiodipropionic acid (1 M) and MB (560  $\mu$ M) was prepared in EtOH. The pump used to deliver the solution of sulfide/catalyst and the gas flow meter used to deliver oxygen were set to 0.5 mL min<sup>-1</sup> and 10 mL<sub>N</sub> min<sup>-1</sup>, respectively. Both streams were mixed in the fluidic modules (5 x 2.6 mL internal volume, estimated 10 min residence time) at room temperature under 9 bar of counterpressure. Orange LEDs (610 nm) were selected and used at 70% of their maximum intensity. The reactor effluent was collected at steady state, diluted with ethanol and analyzed by NMR (>99% conversion, >99% selectivity).

2.2.3.9 Continuous flow procedure for the photooxidation of tetrahydrothiophene A solution of tetrahydrothiophene (1 M) and MB (560  $\mu$ M) was prepared in EtOH. The pump used to deliver the solution of sulfide/catalyst and the gas flow meter used to deliver oxygen were set to 0.5 mL min<sup>-1</sup> and 10 mL<sub>N</sub> min<sup>-1</sup>, respectively. Both streams were

mixed in the fluidic modules (5 x 2.6 mL internal volume, estimated 10 min residence time) at room temperature under 9 bar of counterpressure. Orange LEDs (610 nm) were selected and used at 70% of their maximum intensity. The reactor effluent was collected at steady state, diluted with ethanol and analyzed by GC-FID (>99% conversion, >99% selectivity).

# 2.2.3.10 Continuous flow procedure for the photooxidation of dibenzyl sulfide

A solution of dibenzyl sulfide (0.1 M) and MB (560  $\mu$ M) was prepared in EtOH/2-MeTHF. The pumps used to deliver the solution of sulfide/catalyst and the gas flow meter used to deliver oxygen were set to 0.5 mL min<sup>-1</sup> and 10 mL<sub>N</sub> min<sup>-1</sup>, respectively. Both streams were mixed in the fluidic modules (5 x 2.6 mL internal volume, estimated 10 min residence time) at 60 °C under 9 bar of counterpressure. Orange LEDs (610 nm) were selected and used at 70% of their maximum intensity. The reactor effluent was collected at steady state, diluted with ethanol and analyzed by HPLC-DAD (>99% conversion, >63.9% selectivity).

# 2.2.3.11 Continuous flow procedure for the photooxidation of benzyl phenyl sulfide

A solution of benzyl phenyl sulfide (1 M) and MB (560  $\mu$ M) was prepared in EtOH. The pump used to deliver the solution of sulfide/catalyst and the gas flow meter used to deliver oxygen were set to 0.1 mL min<sup>-1</sup> and 25 mL<sub>N</sub> min<sup>-1</sup>, respectively. Both streams were mixed in the fluidic modules (1 x 2.6 mL internal volume, estimated 1 min residence time) at room temperature under 9 bar of counterpressure. Orange LEDs (610 nm) were selected and used at 70% of their maximum intensity. The reactor effluent was collected at steady state, diluted with ethanol and analyzed by HPLC-DAD (13.1% conversion, 55.7% selectivity).

2.2.3.12 Continuous flow procedure for the photooxidation of 2-chloroethylphenyl sulfide A solution of 2-chloroethylphenyl sulfide (0.1 M) and MB (56  $\mu$ M) was prepared in EtOH. The pump used to deliver the solution of sulfide/catalyst and the gas flow meter used to deliver oxygen were set to 0.5 mL min<sup>-1</sup> and 10 mL<sub>N</sub> min<sup>-1</sup>, respectively. Both streams were mixed in the fluidic modules (5 x 2.6 mL internal volume, estimated 10 min residence time) at room temperature under 9 bar of counterpressure. Orange LEDs (610 nm) were selected and used at 70% of their maximum intensity. The reactor effluent was collected at steady state, diluted with ethanol and analyzed by GC-MS (>93.1% conversion, >99% selectivity).

- 2.2.4 Batch procedures for the synthesis of products and by-products resulting from 2-chloroethylethylsulfide oxidation
- 2.2.4.1 Batch procedure for the synthesis of vinyl ethyl sulfoxide (EVSO, I-2)

A solution of ethyl vinyl sulfide (1 M, 5 mL) was prepared in EtOH and oxidized with an aqueous solution of 30%  $H_2O_2$  (1 mL). An aliquot was taken after 5 min, diluted in EtOH, analyzed by GC-FID. Vinyl ethyl sulfoxide (**EVSO**) was detected alongside with vinyl ethyl sulfone (**EVSO**<sub>2</sub>) and identified by MS.

2.2.4.2 Batch procedure for the synthesis of 2-ethoxyethylethyl sulfane (I-1) A solution of 2-chloroethyl ethyl sulfide (1 M, 5 mL) was prepared in EtOH and heated in a microwave oven (CEM Discovery, 150 °C, 3 x 20 min, 150 W). An aliquot was diluted in EtOH, analyzed by GC-FID and identified by NMR and MS.

The formation of 2-ethoxyethylethyl sulfane (I-1) was also studied by leaving a solution of CEES (1 M) in EtOH for a week at room temperature without mixing. An aliquot was diluted in EtOH and analyzed by GC-FID over 4 days. From day 1 to day 4, the quantity of 2-ethoxyethylethylsulfane (I-1) increased from 1.19% to 4.03%. Even if I-1 is detectable in GC when a fresh solution of CEES in EtOH is injected, this increase over time demonstrates that the formation of additional I-1 occurs slowly upon standing in solution at room temperature.

2.2.4.3 Batch procedure for the synthesis of 1-ethoxy-2-(ethylsulfinyl)ethane (I-3) A solution of 2-ethoxyethylethyl sulfane (0.1 M, 2 mL) was prepared in EtOH and oxidized with an aqueous solution of 30%  $H_2O_2$  (0.3 mL). An aliquot was taken immediately, diluted in EtOH, analyzed by GC-FID. 1-Ethoxy-2-(ethylsulfinyl)ethane (I-3) was identified by MS.

**I-3** was not detected in GC when a solution of **EVSO** (**I-2**) in EtOH was injected; thus rejecting the filiation between **EVSO** and **I-3**.

2.2.4.4 Batch procedure for the synthesis of 1-ethoxy-2-(ethylsulfonyl)ethane A solution of 2-ethoxyethylethyl sulfane (0.1 M, 2 mL) was prepared in EtOH and oxidized with an aqueous solution of 30%  $H_2O_2$  (0.3 mL). An aliquot was taken after 5 min, diluted in EtOH, analyzed by GC-FID. 1-Ethoxy-2-(ethylsulfonyl)ethane was identified by MS.

#### 2.3 Characterization of compounds

Commercial references for sulfoxides were purchased for **CEES**, **1d** and **1e** (see Table S2). For compounds **1a**, **1c** and **1f**, reference sulfoxides were synthesized by oxidation with  $H_2O_2$  for peak identification in HPLC or GC. Commercial references for sulfones were purchased for **CEES**, **1a**, **1c**, **1d**, **1e** and **1f** (see Table S2).

### 2.3.1 In-line NMR

A study of the evolution of **1d** oxidation regarding to an increase of light intensity was conducted. An In-line NMR was equipped downstream (43 MHz Spinsolve<sup>™</sup> Carbon NMR spectrometer from Magritek<sup>®</sup> equipped with the flow-through module). A T-mixer was used to vent the excess gas before entering the NMR flow cell.



Figure S12. Detailed setup for the continuous flow photooxidation of sulfides.

A solution of **1d** (1 M) and MB (560  $\mu$ M) was prepared in EtOH. The pumps used to deliver the solution of sulfide/catalyst and the gas flow meter used to deliver oxygen were set to 0.5 mL min<sup>-1</sup> and 10 mL<sub>N</sub> min<sup>-1</sup>, respectively. Both streams were mixed in the fluidic modules (5 x 2.6 mL internal volume, estimated 10 min residence time) at 20 °C under 9 bar of counterpressure. LEDs were set on a 610 nm wavelength with an increasing intensity (from 0% to 100% with a 10% increment). A first <sup>1</sup>H NMR spectrum was recorded for the solvent alone. When the reaction started, a <sup>1</sup>H NMR spectrum was recorded after each increment of light intensity. The evolution of the oxidation can be studied by following the shift of the -CH<sub>3</sub> signal from 2.42 ppm to 2.81 ppm. The reaction reached completion upon irradiation at 70% of light intensity (see Figure S13).



Figure S13. In-line <sup>1</sup>H NMR (43 MHz) spectra of **1d** photooxidation. Evolution of the sulfoxide appearance with an increase of light intensity.

#### 2.3.2 In-line IR

To assess the efficiency of the In-line IR as an analytical tool to follow the oxidation of **CEES**, a first set of experiments was carried out on **1a** as a model thioether (see Figure S14).





A solution of dipropyl sulfide (**1a**, 1 M) was prepared in EtOH and injected first. Every 2 min, the amount of **1a** was reduced and the amount of dipropyl sulfoxide (**2a**) was increased to the point where the solution only contained the sulfoxide (1 M). The same procedure was applied with a decrease in sulfoxide and an increase in the corresponding sulfone **3a** until a concentration of 1 M was reached. Compound **1a** does not show any easily distinguishable signals from the solvent backbone and fingerprint. The corresponding sulfoxide **2a** shows a characteristic broad peak between 980 and 1020 cm<sup>-1</sup> that can be utilized to monitor the appearance of **2a**. The IR spectrum of dipropyl sulfone (**3a**) also displays characteristic vibration bands at 1130, 1280 and 1315 cm<sup>-1</sup> (see Figure S15) that can be utilized to monitor variations in its concentration.



Figure S15. In-line IR spectra following **1a** oxidation to sulfoxide and overoxidation to sulfone.

The same procedure was applied to the oxidation of **CEES** for establishing a usable library of IR spectra. The characteristic vibration bands for the corresponding sulfoxide **CEESO** can be seen at 980 and 1020 cm<sup>-1</sup>, while the characteristic vibration bands for the sulfone **CEESO<sub>2</sub>** appear between 1220 and 1360 cm<sup>-1</sup> and at about 1730 cm<sup>-1</sup> (see Figure S16). These

experiments confirm that In-line IR can be used as a suitable monitoring tool for the monitoring of **CEES** oxidation.



Figure S16. In-line IR spectra following **CEES** oxidation to sulfoxide and overoxidation to sulfone.

2.4 Structural identity of compounds



C<sub>4</sub>H<sub>9</sub>CIOS MW 140,01



C<sub>6</sub>H<sub>14</sub>OS MW 134,24



C<sub>8</sub>H<sub>10</sub>OS MW 154,23



C<sub>7</sub>H<sub>8</sub>OS MW 140,20

**CEESO**. <sup>1</sup>H NMR (CDCl<sub>3</sub>, 400 MHz):  $\delta$  = 3.96 (m, 2H), 3.21 (m, 2H), 2.91 (m, 2H), 1.37 (t, *J* = 7.5 Hz, 3H) ppm. The NMR data match those reported in the literature.<sup>S1</sup> **ESI HRMS** *m/z* C<sub>4</sub>H<sub>10</sub>O<sup>35</sup>Cl<sup>32</sup>S<sup>+</sup> [M+H]<sup>+</sup>: calcd 141.01354; found 141.01366.

Dipropyl sulfoxide (**2a**). <sup>1</sup>H NMR (MeOD, 400 MHz):  $\delta$  = 2.66 – 8.62 (m, 4H), 1.74 – 1.63 (m, 4H), 1.00 – 0.96 (t, *J* = 7.4 Hz, 6H) ppm. The NMR data match those reported in the literature.<sup>S2</sup>

Benzyl methyl sulfoxide (**2c**). <sup>1</sup>H NMR (CDCl<sub>3</sub>, 400 MHz):  $\delta$  = 7.31 – 7.22 (m, 5H), 3.99 (d, J = 12.9 Hz, 1H), 3.92 (d, J = 12.9 Hz, 1H), 2.42 (s, 3H) ppm. The NMR data match those reported in the literature.<sup>S3</sup>

Phenyl methyl sulfoxide (**2d**). <sup>1</sup>H NMR (CDCl<sub>3</sub>, 43 MHz):  $\delta$  = 7.69 – 7.62 (m, 5H), 2.79 (s, 3H) ppm. The NMR data match the commercial reference and those reported in the literature.<sup>54</sup>



C<sub>6</sub>H<sub>14</sub>OS MW 134,24

Diphenyl sulfoxide (**2e**). <sup>1</sup>H NMR (CDCl<sub>3</sub>, 400 MHz):  $\delta$  = 7.54 – 7.51 (m, 4H), 7.35 – 7.34 (m, 6H) ppm. The NMR data match the commercial reference and those reported in the literature.<sup>S3</sup>

Dibenzothiophene (**2f**). <sup>1</sup>H NMR (CDCl<sub>3</sub>, 400 MHz):  $\delta$  = 7.98 (d, J = 7.6 Hz, 2H), 7.81 (d, J = 7.6 Hz, 1H), 7.70 – 7.63 (m, 3H), 7.57 – 7.52 (m, 2H) ppm. The NMR data match those reported in the literature.<sup>S2</sup>

2-ethoxyethylethyl sulfane (I-1). <sup>1</sup>H NMR (CDCl<sub>3</sub>, 400 MHz):  $\delta$  = 3.52 – 3.32 (m, 4H), 2.63 – 2.53 (m, 2H), 2.48 – 2.38 (m, 2H), 1.15 – 1.03 (m, 6H) ppm. GC-MS: m/z = 134



Figure S17. <sup>1</sup>H NMR spectrum (400 MHz) of **CEESO** in CDCl<sub>3</sub>.



Figure S18. <sup>1</sup>H NMR spectrum (400 MHz) of dipropyl sulfoxide (**2a**) in CDCl<sub>3</sub>.



Figure S19. <sup>1</sup>H NMR spectrum (400 MHz) of benzyl methyl sulfoxide (**2c**) in CDCl<sub>3</sub>.



Figure S20. <sup>1</sup>H NMR spectrum (400 MHz) of phenyl methyl sulfoxide (**2d**) in CDCl<sub>3</sub>.



Figure S21. <sup>1</sup>H NMR spectrum (400 MHz) of diphenyl sulfide (**2e**) in CDCl<sub>3</sub>.



Figure S22. <sup>1</sup>H NMR spectrum (400 MHz) of dibenzothiophene sulfoxide (**2f**) in CDCl<sub>3</sub>.



Figure S23. <sup>1</sup>H NMR spectrum (400 MHz) of 2-ethoxyethylethyl sulfane (I-1) in CDCl<sub>3</sub>.

- 3. Detailed data on the photooxidation trials
- 3.1 Photooxidation of model thioethers

Table S3. General table of oxidation tests (part 1). Selectivity is only specified when not total towards the sulfoxide.

|          |                                      |                                  |              |                    |            | Concer    | tration (M)  | Flow rate (m | L.min <sup>-1</sup> ) | 1         |                            |                 |                |                                       |
|----------|--------------------------------------|----------------------------------|--------------|--------------------|------------|-----------|--------------|--------------|-----------------------|-----------|----------------------------|-----------------|----------------|---------------------------------------|
| n°exp    | Substrate                            | Oxidant                          | Photosensib. | Solvent            | Temp. (°C) | Substrate | Photosensib. | Substrate    | 02                    | BPR (bar) | Light (nm) (Intensity (%)) | Res. Time (min) | Conversion (%) | Selectivity (%)                       |
| 1        | thioanisole                          | 0 <sub>2</sub>                   | MB           | EtOH               | rt         | 1         | 0.00056      | 1.5          | 15                    | 8         | 610 (50)                   | -4              | 14.6           |                                       |
| 2        | thioanisole                          | 02                               | MB           | EtOH               | rt         | 1         | 0.00056      | 1.5          | 15                    | 8         | 610 (50)                   | -4              | 14.4           |                                       |
| 3        | thioanisole                          | 02                               | MB           | EtOH               | rt         | 1         | 0.00056      | 1.5          | 15                    | 8         | 610 (50)                   | _4              | 14.5           |                                       |
| 4        | thioanisole                          | 02                               | MB<br>MB     | EtOH               | rt         | 1         | 0.00056      | 2            | 15                    | 8         | 610 (50)                   | ~3              | 10.9<br>11.12  |                                       |
| 5        | thioanisole<br>thioanisole           | 0 <sub>2</sub><br>0 <sub>2</sub> | MB           | EtOH<br>EtOH       | rt<br>rt   | 1         | 0.00056      | 2            | 15<br>15              | 8         | 610 (50)<br>610 (50)       | ~3<br>~3        | 11.12          |                                       |
| 7        | thioanisole                          | 02                               | MB           | EtOH               | rt         | 1         | 0.00056      | 20.2         | 15                    | 8         | 610 (100)                  | -3              | 27.3           |                                       |
| 8        | thioanisole                          | 02                               | MB           | EtOH               | rt         | 1         | 0.00056      | 2.5          | 15                    | 8         | 610 (50)                   | -3              | 7.8            |                                       |
| 9        | thioanisole                          | 02                               | MB           | EtOH               | rt         | 1         | 0.00056      | 3            | 15                    | 8         | 610 (50)                   | -3              | 7.1            |                                       |
| 10       | thioanisole                          | 02                               | MB           | EtOH               | rt         | 1         | 0.00056      | 3.5          | 15                    | 8         | 610 (50)                   | -3              | 6.3            |                                       |
| 11       | thioanisole                          | 02                               | MB           | EtOH               | rt         | 1         | 0.00056      | 1.5          | 15                    | 8         | 610 (50)                   | ~4              | 10.7           |                                       |
| 12       | thioanisole                          | 0 <sub>2</sub>                   | MB           | EtOH               | rt         | 1         | 0.00056      | 2            | 15                    | 8         | 610 (50)                   | -3              | 8.7            |                                       |
| 13       | thioanisole                          | 0 <sub>2</sub>                   | MB           | EtOH               | rt         | 1         | 0.00056      | 2.5          | 15                    | 8         | 610 (50)                   | ~3              | 6.7            |                                       |
| 14       | thioanisole                          | 02                               | MB           | EtOH               | rt         | 1         | 0.00056      | 3            | 15                    | 8         | 610 (50)                   | ~3              | 7.2            |                                       |
| 15       | thioanisole                          | 02                               | MB           | EtOH               | rt         | 1         | 0.00056      | 3.5          | 15                    | 8         | 610 (50)                   | -3              | 7.0            |                                       |
| 16       | thioanisole                          | 02                               | MB           | EtOH               | rt         | 1         | 0.00056      | 1.5          | 20                    | 8         | 610 (50)                   | ~3              | 0.14           |                                       |
| 17       | thioanisole<br>thioanisole           | 02                               | MB           | EtOH               | rt         | 1         | 0.00056      | 1.5          | 25                    | 8         | 610 (50)<br>610 (50)       | -3              | 14.2           |                                       |
| 18<br>19 | thioanisole                          | 02<br>02                         | MB<br>MB     | EtOH<br>EtOH       | rt<br>rt   | 1         | 0.00056      | 1.5          | 30<br>35              | 8         | 610 (50)                   | ~3<br>~2        | 10.9<br>10.44  |                                       |
| 20       | thioanisole                          | 0,                               | MB           | EtOH               | rt         | 1         | 0.00056      | 2            | 20                    | 8         | 610 (50)                   | 3               | 10.44          |                                       |
| 21       | thioanisole                          | 02                               | MB           | EtOH               | rt         | 1         | 0.00056      | 2            | 25                    | 8         | 610 (50)                   | -3              | 10.1           | · · · · · · · · · · · · · · · · · · · |
| 22       | thioanisole                          | 02                               | MB           | EtOH               | rt         | 1         | 0.00056      | 2            | 30                    | 8         | 610 (50)                   | -3              | 9.9            |                                       |
| 23       | thioanisole                          | 02                               | MB           | EtOH               | rt         | 1         | 0.00056      | 2            | 35                    | 8         | 610 (50)                   | 2               | 9.8            |                                       |
| 24       | thioanisole                          | 02                               | MB           | EtOH               | rt         | 1         | 0.00056      | 1.5          | 10                    | 8         | 610 (50)                   | ~5              | 14.6           |                                       |
| 25       | thioanisole                          | O <sub>2</sub>                   | MB           | EtOH               | rt         | 1         | 0.00056      | 2            | 10                    | 8         | 610 (50)                   | .4              | 10.9           |                                       |
| 26       | thioanisole                          | 02                               | MB           | EtOH               | rt         | 1         | 0.00056      | 1            | 15                    | 8         | 610 (50)                   | 4               | 19.8           |                                       |
| 27       | thioanisole                          | 02                               | MB           | EtOH               | rt         | 1         | 0.00056      | 1.5          | 20                    | 8         | 610 (60)                   | ~3              | 16.7           |                                       |
| 28       | thioanisole                          | 02                               | MB           | EtOH               | rt         | 1         | 0.00056      | 1.5          | 20                    | 8         | 610 (70)                   | ~3              | 21.9           |                                       |
| 29       | thioanisole                          | 02                               | MB           | EtOH               | rt         | 1         | 0.00056      | 1.5          | 20                    | 8         | 610 (80)                   | 3               | 23.9           |                                       |
| 30       | thioanisole                          | 02                               | MB           | EtOH               | rt         | 1         | 0.00056      | 1.5          | 20                    | 8         | 610 (90)                   | -3              | 32.8           |                                       |
| 31<br>32 | thioanisole<br>thioanisole           | 0 <sub>2</sub>                   | MB<br>MB     | EtOH<br>EtOH       | rt<br>rt   | 1         | 0.00056      | 1.5          | 20<br>50              | 8         | 610 (100)<br>610 (50)      | ~3<br>_2        | 35.8<br>15.5   |                                       |
| 32       |                                      | 0,                               | MB           |                    |            | 1         | 0.00056      | 1            | 50                    | 8         |                            | 2               | 3.4            |                                       |
| 34       | thioanisole<br>thioanisole           | 02                               | MB           | EtOH<br>EtOH       | rt<br>rt   | 1         | 0.000056     | 1            | 15                    | 8         | 610 (50)<br>610 (50)       | -4              | 3.4            |                                       |
| 35       | thioanisole                          | 02                               | MB           | EtOH               | rt         | 1         | 0.000056     | 1.5          | 15                    | 8         | 610 (50)                   | -4              | 2.6            |                                       |
| 36       | thioanisole                          | 0,                               | MB           | EtOH               | rt         | 1         | 0.000056     | 2            | 15                    | 8         | 610 (50)                   | .3              | 2.2            |                                       |
| 37       | thioanisole                          | 0,                               | RB           | EtOH               | rt         | 1         | 0.00056      | 1            | 50                    | 8         | 532 (50)                   | ~2              | 9.2            |                                       |
| 38       | thioanisole                          | 02                               | RB           | EtOH               | rt         | 1         | 0.00056      | 1            | 15                    | 8         | 532 (50)                   | ~4              | 3.7            |                                       |
| 39       | thioanisole                          | 02                               | RB           | EtOH               | rt         | 1         | 0.00056      | 1.5          | 15                    | 8         | 532 (50)                   | -4              | 10.4           |                                       |
| 40       | thioanisole                          | 02                               | RB           | EtOH               | rt         | 1         | 0.00056      | 2            | 15                    | 8         | 532 (50)                   | ~3              | 10.9           |                                       |
| 41       | thioanisole                          | 02                               | MB           | EtOH               | rt         | 1         | 0.00056      | 1            | 15                    | 8         | 610 (100)                  | -4              | 43.9           |                                       |
| 42       | thioanisole                          | 02                               | MB           | EtOH               | rt         | 1         | 0.00056      | 0.5          | 10                    | 8         | 610 (50)                   | ~7              | 61.2           |                                       |
| 43       | thioanisole                          | 02                               | MB           | EtOH               | rt         | 1         | 0.00056      | 0.5          | 15                    | 8         | 610 (50)                   | ~6              | 40.8           | L                                     |
| 44       | thioanisole                          | 02                               | MB           | EtOH               | rt         | 1         | 0.00056      | 0.5          | 10                    | 8         | 610 (100)                  | ~7              | 88.8           |                                       |
| 45<br>46 | thioanisole<br>thioanisole           | 02                               | MB<br>MB     | EtOH<br>EtOH       | rt<br>rt   | 1         | 0.0056       | 0.5          | 10<br>15              | 8         | 610 (50)<br>610 (50)       | ~7<br>_4        | 25.9<br>25.6   |                                       |
| 40       | thioanisole                          | 0 <sub>2</sub><br>0 <sub>2</sub> | MB           | EtOH               | rt         | 1         | 0.0056       | 1.5          | 15                    | 8         | 610 (50)                   | .4              | 15.05          |                                       |
| 48       | thioanisole                          | 02                               | MB           | EtOH               | rt         | 1         | 0.0056       | 2            | 15                    | 8         | 610 (50)                   | _4              | 11.6           |                                       |
| 49       | thioanisole                          | 0,                               | MB           | EtOH               | rt         | 1         | 0.000056     | 0.5          | 10                    | 8         | 610 (50)                   | ~6              | 6.7            |                                       |
| 50       | thioanisole                          | 02                               | MB           | EtOH               | rt         | 1         | 0.00056      | 0.5          | 10                    | 9         | 610 (50)                   | ~10             | N.D            |                                       |
| 51       | thioanisole                          | O <sub>2</sub>                   | MB           | EtOH               | rt         | 1         | 0.00056      | 0.5          | 10                    | 7         | 610 (50)                   | ~6              | 45.4           |                                       |
| 52       | thioanisole                          | 0 <sub>2</sub>                   | MB           | EtOH               | rt         | 1         | 0.00056      | 0.5          | 10                    | 9         | 610 (50)                   | ~10             | 94.0           |                                       |
| 53       | thioanisole                          | 02                               | MB           | EtOH               | rt         | 1         | 0.00056      | 0.5          | 10                    | 9         | 610 (50)                   | ~10             | 94.8           |                                       |
| 54       | thioanisole                          | 02                               | MB           | EtOH               | rt         | 1         | 0.00056      | 0.5          | 10                    | 9         | 610 (80)                   | ~10             | 66.2           |                                       |
| 55       | thioanisole                          | 02                               | MB           | EtOH               | rt         | 1         | 0.001        | 0.5          | 10                    | 9         | 610 (50)                   | ~10             | 33.9           |                                       |
| 56       | thioanisole                          | 02                               | MB           | EtOH               | rt         | 1         | 0.001        | 0.5          | 10                    | 9         | 610 (50)                   | ~10             | 39.1           | l                                     |
| 57       | thioanisole                          | 02                               | MB           | EtOH               | rt         | 1         | 0.001        | 0.5          | 10                    | 9         | 610 (60)                   | ~10             | 72.8           |                                       |
| 58<br>59 | thioanisole<br>thioanisole           | 02                               | MB<br>MB     | EtOH<br>EtOH       | rt<br>rt   | 1         | 0.00056      | 0.5          | 10<br>10              | 9         | 610 (70)<br>610 (70)       | ~10<br>~10      | 99.4<br>93.2   |                                       |
| 59<br>60 | thioanisole                          | 0 <sub>2</sub><br>0 <sub>2</sub> | MB           | EtOH               | rt<br>rt   | 1         | 0.00056      | 0.5          | 10                    | 9         | 610 (70)                   | ~10             | 93.2<br>total  |                                       |
| 61       | thioanisole                          | 02                               | MB           | EtOH               | rt         | 1         | 0.00056      | 0.5          | 10                    | 9         | 610 (70)                   | ~10             | 97.6           |                                       |
| 62       | benzyl methyl sulfide                | 02                               | MB           | EtOH               | rt         | 1         | 0.00056      | 0.5          | 10                    | 9         | 610 (50)                   | .10             | total          |                                       |
| 63       | benzyl methyl sulfide                | 02                               | MB           | EtOH               | t          | 1         | 0.00056      | 0.5          | 10                    | 9         | 610 (60)                   | ~10             | total          |                                       |
| 64       | benzyl methyl sulfide                | 0 <sub>2</sub>                   | MB           | EtOH               | rt         | 1         | 0.00056      | 0.5          | 10                    | 9         | 610 (80)                   | ~10             | total          |                                       |
| 65       | benzyl methyl sulfide                | 02                               | MB           | EtOH               | rt         | 1         | 0.00056      | 0.5          | 10                    | 9         | 610 (70)                   | ~10             | total          |                                       |
| 66       | tetrathiophene                       | 02                               | MB           | EtOH               | rt         | 1         | 0.00056      | 0.5          | 10                    | 9         | 610 (60)                   | ~10             | 94.8           |                                       |
| 67       | tetrathiophene                       | 02                               | MB           | EtOH               | rt         | 1         | 0.00056      | 0.5          | 10                    | 9         | 610 (80)                   | ~10             | 97.6           | 97.0                                  |
| 68       | tetrathiophene                       | 02                               | MB           | EtOH               | rt         | 1         | 0.00056      | 0.5          | 10                    | 9         | 610 (70)                   | _10             | total          |                                       |
| 69       | dipropylsulfide                      | 02                               | MB           | EtOH               | rt         | 1         | 0.00056      | 0.5          | 10                    | 9         | 610 (80)                   | ~10             | total          | 97.2                                  |
| 70       | dipropylsulfide                      | 02                               | MB           | EtOH               | rt         | 1         | 0.00056      | 0.5          | 10                    | 9         | 610 (70)                   | ~10             | total          | 92.5                                  |
| 71<br>72 | diphenyl sulfide<br>diphenyl sulfide | 0 <sub>2</sub><br>0 <sub>2</sub> | MB<br>MB     | EtOH<br>EtOH       | rt<br>rt   | 1         | 0.00056      | 0.5          | 10<br>10              | 9<br>9    | 610 (70)<br>610 (70)       | _10<br>~10      | 6.2<br>3.8     |                                       |
| 72       | diphenyl sulfide                     | 02                               | MB           | EtOH               | rt         | 1         | 0.00056      | 0.5          | 10                    | 9<br>11   | 610 (70)                   | ~10             | 6.0            |                                       |
| 74       | diethyl sulfide                      | 02                               | MB           | EtOH               | rt         | 1         | 0.00056      | 0.5          | 10                    | 9         | 610 (70)                   | .10             | total          | 97.3                                  |
| 75       | dibenzothiophene                     | 02                               | MB           | EtOH               | rt         | 1         | 0.00056      | 0.5          | 10                    | 9         | 610 (70)                   | ~10             | 0.0            |                                       |
| 76       | Thiodipropionic acid                 | 02                               | MB           | EtOH               | rt         | 1         | 0.00056      | 0.5          | 10                    | 9         | 610 (70)                   | ~10             | total          |                                       |
| 77       | dibenzyl sulfide                     | 0 <sub>2</sub>                   | MB           | EtOH/2-MeTHF (1:1) | rt         | 1         | 0.00056      | 0.5          | 10                    | 9         | 610 (70)                   | ~10             | clogged        | reactor                               |
| 78       | dibenzyl sulfide                     | 02                               | MB           | EtOH/2-MeTHF (1:1) | 60         | 0.1       | 0.00056      | 0.5          | 10                    | 9         | 610 (70)                   | ~10             | total          | 63.9                                  |
| 79       | dibenzyl sulfide                     | 02                               | MB           | EtOH/2-MeTHF (1:1) | 70         | 1         | 0.00056      | 0.5          | 10                    | 9         | 610 (70)                   | ~10             | total          | 60.5                                  |
| 80       | diphenyl sulfide                     | 02                               | MB           | ACN/eau 85:15      | rt         | 1         | 0.00056      | 0.5          | 10                    | 9         | 610 (70)                   | ~10             | 0.0            |                                       |
| 81       | diphenyl sulfide                     | 02                               | MB           | ACN/eau 85:15      | rt         | 1         | 0.00056      | 1.5          | 20                    | 11,6      | 610 (70)                   | ~4              | 0.0            |                                       |
| 87       | thioanisole                          | air                              | MB           | EtOH               | rt         | 1         | 0.00056      | 0.5          | 10                    | 9         | 610 (70)                   | ~10             | 21.5           |                                       |
| 88       | thioanisole                          | air                              | MB           | EtOH               | rt         | 1         | 0.00056      | 0.5          | 10                    | 9         | 610 (70)                   | ~10             | 19.3           |                                       |
| 89       | thioanisole                          | air                              | MB           | EtOH               | rt         | 1         | 0.00056      | 1            | 20                    | 9         | 610 (70)                   | ~ 4             | 15.6           |                                       |
| 90       | thioanisole                          | air                              | MB           | EtOH               | rt         | 1         | 0.00056      | 1            | 20                    | 9         | 610 (70)                   | ~ 4             | 15.3           |                                       |
| 91       | thioanisole                          | air                              | MB           | EtOH               | rt         | 0.1       | 0.000056     | 0.5          | 10                    | 9         | 610 (70)                   | ~10             | total          |                                       |
| 92       | thioanisole<br>thioanisole           | air<br>air                       | MB<br>MB     | EtOH<br>EtOH       | rt<br>rt   | 0.1       | 0.000056     | 0.5          | 10<br>30              | 9<br>5    | 610 (70)<br>610 (70)       | ~10<br>~ 2      | total<br>46.7  |                                       |
|          |                                      | alf                              | IVIB         | ELUH               | n          |           |              |              |                       |           |                            |                 |                |                                       |
| 93<br>94 | thioanisole                          | air                              | MB           | EtOH               | rt         | 0.1       | 0.000056     | 1.5          | 30                    | 5         | 610 (70)                   | ~ 2             | 46.3           |                                       |

Table S3. General table of oxidation tests (part 2). Selectivity is only specified when not total toward the sulfoxide.

|       |                  |                |              |         |            | Concer    | tration (M)  | Flow rate ( | mL.min <sup>-1</sup> ) | 1         |                            |                 |                |                 |
|-------|------------------|----------------|--------------|---------|------------|-----------|--------------|-------------|------------------------|-----------|----------------------------|-----------------|----------------|-----------------|
| n°exp | Substrate        | Oxidant        | Photosensib. | Solvent | Temp. (°C) | Substrate | Photosensib. | Substrate   | 02                     | BPR (bar) | Light (nm) (Intensity (%)) | Res. Time (min) | Conversion (%) | Selectivity (%) |
| 95    | propyIS          | air            | MB           | EtOH    | rt         | 0.1       | 0.000056     | 0.5         | 10                     | 9         | 610 (70)                   | ~10             | total          |                 |
| 96    | propyIS          | air            | MB           | EtOH    | rt         | 0.1       | 0.000056     | 0.5         | 10                     | 9         | 610 (70)                   | ~10             | total          |                 |
| 97    | diphenyl sulfide | 02             | MB           | ACN     | rt         | 0.1       | 0.00056      | 0.5         | 10                     | 9         | 610 (70)                   | ~10             | 0.0            |                 |
| 98    | diphenyl sulfide | 0 <sub>2</sub> | MB           | ACN     | rt         | 0.1       | 0.00056      | 0.5         | 10                     | 9         | 610 (70)                   | ~10             | 0.0            |                 |
| 99    | diphenyl sulfide | O <sub>2</sub> | DCA          | ACN     | rt         | 0.1       | 0.000056     | 0.5         | 10                     | 9         | 395 (100)                  | ~10             | N.D            |                 |
| 100   | diphenyl sulfide | O <sub>2</sub> | DCA          | ACN     | rt         | 0.1       | 0.000056     | 0.5         | 10                     | 9         | 395 (70)                   | ~10             | 46.6           |                 |
| 101   | dibenzothiophene | O <sub>2</sub> | DCA          | MeCN    | rt         | 0.1       | 0.000056     | 0.5         | 10                     | 9         | 395 (100)                  | ~10             | 20.1           | 12.5            |
| 102   | dibenzothiophene | O <sub>2</sub> | DCA          | MeCN    | rt         | 0.1       | 0.000056     | 0.5         | 10                     | 9         | 395 (70)                   | ~10             | 22.7           | 7.9             |
| 103   | dibenzothiophene | O <sub>2</sub> | DCA          | MeCN    | rt         | 0.1       | 0.00056      | 0.5         | 10                     | 9         | 395 (100)                  | ~10             | 48.9           | 20.3            |
| 104   | dibenzothiophene | O <sub>2</sub> | DCA          | MeCN    | rt         | 0.1       | 0.00056      | 0.5         | 10                     | 9         | 395 (70)                   | ~10             | 47.8           | 17.2            |
| 105   | dibenzyl sulfide | 02             | DCA          | MeCN    | rt         | 0.1       | 0.00056      | 0.5         | 10                     | 9         | 395 (100)                  | ~10             | total          | 19.0            |
| 106   | dibenzyl sulfide | O <sub>2</sub> | DCA          | MeCN    | rt         | 0.1       | 0.00056      | 0.5         | 10                     | 9         | 395 (70)                   | ~10             | total          | 21.2            |
| 107   | CEES             | 0 <sub>2</sub> | MB           | EtOH    | rt         | 1         | 0.00056      | 0.5         | 10                     | 9         | 610 (100)                  | ~10             | 99.92          | 94.8            |
| 108   | CEES             | O <sub>2</sub> | MB           | EtOH    | rt         | 1         | 0.00056      | 0.5         | 10                     | 9         | 610 (70)                   | ~10             | 99.92          | 95.5            |
| 109   | CEES             | 0 <sub>2</sub> | MB           | EtOH    | rt         | 1         | 0.00056      | 1           | 20                     | 9         | 610 (100)                  | ~ 4             | 99.26          | 92.4            |
| 110   | CEES             | Air            | MB           | EtOH    | rt         | 1         | 0.00056      | 0.5         | 10                     | 9         | 610 (100)                  | ~10             | 99.74          | 84.0            |
| 111   | CEES             | Air            | MB           | EtOH    | rt         | 0.1       | 0.000056     | 0.5         | 10                     | 9         | 610 (100)                  | ~10             | 99.88          | 84.8            |
| 112   | CEES             | Air            | MB           | EtOH    | rt         | 0.1       | 0.000056     | 0.5         | 10                     | 9         | 610 (70)                   | ~10             | total          | 83.4            |
| 113   | CEES             | Air            | RB           | EtOH    | rt         | 0.1       | 0.000056     | 0.5         | 10                     | 9         | 530 (100)                  | ~10             | 83.69          | 83.4            |
| 114   | CEES             | Air            | RB           | EtOH    | rt         | 0.1       | 0.000056     | 0.5         | 10                     | 9         | 530 (70)                   | ~10             | 80.94          | 79.5            |
| 115   | CEES             | 02             | RB           | EtOH    | rt         | 1         | 0.00056      | 0.5         | 10                     | 9         | 530 (70)                   | ~10             | 94.51          | 97.3            |
| 116   | CEES             | O <sub>2</sub> | MB           | EtOH    | rt         | 1         | 0.00056      | 0.5         | 10                     | 9         | white light (100)          | ~10             | 99.91          | 96.1            |
| 117   | CEES             | 02             | RB           | EtOH    | rt         | 1         | 0.00056      | 0.5         | 10                     | 9         | white light (100)          | ~10             | 99.92          | 95.4            |
| 118   | CEES             | 02             | MB           | EtOH    | rt         | 1         | 0.00056      | 2           | 40                     | 9         | 610 (100)                  | ~ 2             | 81.88          | 95.3            |
| 119   | CEES             | Air            | MB           | EtOH    | rt         | 1         | 0.00056      | 1           | 20                     | 9         | 610 (100)                  | ~ 4             | 51.42          | 74.0            |
| 120   | CEES             | 02             | MB           | EtOH    | rt         | 1         | 0.00056      | 1           | 20                     | 9         | white light (100)          | ~ 4             | total          | 97.8            |
| 121   | CEES             | Air            | MB           | EtOH    | rt         | 1         | 0.00056      | 1           | 20                     | 9         | white light (100)          | ~ 4             | 68.23          | 93.5            |
| 122   | CEPS             | 02             | MB           | EtOH    | rt         | 1         | 0.00056      | 1           | 20                     | 9         | 610 (100)                  | ~ 4             | 58.0           | 97.6            |
| 123   | CEPS             | O <sub>2</sub> | MB           | EtOH    | rt         | 1         | 0.00056      | 0.5         | 10                     | 9         | 610 (100)                  | ~10             | 57.8           | 97.6            |
| 124   | CEPS             | 02             | MB           | EtOH    | rt         | 0.1       | 0.000056     | 1           | 20                     | 9         | 610 (100)                  | ~ 4             | 65.4           | 98.1            |
| 125   | CEPS             | O <sub>2</sub> | MB           | EtOH    | rt         | 0.1       | 0.000056     | 0.5         | 10                     | 9         | 610 (100)                  | ~10             | 93.11          | 99.9            |
| 126   | CEPS             | 0 <sub>2</sub> | MB           | EtOH    | rt         | 0.1       | 0.000056     | 0.5         | 10                     | 10        | white light (100)          | ~10             | 74.7           | 99.99           |

3.2 **CEES** photooxidation tests

3.2.1 Impact of the residence time

Table S4. Comparison of residence time for the neutralization of **CEES**. PS is always MB when not specified, Rose Bengal when (RB) is specified.

|            |            |           |                | Flow rate | (mL.min <sup>-1</sup> ) |           |                            |                 |                |                 |
|------------|------------|-----------|----------------|-----------|-------------------------|-----------|----------------------------|-----------------|----------------|-----------------|
| In Table 3 | [CEES] (M) | [PS] (µM) | Oxidant        | Liquid    | Gas                     | BPR (bar) | Light (nm) (Intensity (%)) | Res. time (min) | Conversion (%) | Selectivity (%) |
| Entry 1    | 1          | 560       | O <sub>2</sub> | 0.5       | 10                      | 9         | 610 (100)                  | ~10             | 99.92          | 94.8            |
| Entry 6    | 1          | 560       | O <sub>2</sub> | 1         | 20                      | 9         | 610 (100)                  | ~ 4             | 99.26          | 92.4            |
| Entry 10   | 1          | 560       | O <sub>2</sub> | 2         | 40                      | 9         | 610 (100)                  | ~ 2             | 81.88          | 95.3            |

# 3.2.2 Comparison of oxygen and air

Table S5. Comparison of oxidant gas for the neutralization of **CEES**. PS is always MB when not specified, Rose Bengal when (RB) is specified.

|            |            |           |                | Flow rate | (mL.min <sup>-1</sup> ) |           |                            |                 |                |                 |
|------------|------------|-----------|----------------|-----------|-------------------------|-----------|----------------------------|-----------------|----------------|-----------------|
| In Table 3 | [CEES] (M) | [PS] (µM) | Oxidant        | Liquid    | Gas                     | BPR (bar) | Light (nm) (Intensity (%)) | Res. time (min) | Conversion (%) | Selectivity (%) |
| Entry 1    | 1          | 560       | O <sub>2</sub> | 0.5       | 10                      | 9         | 610 (100)                  | ~10             | 99.92          | 94.8            |
| Entry 4    | 1          | 560       | Air            | 0.5       | 10                      | 9         | 610 (100)                  | ~10             | 99.74          | 84              |
| Entry 6    | 1          | 560       | 02             | 1         | 20                      | 9         | 610 (100)                  | ~ 4             | 99.26          | 92.4            |
| Entry 7    | 1          | 560       | Air            | 1         | 20                      | 9         | 610 (100)                  | ~ 4             | 51.42          | 74              |
| entry 8    | 1          | 560       | O <sub>2</sub> | 1         | 20                      | 9         | white light (100)          | ~ 4             | total          | 97.8            |
| Entry 9    | 1          | 560       | Air            | 1         | 20                      | 9         | white light (100)          | ~ 4             | 68.23          | 93.5            |

#### 3.2.3 Comparison of photosensitizers

Table S6. Comparison of photosensitizers for **CEES** oxidation. PS is always MB when not specified, Rose Bengal when (RB) is specified.

|             |            |           |                | Flow rate | (mL.min <sup>-1</sup> ) |           |                            |                 |                |                 |
|-------------|------------|-----------|----------------|-----------|-------------------------|-----------|----------------------------|-----------------|----------------|-----------------|
| In Table 3  | [CEES] (M) | [PS] (µM) | Oxidant        | Liquid    | Gas                     | BPR (bar) | Light (nm) (Intensity (%)) | Res. time (min) | Conversion (%) | Selectivity (%) |
| not shown 1 | 1          | 560       | 02             | 0.5       | 10                      | 9         | 610 (70)                   | ~10             | 99.92          | 95.5            |
| not shown 2 | 1          | 560 (RB)  | O <sub>2</sub> | 0.5       | 10                      | 9         | 530 (70)                   | ~10             | 94.51          | 97.3            |
| Entry 5     | 0.1        | 56        | Air            | 0.5       | 10                      | 9         | 610 (100)                  | ~10             | 99.88          | 84.8            |
| not shown 3 | 0.1        | 56 (RB)   | Air            | 0.5       | 10                      | 9         | 530 (100)                  | ~10             | 83.69          | 83.4            |
| Entry 2     | 1          | 560       | 02             | 0.5       | 10                      | 9         | white light (100)          | ~10             | 99.91          | 96.1            |
| Entry 3     | 1          | 560 (RB)  | 0,             | 0.5       | 10                      | 9         | white light (100)          | ~10             | 99.92          | 95.4            |

3.2.4 Comparison of light (wavelength and intensity)

Table S7. Comparison of light for **CEES** oxidation. PS is always MB when not specified, Rose Bengal when (RB) is specified.

|             |            |           |                | Flow rate | (mL.min <sup>-1</sup> ) |           |                            |                 |                |                 |
|-------------|------------|-----------|----------------|-----------|-------------------------|-----------|----------------------------|-----------------|----------------|-----------------|
| In Table 3  | [CEES] (M) | [PS] (µM) | Oxidant        | Liquid    | Gas                     | BPR (bar) | Light (nm) (Intensity (%)) | Res. time (min) | Conversion (%) | Selectivity (%) |
| Entry 1     | 1          | 560       | O <sub>2</sub> | 0.5       | 10                      | 9         | 610 (100)                  | ~10             | 99.92          | 94.8            |
| not shown 1 | 1          | 560       | 02             | 0.5       | 10                      | 9         | 610 (70)                   | ~10             | 99.92          | 95.5            |
| Entry 2     | 1          | 560       | 02             | 0.5       | 10                      | 9         | white light (100)          | ~10             | 99.91          | 96.1            |
| Entry 6     | 1          | 560       | O <sub>2</sub> | 1         | 20                      | 9         | 610 (100)                  | ~ 4             | 99.26          | 92.4            |
| Entry 8     | 1          | 560       | 02             | 1         | 20                      | 9         | white light (100)          | ~ 4             | total          | 97.8            |
| Entry 5     | 0.1        | 56        | Air            | 0.5       | 10                      | 9         | 610 (100)                  | ~10             | 99.88          | 84.8            |
| not shown 4 | 0.1        | 56        | Air            | 0.5       | 10                      | 9         | 610 (70)                   | ~10             | total          | 83.4            |
| not shown 3 | 0.1        | 56 (RB)   | Air            | 0.5       | 10                      | 9         | 530 (100)                  | ~10             | 83.69          | 83.4            |
| not shown 5 | 0.1        | 56 (RB)   | Air            | 0.5       | 10                      | 9         | 530 (70)                   | ~10             | 80.94          | 79.5            |
| not shown 2 | 1          | 560 (RB)  | O <sub>2</sub> | 0.5       | 10                      | 9         | 530 (70)                   | ~10             | 94.51          | 97.3            |
| Entry 3     | 1          | 560 (RB)  | O <sub>2</sub> | 0.5       | 10                      | 9         | white light (100)          | ~10             | 99.92          | 95.4            |
| Entry 7     | 1          | 560       | Air            | 1         | 20                      | 9         | 610 (100)                  | ~ 4             | 51.42          | 74              |
| Entry 9     | 1          | 560       | Air            | 1         | 20                      | 9         | white light (100)          | ~ 4             | 68.23          | 93.5            |

# 4. Computations

# 4.1 Stationary points for compounds CEES, HD and 1a-f

| CEES                            | MP2/6-31+G** (Hartree) |
|---------------------------------|------------------------|
|                                 |                        |
| 15                              | H = -1014.432024       |
| scf done: -1014.569720          | G = -1014.476153       |
| S 0.000000 0.000000 0.000000    |                        |
| C 0.000000 0.000000 1.792323    |                        |
| C 1.778165 0.000000 -0.253799   |                        |
| C -1.418766 0.077061 2.322684   |                        |
| C 2.091289 -0.114762 -1.733662  |                        |
| Cl 3.863064 -0.185112 -1.939820 | 🔍 🤷 🏋 🗌                |
| H 0.611517 0.833668 2.134774    |                        |
| H 0.479444 -0.958472 2.040217   |                        |
| H -1.897513 1.018484 2.068487   |                        |
| H -2.018943 -0.753796 1.961510  |                        |
| H 2.125054 -0.881495 0.298219   |                        |
| H 2.182014 0.912821 0.181894    |                        |
| H 1.679041 -1.029718 -2.149896  |                        |
| H 1.729914 0.743979 -2.292796   |                        |
| H -1.389099 0.008742 3.390088   |                        |
|                                 |                        |
| HD                              | MP2/6-31+G** (Hartree) |
| 15                              | H = -1473.462357       |
| scf done: -1473.592520          | G = -1473.509951       |
| S 0.000000 0.000000 0.000000    | <b>G</b> 1473.303331   |
| C 0.000000 0.000000 1.820206    |                        |
| C 1.804791 0.000000 -0.236227   |                        |
| C 2.110725 -0.346458 -1.679465  |                        |
| Cl 3.880480 -0.306183 -1.959382 |                        |
| C -1.388127 0.359382 2.310690   | - 🛣 🔍 🔬 -              |
| Cl -1.437711 0.315289 4.101684  |                        |
| H 0.717538 0.740596 2.173039    |                        |
| H 0.290074 -0.982675 2.190699   |                        |
| H -1.664799 1.365389 2.008006   |                        |
| H -2.133454 -0.347168 1.954439  |                        |
| H 2.246850 -0.747053 0.422788   |                        |
| H 2.210736 0.980069 0.012172    |                        |
| H 1.771139 -1.348830 -1.924631  |                        |
| H 1.663803 0.368500 -2.365524   |                        |
|                                 |                        |
| 1a                              | MP2/6-31+G** (Hartree) |
| 21                              | H = -633.708181        |
| scf done: -633.914467           | G = -633.756180        |
| S 0.000000 0.000000 0.000000    | 6 - 055.750100         |
| C 0.000000 0.000000 1.540000    |                        |
| C 1.451926 0.000000 -0.513333   |                        |
| C -1.451926 0.000025 2.053333   |                        |
|                                 |                        |
| C 1.451926 -0.000634 -2.053333  |                        |

| C 2.903849 0.002154 -2.566668   |                        |
|---------------------------------|------------------------|
| C -1.451926 0.000025 3.593333   |                        |
| H 3.410060 -0.870298 -2.209628  |                        |
| H 3.406441 0.877001 -2.210375   |                        |
| H 2.903849 0.001696 -3.636668   | 3 9 9 9                |
| H 0.945720 0.871827 -2.410359   | •                      |
| H 0.949329 -0.875471 -2.409640  |                        |
| H 1.956202 0.873871 -0.157026   |                        |
| H 1.956456 -0.873431 -0.156307  |                        |
| H 0.504418 0.873643 1.896667    |                        |
| H 0.504388 -0.873660 1.896667   |                        |
| H -1.956344 -0.873617 1.696667  |                        |
| H -1.956314 0.873685 1.696667   |                        |
| H -0.947508 0.873668 3.950000   |                        |
| H -2.460732 0.000043 3.950000   |                        |
| H -0.947538 -0.873635 3.950000  |                        |
|                                 |                        |
| 1b                              | MP2/6-31+G** (Hartree) |
|                                 | -, (                   |
| 12                              | H = -975.272292        |
| scf done: -975.379095           | G = -975.314752        |
| S 0.000000 0.000000 0.000000    |                        |
| C 0.000000 0.000000 1.818307    |                        |
| C 1.799460 0.000000 -0.265304   |                        |
| C -1.424972 0.088353 2.345894   |                        |
| H 0.584580 0.852002 2.166642    | 📉 🖊 📁                  |
| H 0.479485 -0.914758 2.168073   |                        |
| H -1.906056 1.011875 2.026113   |                        |
| H -2.025321 -0.752543 1.999923  | 3 3                    |
| H 2.254083 -0.717680 0.417964   | -                      |
| H 2.208892 0.989390 -0.062891   |                        |
| H -1.412332 0.070800 3.435348   |                        |
| Cl 2.135823 -0.470131 -1.927662 |                        |
|                                 |                        |
| 1c                              | MP2/6-31+G** (Hartree) |
| 10                              |                        |
| 19                              | H = -707.359079        |
| scf done: -668.343358           | G = -707.405066        |
| S -2.053586 -0.000084 -0.680770 |                        |
| C -3.684737 0.000088 0.102417   |                        |
| C -1.021695 -0.000008 0.821936  |                        |
| C 0.429459 -0.00008 0.436546    |                        |
| C 1.116949 -1.208986 0.251973   |                        |
| C 2.461562 -1.210638 -0.131914  |                        |
| C 3.138224 0.000028 -0.320319   |                        |
| C 2.461522 1.210676 -0.131948   |                        |
| C 1.116910 1.208989 0.251936    |                        |
| H -3.821623 -0.890355 0.713532  | <b>) ) )</b>           |
| H -4.429205 0.000060 -0.691155  | _                      |
| H -3.821512 0.890660 0.713367   |                        |
| H -1.257091 0.887812 1.411464   |                        |
| H -1.257086 -0.887764 1.411563  |                        |

| H 0                                                                                                                                                                                            | ).595190                                                                                                                                                                                                                               | -2.148260                                                                                                                                                                                                                              | 0.401851                                                                                                                                                                                                                             |                                           |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|
| H 2                                                                                                                                                                                            | 2.981818                                                                                                                                                                                                                               | -2.150839                                                                                                                                                                                                                              | -0.269979                                                                                                                                                                                                                            |                                           |
| H 4                                                                                                                                                                                            | 1.180855                                                                                                                                                                                                                               | 0.000040                                                                                                                                                                                                                               | -0.613839                                                                                                                                                                                                                            |                                           |
| H 2                                                                                                                                                                                            | 2.981745                                                                                                                                                                                                                               | 2.150892                                                                                                                                                                                                                               | -0.270040                                                                                                                                                                                                                            |                                           |
| Н 0                                                                                                                                                                                            | ).595118                                                                                                                                                                                                                               | 2.148249                                                                                                                                                                                                                               | 0.401784                                                                                                                                                                                                                             |                                           |
|                                                                                                                                                                                                |                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                      |                                           |
| 1d                                                                                                                                                                                             |                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                      | MP2/6-31+G** (Hartree)                    |
| 16                                                                                                                                                                                             |                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                      | H = -668.204306                           |
| scf do                                                                                                                                                                                         | ne: -668.3                                                                                                                                                                                                                             | 343357                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                      | G = -668.246695                           |
| S 0.                                                                                                                                                                                           | .000000                                                                                                                                                                                                                                | 0.000000                                                                                                                                                                                                                               | 0.000000                                                                                                                                                                                                                             | 0 000.2+0055                              |
| C 0                                                                                                                                                                                            | .000000                                                                                                                                                                                                                                | 0.000000                                                                                                                                                                                                                               | 1.782446                                                                                                                                                                                                                             |                                           |
| C 1                                                                                                                                                                                            | 789167                                                                                                                                                                                                                                 | 0.000000                                                                                                                                                                                                                               | -0.300110                                                                                                                                                                                                                            |                                           |
| C 0                                                                                                                                                                                            | .511104                                                                                                                                                                                                                                | -1.092331                                                                                                                                                                                                                              | 2.501333                                                                                                                                                                                                                             |                                           |
| C 0                                                                                                                                                                                            | .486722                                                                                                                                                                                                                                | -1.085431                                                                                                                                                                                                                              | 3.898840                                                                                                                                                                                                                             |                                           |
| C -0                                                                                                                                                                                           | 0.073107                                                                                                                                                                                                                               | -0.003484                                                                                                                                                                                                                              | 4.588916                                                                                                                                                                                                                             |                                           |
| C -0                                                                                                                                                                                           | ).599080                                                                                                                                                                                                                               | 1.077646                                                                                                                                                                                                                               | 3.874408                                                                                                                                                                                                                             |                                           |
| C -0                                                                                                                                                                                           | ).558043                                                                                                                                                                                                                               | 1.084222                                                                                                                                                                                                                               | 2.475656                                                                                                                                                                                                                             |                                           |
| н о                                                                                                                                                                                            | ).923556                                                                                                                                                                                                                               | -1.943237                                                                                                                                                                                                                              | 1.971916                                                                                                                                                                                                                             |                                           |
| н о                                                                                                                                                                                            | ).887379                                                                                                                                                                                                                               | -1.930398                                                                                                                                                                                                                              | 4.445687                                                                                                                                                                                                                             |                                           |
| Н -0                                                                                                                                                                                           | 0.099439                                                                                                                                                                                                                               | -0.004497                                                                                                                                                                                                                              | 5.671551                                                                                                                                                                                                                             |                                           |
| H -1                                                                                                                                                                                           | 1.033777                                                                                                                                                                                                                               | 1.918284                                                                                                                                                                                                                               | 4.401491                                                                                                                                                                                                                             |                                           |
| Н -0                                                                                                                                                                                           | 0.950451                                                                                                                                                                                                                               | 1.928941                                                                                                                                                                                                                               | 1.922456                                                                                                                                                                                                                             |                                           |
| H 2                                                                                                                                                                                            | 2.252006                                                                                                                                                                                                                               | 0.873983                                                                                                                                                                                                                               | 0.152735                                                                                                                                                                                                                             |                                           |
| H 1                                                                                                                                                                                            | L.931386                                                                                                                                                                                                                               | 0.041215                                                                                                                                                                                                                               | -1.378688                                                                                                                                                                                                                            |                                           |
| H 2                                                                                                                                                                                            | 2.251737                                                                                                                                                                                                                               | -0.907353                                                                                                                                                                                                                              | 0.080207                                                                                                                                                                                                                             |                                           |
|                                                                                                                                                                                                |                                                                                                                                                                                                                                        | -0.907333                                                                                                                                                                                                                              | 0.080207                                                                                                                                                                                                                             |                                           |
|                                                                                                                                                                                                |                                                                                                                                                                                                                                        | -0.907355                                                                                                                                                                                                                              | 0.080207                                                                                                                                                                                                                             |                                           |
| 1e                                                                                                                                                                                             |                                                                                                                                                                                                                                        | -0.907333                                                                                                                                                                                                                              | 0.080207                                                                                                                                                                                                                             | MP2/6-31+G** (Hartree)                    |
| <b>1e</b>                                                                                                                                                                                      |                                                                                                                                                                                                                                        | -0.307333                                                                                                                                                                                                                              | 0.080207                                                                                                                                                                                                                             | MP2/6-31+G** (Hartree)<br>H = -859.318588 |
| 23                                                                                                                                                                                             | one: -859.5                                                                                                                                                                                                                            |                                                                                                                                                                                                                                        | 0.080207                                                                                                                                                                                                                             | H = -859.318588                           |
| 23<br>scf do                                                                                                                                                                                   |                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                        | 0.000000                                                                                                                                                                                                                             |                                           |
| 23<br>scf do<br>S 0.                                                                                                                                                                           | one: -859.5                                                                                                                                                                                                                            | 512841                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                      | H = -859.318588                           |
| 23<br>scf do<br>S 0.<br>C 0                                                                                                                                                                    | one: -859.5                                                                                                                                                                                                                            | 512841<br>0.000000                                                                                                                                                                                                                     | 0.00000                                                                                                                                                                                                                              | H = -859.318588                           |
| 23<br>scf do<br>S 0.<br>C 0<br>C 1                                                                                                                                                             | ne: -859.5<br>.000000<br>.000000                                                                                                                                                                                                       | 512841<br>0.000000<br>0.000000                                                                                                                                                                                                         | 0.000000<br>1.783633                                                                                                                                                                                                                 | H = -859.318588                           |
| 23<br>scf do<br>S 0.<br>C 0<br>C 1<br>C 2                                                                                                                                                      | ne: -859.5<br>.000000<br>.000000<br>760523                                                                                                                                                                                             | 512841<br>0.000000<br>0.000000<br>0.000000                                                                                                                                                                                             | 0.000000<br>1.783633<br>-0.284007                                                                                                                                                                                                    | H = -859.318588                           |
| 23<br>scf do<br>S 0.<br>C 0<br>C 1<br>C 2<br>C 3                                                                                                                                               | ne: -859.5<br>.000000<br>.000000<br>.760523<br>568803                                                                                                                                                                                  | 512841<br>0.000000<br>0.000000<br>0.000000<br>1.020720                                                                                                                                                                                 | 0.000000<br>1.783633<br>-0.284007<br>0.241188                                                                                                                                                                                        | H = -859.318588                           |
| 23<br>scf do<br>S 0.<br>C 0<br>C 1<br>C 2<br>C 3<br>C 4                                                                                                                                        | ne: -859.5<br>.000000<br>.000000<br>.760523<br>.568803<br>.944685                                                                                                                                                                      | 512841<br>0.000000<br>0.000000<br>0.000000<br>1.020720<br>1.011514                                                                                                                                                                     | 0.000000<br>1.783633<br>-0.284007<br>0.241188<br>0.000690                                                                                                                                                                            | H = -859.318588                           |
| 23<br>scf do<br>S 0.<br>C 0<br>C 1<br>C 2<br>C 3<br>C 4<br>C 3                                                                                                                                 | ne: -859.5<br>.000000<br>.000000<br>.760523<br>.568803<br>.944685<br>.517217                                                                                                                                                           | 512841<br>0.000000<br>0.000000<br>0.000000<br>1.020720<br>1.011514<br>0.007196                                                                                                                                                         | 0.000000<br>1.783633<br>-0.284007<br>0.241188<br>0.000690<br>-0.790861                                                                                                                                                               | H = -859.318588                           |
| 23<br>scf do<br>S 0.<br>C 0<br>C 1<br>C 2<br>C 3<br>C 4<br>C 3<br>C 4<br>C 3<br>C 2                                                                                                            | one: -859.5<br>.000000<br>.000000<br>760523<br>568803<br>5.944685<br>5.517217<br>5.707571                                                                                                                                              | 512841<br>0.000000<br>0.000000<br>1.020720<br>1.011514<br>0.007196<br>-0.996516                                                                                                                                                        | 0.000000<br>1.783633<br>-0.284007<br>0.241188<br>0.000690<br>-0.790861<br>-1.331341                                                                                                                                                  | H = -859.318588                           |
| 23<br>scf do<br>S 0.<br>C 0<br>C 1<br>C 2<br>C 3<br>C 4<br>C 3<br>C 4<br>C 3<br>C 2<br>C 2<br>C -0                                                                                             | ne: -859.5<br>.000000<br>.000000<br>.760523<br>.568803<br>.944685<br>.517217<br>.707571<br>.331385                                                                                                                                     | 512841<br>0.000000<br>0.000000<br>1.020720<br>1.011514<br>0.007196<br>-0.996516<br>-1.006744                                                                                                                                           | 0.000000<br>1.783633<br>-0.284007<br>0.241188<br>0.000690<br>-0.790861<br>-1.331341<br>-1.074285                                                                                                                                     | H = -859.318588                           |
| 23<br>scf do<br>S 0.<br>C 0<br>C 1<br>C 2<br>C 3<br>C 4<br>C 3<br>C 4<br>C 3<br>C 2<br>C -0<br>C -0<br>C -0                                                                                    | ne: -859.5<br>.000000<br>760523<br>568803<br>944685<br>517217<br>707571<br>331385<br>838860                                                                                                                                            | 512841<br>0.000000<br>0.000000<br>1.020720<br>1.011514<br>0.007196<br>-0.996516<br>-1.006744<br>0.892889                                                                                                                               | 0.000000<br>1.783633<br>-0.284007<br>0.241188<br>0.000690<br>-0.790861<br>-1.331341<br>-1.074285<br>2.464438                                                                                                                         | H = -859.318588                           |
| 23<br>scf do<br>S 0.<br>C 0<br>C 1<br>C 2<br>C 3<br>C 4<br>C 3<br>C 4<br>C 3<br>C 2<br>C -0<br>C -0<br>C -0<br>C -0                                                                            | ne: -859.5<br>.000000<br>.000000<br>.760523<br>.568803<br>.944685<br>.517217<br>.3707571<br>.331385<br>.838860<br>.894860<br>.894860<br>.111651                                                                                        | 512841<br>0.000000<br>0.000000<br>1.020720<br>1.011514<br>0.007196<br>-0.996516<br>-1.006744<br>0.892889<br>0.871065                                                                                                                   | 0.000000<br>1.783633<br>-0.284007<br>0.241188<br>0.000690<br>-0.790861<br>-1.331341<br>-1.074285<br>2.464438<br>3.862937                                                                                                             | H = -859.318588                           |
| 23<br>scf do<br>S 0.<br>C 0<br>C 1<br>C 2<br>C 3<br>C 4<br>C 3<br>C 4<br>C 3<br>C 4<br>C 3<br>C 2<br>C -0<br>C -0<br>C -0<br>C 0                                                               | ne: -859.5<br>.000000<br>.000000<br>.760523<br>.568803<br>.944685<br>.517217<br>.707571<br>.331385<br>0.838860<br>0.838860<br>0.894860<br>0.111651<br>0.728501                                                                         | 512841<br>0.000000<br>0.000000<br>1.020720<br>1.011514<br>0.007196<br>-0.996516<br>-1.006744<br>0.892889<br>0.871065<br>-0.034442                                                                                                      | 0.000000<br>1.783633<br>-0.284007<br>0.241188<br>0.000690<br>-0.790861<br>-1.331341<br>-1.074285<br>2.464438<br>3.862937<br>4.585381                                                                                                 | H = -859.318588                           |
| 23<br>scf do<br>S 0.<br>C 0<br>C 1<br>C 2<br>C 3<br>C 4<br>C 3<br>C 4<br>C 3<br>C 4<br>C 3<br>C 2<br>C -0<br>C -0<br>C -0<br>C 0<br>C 0<br>C 0                                                 | ne: -859.5<br>.000000<br>.000000<br>.760523<br>.568803<br>.944685<br>.517217<br>.707571<br>.331385<br>0.838860<br>0.838860<br>0.111651<br>0.728501                                                                                     | 512841<br>0.000000<br>0.000000<br>1.020720<br>1.011514<br>0.007196<br>-0.996516<br>-1.006744<br>0.892889<br>0.871065<br>-0.034442<br>-0.923675                                                                                         | 0.000000<br>1.783633<br>-0.284007<br>0.241188<br>0.000690<br>-0.790861<br>-1.331341<br>-1.074285<br>2.464438<br>3.862937<br>4.585381<br>3.902836                                                                                     | H = -859.318588                           |
| 23<br>scf do<br>S 0.<br>C 0<br>C 1<br>C 2<br>C 3<br>C 4.<br>C 3<br>C 4.<br>C 3<br>C 4.<br>C 3<br>C 2<br>C -0<br>C -0<br>C -0<br>C 0<br>H -1                                                    | one: -859.5<br>000000<br>000000<br>000000<br>000000<br>000000<br>0000                                                                                                                                                                  | 512841<br>0.000000<br>0.000000<br>1.020720<br>1.011514<br>0.007196<br>-0.996516<br>-1.006744<br>0.892889<br>0.871065<br>-0.034442<br>-0.923675<br>-0.924513                                                                            | 0.000000<br>1.783633<br>-0.284007<br>0.241188<br>0.000690<br>-0.790861<br>-1.331341<br>-1.074285<br>2.464438<br>3.862937<br>4.585381<br>3.902836<br>2.506508                                                                         | H = -859.318588                           |
| 23<br>scf do<br>S 0.<br>C 0<br>C 1<br>C 2<br>C 3<br>C 4<br>C 3<br>C 4<br>C 3<br>C 4<br>C 3<br>C 2<br>C -0<br>C -0<br>C -0<br>C 0<br>C 0<br>H -1<br>H -1                                        | one: -859.5<br>.000000<br>.000000<br>.760523<br>.568803<br>.944685<br>.517217<br>.3707571<br>.331385<br>0.838860<br>0.894860<br>0.111651<br>0.728501<br>0.770391<br>1.427658                                                           | 512841<br>0.000000<br>0.000000<br>1.020720<br>1.011514<br>0.007196<br>-0.996516<br>-1.006744<br>0.892889<br>0.871065<br>-0.034442<br>-0.923675<br>-0.924513<br>1.611064                                                                | 0.000000<br>1.783633<br>-0.284007<br>0.241188<br>0.000690<br>-0.790861<br>-1.331341<br>-1.074285<br>2.464438<br>3.862937<br>4.585381<br>3.902836<br>2.506508<br>1.906155                                                             | H = -859.318588                           |
| 23<br>scf do<br>S 0.<br>C 0<br>C 1.<br>C 2<br>C 3<br>C 4<br>C 3<br>C 4<br>C 3<br>C 4<br>C 3<br>C 2<br>C -0<br>C -0<br>C -0<br>C -0<br>C 0<br>H -1<br>H -1<br>H -0                              | ne: -859.5<br>.000000<br>.000000<br>.760523<br>.568803<br>.944685<br>.517217<br>.3707571<br>.331385<br>0.838860<br>0.894860<br>0.111651<br>0.728501<br>0.770391<br>1.427658<br>1.543407                                                | 512841<br>0.000000<br>0.000000<br>1.020720<br>1.011514<br>0.007196<br>-0.996516<br>-1.006744<br>0.892889<br>0.871065<br>-0.034442<br>-0.923675<br>-0.924513<br>1.611064<br>1.565895                                                    | 0.000000<br>1.783633<br>-0.284007<br>0.241188<br>0.000690<br>-0.790861<br>-1.331341<br>-1.074285<br>2.464438<br>3.862937<br>4.585381<br>3.902836<br>2.506508<br>1.906155<br>4.382645                                                 | H = -859.318588                           |
| 23<br>scf do<br>S 0.<br>C 0<br>C 1<br>C 2<br>C 3<br>C 4<br>C 3<br>C 4<br>C 3<br>C 4<br>C 3<br>C 4<br>C 3<br>C -0<br>C -0<br>C -0<br>C -0<br>C 0<br>C 0<br>H -1<br>H -1<br>H -0<br>H 1          | ne: -859.5<br>.000000<br>.000000<br>.760523<br>.568803<br>.944685<br>.517217<br>.707571<br>.331385<br>0.838860<br>0.894860<br>0.111651<br>0.728501<br>0.770391<br>1.427658<br>1.543407<br>0.148118                                     | 512841<br>0.000000<br>0.000000<br>1.020720<br>1.011514<br>0.007196<br>-0.996516<br>-1.006744<br>0.892889<br>0.871065<br>-0.034442<br>-0.923675<br>-0.924513<br>1.611064<br>1.565895<br>-0.043179                                       | 0.000000<br>1.783633<br>-0.284007<br>0.241188<br>0.000690<br>-0.790861<br>-1.331341<br>-1.074285<br>2.464438<br>3.862937<br>4.585381<br>3.902836<br>2.506508<br>1.906155<br>4.382645<br>5.667647                                     | H = -859.318588                           |
| 23<br>scf do<br>S 0.<br>C 0<br>C 1<br>C 2<br>C 3<br>C 4<br>C 3<br>C 4<br>C 3<br>C 4<br>C 3<br>C 2<br>C -0<br>C -0<br>C -0<br>C -0<br>C 0<br>C 0<br>H -1<br>H -1<br>H -1<br>H 1                 | one: -859.5<br>.000000<br>.000000<br>.760523<br>.568803<br>.944685<br>.517217<br>.31185<br>.838860<br>.894860<br>.111651<br>.728501<br>.770391<br>1.427658<br>1.543407<br>0.148118<br>333639                                           | 512841<br>0.000000<br>0.000000<br>1.020720<br>1.011514<br>0.007196<br>-0.996516<br>-1.006744<br>0.892889<br>0.871065<br>-0.034442<br>-0.923675<br>-0.924513<br>1.611064<br>1.565895<br>-0.043179<br>-1.632348                          | 0.000000<br>1.783633<br>-0.284007<br>0.241188<br>0.000690<br>-0.790861<br>-1.331341<br>-1.074285<br>2.464438<br>3.862937<br>4.585381<br>3.902836<br>2.506508<br>1.906155<br>4.382645<br>5.667647<br>4.455451                         | H = -859.318588                           |
| 23<br>scf do<br>S 0.<br>C 0<br>C 1<br>C 2<br>C 3<br>C 4<br>C 3<br>C 4<br>C 3<br>C 2<br>C -0<br>C -0<br>C -0<br>C -0<br>C 0.<br>C 0.<br>C 0.<br>H -1<br>H -1<br>H -1<br>H 1<br>H 1<br>H 2       | ne: -859.5<br>.000000<br>.000000<br>.760523<br>.568803<br>.944685<br>.517217<br>.3707571<br>.331385<br>.838860<br>.894860<br>.111651<br>.728501<br>.770391<br>1.427658<br>1.543407<br>.148118<br>1.333639<br>1.411825                  | 512841<br>0.000000<br>0.000000<br>1.020720<br>1.011514<br>0.007196<br>-0.996516<br>-1.006744<br>0.892889<br>0.871065<br>-0.034442<br>-0.923675<br>-0.924513<br>1.611064<br>1.565895<br>-0.043179<br>-1.632348<br>-1.622689             | 0.000000<br>1.783633<br>-0.284007<br>0.241188<br>0.000690<br>-0.790861<br>-1.331341<br>-1.074285<br>2.464438<br>3.862937<br>4.585381<br>3.902836<br>2.506508<br>1.906155<br>4.382645<br>5.667647<br>4.455451<br>1.981196             | H = -859.318588                           |
| 23<br>scf do<br>S 0.<br>C 0<br>C 1<br>C 2<br>C 3<br>C 4<br>C 3<br>C 4<br>C 3<br>C 2<br>C -0<br>C -0<br>C -0<br>C -0<br>C -0<br>C 0<br>H -1<br>H -1<br>H -1<br>H -1<br>H 1<br>H 1<br>H 2<br>H 4 | ne: -859.5<br>.000000<br>.000000<br>.760523<br>.568803<br>.944685<br>.517217<br>.707571<br>.331385<br>0.838860<br>0.894860<br>0.111651<br>0.728501<br>0.770391<br>1.427658<br>1.543407<br>0.148118<br>1.333639<br>1.411825<br>2.124972 | 512841<br>0.000000<br>0.000000<br>1.020720<br>1.011514<br>0.007196<br>-0.996516<br>-1.006744<br>0.892889<br>0.871065<br>-0.034442<br>-0.923675<br>-0.924513<br>1.611064<br>1.565895<br>-0.043179<br>-1.632348<br>-1.622689<br>1.804515 | 0.000000<br>1.783633<br>-0.284007<br>0.241188<br>0.000690<br>-0.790861<br>-1.331341<br>-1.074285<br>2.464438<br>3.862937<br>4.585381<br>3.902836<br>2.506508<br>1.906155<br>4.382645<br>5.667647<br>4.455451<br>1.981196<br>0.844196 | H = -859.318588                           |

| Н   | 4.143571    | -1.778185 | -1.941561 |                        |
|-----|-------------|-----------|-----------|------------------------|
| Н   | 1.706606    | -1.796681 | -1.473691 |                        |
|     |             |           |           |                        |
| 1f  |             |           |           | MP2/6-31+G** (Hartree) |
| 21  |             |           |           | H = -858.185869        |
| sfc | done: -858. | 3527375   |           | G = -858.231417        |
| S   | 0.000000    | 0.000000  | 0.000000  |                        |
| C   | 0.000000    | 0.000000  | 1.754929  |                        |
| C   | 1.754671    | 0.000000  | -0.030842 |                        |
| C   | 2.557844    | 0.000000  | -1.180068 |                        |
| С   | 3.943026    | 0.000000  | -1.021781 |                        |
| С   | 4.522511    | 0.000000  | 0.262174  |                        |
| С   | 3.722322    | 0.000000  | 1.402038  |                        |
| С   | 2.321976    | 0.000000  | 1.265399  |                        |
| С   | 1.306029    | 0.000000  | 2.299326  |                        |
| С   | 1.467328    | 0.000000  | 3.697018  |                        |
| С   | 0.341788    | 0.000000  | 4.517234  |                        |
| С   | -0.952155   | 0.000000  | 3.960456  |                        |
| С   | -1.134810   | 0.000000  | 2.578280  |                        |
| н   | 5.600907    | 0.000000  | 0.362802  |                        |
| н   | 4.578977    | 0.000000  | -1.898668 |                        |
| н   | 2.114729    | 0.000000  | -2.168810 |                        |
| н   | 4.174636    | 0.000000  | 2.387342  |                        |
| н   | -2.131183   | 0.000000  | 2.152723  |                        |
| н   | -1.817686   | 0.000000  | 4.611781  |                        |
| н   | 0.461410    | 0.000000  | 5.593691  |                        |
| н   | 2.460476    | 0.000000  | 4.131761  |                        |

# 4.2 Selected transition states, peroxysulfoxides and sulfoxides

| TS <sup>1</sup> 1a              | MP2/6-31+G** (Hartree)                |
|---------------------------------|---------------------------------------|
| 23                              | H = -783.617775                       |
| scf done : -783.8306078         | G = -783.672039                       |
| S 0.001090 -0.230173 -0.802643  |                                       |
| C 1.371445 -0.560524 0.302297   |                                       |
| C -1.368535 -0.567589 0.300751  |                                       |
| O -0.003749 1.635150 -0.548470  | <b>T</b>                              |
| O -0.007288 1.962681 0.769973   | I I I I I I I I I I I I I I I I I I I |
| H 1.211938 0.151555 1.124357    |                                       |
| H 1.256531 -1.580546 0.672130   |                                       |
| H -1.253045 -1.590475 0.662164  |                                       |
| Н -1.209147 0.138421 1.127929   |                                       |
| C 2.714263 -0.343585 -0.380861  |                                       |
| H 2.815401 -1.024173 -1.228255  |                                       |
| Н 2.759935 0.675783 -0.768102   |                                       |
| C -2.711302 -0.344919 -0.380645 |                                       |
| Н -2.754759 0.676224 -0.763369  |                                       |
| H -2.814224 -1.021559 -1.230966 |                                       |
| C 3.854936 -0.570112 0.607725   |                                       |

| н   | 4.817150      | -0.413167            | 0.121601  |                        |
|-----|---------------|----------------------|-----------|------------------------|
| н   | 3.781632      | 0.121402             | 1.447398  |                        |
| н   | 3.833986      | -1.587507            | 0.999295  |                        |
| C   | -3.852298     | -0.572873            | 0.607316  |                        |
| н   | -4.814169     | -0.411296            | 0.121994  |                        |
| н   | -3.834290     | -1.591904            | 0.994727  |                        |
| н   | -3.777135     | 0.114974             | 1.449864  |                        |
|     |               |                      |           |                        |
| 1A  | a             |                      |           | MP2/6-31+G** (Hartree) |
|     |               |                      |           |                        |
| 23  |               |                      |           | H = -705.310617        |
|     | f done: -705. |                      |           | G = -705.355168        |
| S   | 0.000000      | 0.000000             | 0.000000  |                        |
| 0   | 0.000000      | 0.000000             | 1.632804  |                        |
| 0   | 1.372865      | 0.000000             | 2.142795  |                        |
| C   | 1.061157      | 1.390146             | -0.429241 |                        |
| С   | 1.054479      | -1.393613            | -0.437150 |                        |
| С   | 0.467723      | -2.699838            | 0.080800  | 🔍 👝 🝙 🤷 👝 📖 🔍          |
| С   | 0.420700      | 2.709889             | -0.020802 |                        |
| н   | 2.007000      | 1.219826             | 0.083053  | ····                   |
| н   | 1.198791      | 1.320790             | -1.510676 |                        |
| н   | -0.547928     | 2.819379             | -0.512472 | •                      |
| н   | 0.247740      | 2.704755             | 1.056036  |                        |
| н   | 2.036733      | -1.192678            | -0.013099 |                        |
| н   | 1.103495      | -1.374989            | -1.528368 |                        |
| н   | -0.538012     | -2.839294            | -0.320754 |                        |
| Н   | 0.388104      | -2.646164            | 1.166718  |                        |
| C   | 1.355687      | -3.874880            | -0.319864 |                        |
| Н   | 0.942369      | -4.808516            | 0.059741  |                        |
| н   | 1.433731      | -3.953551            | -1.404446 |                        |
| н   | 2.359631      | -3.757324            | 0.088486  |                        |
| c   | 1.330023      | 3.877669             | -0.393965 |                        |
| Н   | 1.504217      | 3.908339             | -1.469761 |                        |
| Н   | 0.875846      | 4.821920             | -0.096115 |                        |
| Н   | 2.294371      | 4.821920<br>3.791752 | 0.107114  |                        |
|     | 2.2343/1      | 5.751/52             | 0.10/114  |                        |
| 3-  |               |                      |           |                        |
| 2a  |               |                      |           | MP2/6-31+G** (Hartree) |
| 23  |               |                      |           | H = -708.717905        |
| scf | done: -708.9  | 285944               |           | G = -708.766896        |
| S   | 0.000000      | 0.000000             | 0.000000  |                        |
| 0   | 0.000000      | 0.000000             | 1.632804  |                        |
| 0   | 1.372865      | 0.000000             | 2.142795  |                        |
| C   | 1.061157      | 1.390146             | -0.429241 |                        |
| С   | 1.054479      | -1.393613            | -0.437150 | 🚽 🔄 🎐 🙆 🌳 👝 🏆          |
| С   | 0.467723      | -2.699838            | 0.080800  |                        |
| С   | 0.420700      | 2.709889             | -0.020802 |                        |
| н   | 2.007000      | 1.219826             | 0.083053  |                        |
| н   | 1.198791      | 1.320790             | -1.510676 |                        |
| н   | -0.547928     | 2.819379             | -0.512472 |                        |
| Н   | 0.247740      | 2.704755             | 1.056036  |                        |
| Н   | 2.036733      | -1.192678            | -0.013099 |                        |
|     | 2.030733      | 1.132070             | 0.010000  |                        |

| Н   | 1.103495          | -1.374989  | -1.528368 |                        |
|-----|-------------------|------------|-----------|------------------------|
| н   | -0.538012         | -2.839294  | -0.320754 |                        |
| н   | 0.388104          | -2.646164  | 1.166718  |                        |
| C   | 1.355687          | -3.874880  | -0.319864 |                        |
| н   | 0.942369          | -4.808516  | 0.059741  |                        |
| н   | 1.433731          | -3.953551  | -1.404446 |                        |
| н   | 2.359631          | -3.757324  | 0.088486  |                        |
| С   | 1.330023          | 3.877669   | -0.393965 |                        |
| н   | 1.504217          | 3.908339   | -1.469761 |                        |
| н   | 0.875846          | 4.821920   | -0.096115 |                        |
| н   | 2.294371          | 3.791752   | 0.107114  |                        |
|     |                   |            |           |                        |
| TS  | <sup>1</sup> CEES |            |           | MP2/6-31+G** (Hartree) |
|     | CEES              |            |           |                        |
| 17  |                   |            |           | H = -1164.337868       |
|     | done: -1164       |            |           | G = -1164.386512       |
| S   | 0.000000          | 0.000000   | 0.000000  |                        |
| C   | 0.000000          | 0.000000   | 1.789866  |                        |
| C   | 1.774045          | 0.000000   | -0.283965 |                        |
| 0   | -0.258618         | 1.826513   | -0.186958 | Y 🕘 Y 👝                |
| 0   | 0.566664          | 2.535674   | 0.633915  |                        |
| С   | 2.085775          | 0.116971   | -1.766937 |                        |
| С   | -1.415598         | -0.099510  | 2.324229  |                        |
| CI  | -1.369695         | 0.020003   | 4.105785  |                        |
| н   | 2.166592          | -0.916977  | 0.155039  |                        |
| н   | 2.131050          | 0.866780   | 0.281900  |                        |
| н   | 1.688229          | -0.726025  | -2.329350 |                        |
| н   | 1.683864          | 1.041752   | -2.176465 |                        |
| н   | 0.462901          | 0.967797   | 2.035413  |                        |
| н   | 0.627229          | -0.821659  | 2.132371  |                        |
| н   | -2.029965         | 0.720006   | 1.960869  |                        |
| н   | -1.880032         | -1.048909  | 2.073243  |                        |
| н   | 3.167516          | 0.132391   | -1.890482 |                        |
|     | 5.107510          | 0.1152.551 | 1.050 102 |                        |
|     | ESOO              |            |           | MP2/6-31+G** (Hartree) |
|     | 1300              |            |           |                        |
| 17  |                   |            |           | H = -1164.342699       |
| scf | f done: -1164     | 1.4888327  |           | G = -1164.391685       |
| S   | 0.888064          | -0.272016  | -0.659449 |                        |
| 0   | 0.999348          | 1.351888   | -0.559551 |                        |
| 0   | 0.774977          | 1.788057   | 0.819654  | Ţ                      |
| C   | -0.682107         | -0.630748  | 0.156663  | 🔄 🖓 🔴 🍳 🔶 👝            |
| С   | 2.042211          | -0.870504  | 0.588597  |                        |
| С   | 3.474415          | -0.583499  | 0.166704  |                        |
| С   | -1.794041         | 0.138153   | -0.531620 |                        |
| CI  | -3.343617         | -0.250641  | 0.265914  | -                      |
| н   | 1.839625          | -1.939456  | 0.671268  |                        |
| н   | 1.770784          | -0.362256  | 1.511530  |                        |
| н   | 3.721778          | -1.070824  | -0.774761 |                        |
| н   |                   | 0.487130   | 0.071114  |                        |
| н   |                   | -0.336324  | 1.198192  |                        |
| н   |                   | -1.709080  | 0.067109  |                        |
|     |                   |            |           |                        |

| H -1.632012 1.207033 -0.435266                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                    |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------|
| H -1.888347 -0.136564 -1.578951                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                    |
| H 4.140964 -0.966479 0.937524                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                    |
| CEESO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | MP2/6-31+G** (Hartree)                                                             |
| 16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | H = -1089.439828                                                                   |
| scf done: -1089.5818305                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | G = -1089.485407                                                                   |
| S 0.000000 0.000000 0.000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | G = -1089.485407                                                                   |
| O 0.000000 0.000000 1.630775                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                    |
| C 1.757404 0.000000 -0.414364                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                    |
| C -0.433364 1.692868 -0.440747                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | a a 🤍 a a                                                                          |
| C -1.883155 1.978776 -0.083066                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                    |
| C 2.426993 -1.197316 0.233266                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                    |
| Cl 4.156509 -1.201202 -0.210771                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                    |
| H -0.248817 1.761431 -1.513955                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                    |
| H 0.262301 2.328306 0.103370                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                    |
| H -2.565928 1.313874 -0.609142                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                    |
| H -2.044355 1.882773 0.988724                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                    |
| H 2.177967 0.933885 -0.050597                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                    |
| H 1.801083 -0.049989 -1.502941                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                    |
| H 2.363749 -1.128356 1.314601                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                    |
| H 1.999820 -2.135586 -0.110879                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                    |
| H -2.110621 3.003502 -0.371716                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $  MD7/6 21 \pm C^{\pi\pi} (Hartroo)  $                                            |
| TS <sup>1</sup> <sub>HD</sub>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | MP2/6-31+G** (Hartree)                                                             |
| 17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | MP2/6-31+G** (Hartree)<br>H = -1623.364778                                         |
| 17<br>scf done: -1623.501380                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                    |
| 17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | H = -1623.364778                                                                   |
| 17<br>scf done: -1623.501380                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | H = -1623.364778                                                                   |
| 17<br>scf done: -1623.501380<br>S 0.000000 0.000000 0.000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | H = -1623.364778                                                                   |
| 17   scf done: -1623.501380   S 0.000000 0.000000   C 0.000000 0.000000   C 1.778165 0.000000   O -0.221301 1.830609   -0.194652                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | H = -1623.364778                                                                   |
| 17   scf done: -1623.501380   S 0.000000 0.000000   C 0.000000 0.000000   C 1.778165 0.000000   O -0.221301 1.830609   O 0.635652 2.526376   O 0.6345652 0.604954                                                                                                                                                                                                                                                                                                                                                                                                                                     | H = -1623.364778                                                                   |
| 17   scf done: -1623.501380   S 0.000000 0.000000   C 0.000000 0.000000   C 1.778165 0.000000 -0.253799   O -0.221301 1.830609 -0.194652   O 0.635652 2.526376 0.604954   C 2.091289 0.114762 -1.733662                                                                                                                                                                                                                                                                                                                                                                                               | H = -1623.364778                                                                   |
| 17   scf done: -1623.501380   S 0.000000 0.000000   C 0.000000 0.000000   C 1.778165 0.000000 -0.253799   O -0.221301 1.830609 -0.194652   O 0.635652 2.526376 0.604954   C 2.091289 0.114762 -1.733662   C -1.418767 -0.077036 2.322683                                                                                                                                                                                                                                                                                                                                                              | H = -1623.364778                                                                   |
| 17   scf done: -1623.501380   S 0.000000 0.000000   C 0.000000 0.000000   C 1.778165 0.000000   O -0.221301 1.830609   O 0.635652 2.526376   O 0.635652 2.526376   C 2.091289 0.114762   C -1.418767 -0.077036   CI -1.369262 0.036962                                                                                                                                                                                                                                                                                                                                                                | H = -1623.364778                                                                   |
| 17   scf done: -1623.501380   S 0.000000 0.000000   C 0.000000 0.000000   C 1.778165 0.000000   O -0.221301 1.830609   O -0.635652 2.526376   O 0.635652 2.526376   O 0.635652 2.526376   C 1.418767 -0.077036   C -1.369262 0.036962   H 2.182014 -0.912821   O.181894 -0.912821                                                                                                                                                                                                                                                                                                                     | H = -1623.364778                                                                   |
| 17   scf done: -1623.501380   S 0.000000 0.000000   C 0.000000 0.000000   C 1.778165 0.000000 -0.253799   O -0.221301 1.830609 -0.194652   O 0.635652 2.526376 0.604954   C 2.091289 0.114762 -1.733662   C -1.418767 -0.077036 2.322683   CI -1.369262 0.036962 4.103784   H 2.182014 -0.912821 0.181894   H 2.125075 0.881481 0.298229                                                                                                                                                                                                                                                              | H = -1623.364778                                                                   |
| 17   scf done: -1623.501380   S 0.000000 0.000000   C 0.000000 0.000000   C 1.778165 0.000000 -0.253799   O -0.221301 1.830609 -0.194652   O 0.635652 2.526376 0.604954   C 2.091289 0.114762 -1.733662   C -1.418767 -0.077036 2.322683   CI -1.369262 0.036962 4.103784   H 2.182014 -0.912821 0.181894   H 2.125075 0.881481 0.298229   H 1.729914 -0.743979 -2.292796                                                                                                                                                                                                                             | H = -1623.364778                                                                   |
| 17   scf done: -1623.501380   S 0.000000 0.000000   C 0.000000 0.000000   C 1.778165 0.000000 -0.253799   O -0.221301 1.830609 -0.194652   O 0.635652 2.526376 0.604954   C 2.091289 0.114762 -1.733662   C -1.418767 -0.077036 2.322683   CI -1.369262 0.036962 4.103784   H 2.182014 -0.912821 0.181894   H 2.125075 0.881481 0.298229   H 1.729914 -0.743979 -2.292796   H 1.679041 1.029718 -2.149896                                                                                                                                                                                             | H = -1623.364778                                                                   |
| 17   scf done: -1623.501380   S 0.000000 0.000000   C 0.000000 0.000000   C 1.778165 0.000000   O -0.221301 1.830609   O -0.221301 1.830609   O -0.635652 2.526376   O 0.635652 2.526376   O 0.635652 2.526376   C 2.091289 0.114762   C 2.091289 0.114762   C -1.418767 -0.077036   C -1.369262 0.036962   H 2.182014 -0.912821   H 2.125075 0.881481   H 2.125075 0.881481   H 1.679041 1.029718   H 1.679041 1.029718   H 0.479444 0.958472                                                                                                                                                        | H = -1623.364778                                                                   |
| 17   scf done: -1623.501380   S 0.000000 0.000000   C 0.000000 0.000000   C 1.778165 0.000000   O -0.221301 1.830609   O -0.635652 2.526376 0.604954   C 2.091289 0.114762 -1.733662   C -1.418767 -0.077036 2.322683   CI -1.369262 0.036962 4.103784   H 2.182014 -0.912821 0.181894   H 2.125075 0.881481 0.298229   H 1.679041 1.029718 -2.149896   H 0.479444 0.958472 2.040216   H 0.611517 -0.833669 2.134774                                                                                                                                                                                  | H = -1623.364778                                                                   |
| 17   scf done: -1623.501380   S 0.000000 0.000000   C 0.000000 0.000000   C 1.778165 0.000000 -0.253799   O -0.221301 1.830609 -0.194652   O 0.635652 2.526376 0.604954   C 2.091289 0.114762 -1.733662   C -1.418767 -0.077036 2.322683   CI -1.369262 0.036962 4.103784   H 2.182014 -0.912821 0.181894   H 2.125075 0.881481 0.298229   H 1.729914 -0.743979 -2.292796   H 1.679041 1.029718 -2.149896   H 0.479444 0.958472 2.040216   H 0.611517 -0.833669 2.134774   H -2.018930 0.753831 1.961509                                                                                              | H = -1623.364778                                                                   |
| 17   scf done: -1623.501380   S 0.000000 0.000000   C 0.000000 0.000000   C 1.778165 0.000000   O -0.221301 1.830609   O -0.221301 1.830609   O -0.221301 1.830609   O -0.221301 1.830609   O 0.635652 2.526376   C 2.091289 0.114762   C 2.091289 0.114762   C 1.369262 0.036962 4.103784   H 2.182014 -0.912821 0.181894   H 2.125075 0.881481 0.298229   H 1.729914 -0.743979 -2.292796   H 1.679041 1.029718 -2.149896   H 0.479444 <td>H = -1623.364778</td> | H = -1623.364778                                                                   |
| 17   scf done: -1623.501380   S 0.000000 0.000000   C 0.000000 0.000000   C 1.778165 0.000000 -0.253799   O -0.221301 1.830609 -0.194652   O 0.635652 2.526376 0.604954   C 2.091289 0.114762 -1.733662   C -1.418767 -0.077036 2.322683   CI -1.369262 0.036962 4.103784   H 2.182014 -0.912821 0.181894   H 2.125075 0.881481 0.298229   H 1.729914 -0.743979 -2.292796   H 1.679041 1.029718 -2.149896   H 0.479444 0.958472 2.040216   H 0.611517 -0.833669 2.134774   H -2.018930 0.753831 1.961509                                                                                              | H = -1623.364778                                                                   |
| 17   scf done: -1623.501380   S 0.000000 0.000000   C 0.000000 0.000000   C 1.778165 0.000000   O -0.221301 1.830609   O -0.221301 1.830609   O -0.221301 1.830609   O -0.221301 1.830609   O 0.635652 2.526376   C 2.091289 0.114762   C 2.091289 0.114762   C 1.369262 0.036962 4.103784   H 2.182014 -0.912821 0.181894   H 2.125075 0.881481 0.298229   H 1.729914 -0.743979 -2.292796   H 1.679041 1.029718 -2.149896   H 0.479444 <td>H = -1623.364778</td> | H = -1623.364778                                                                   |
| 17   scf done: -1623.501380   S 0.000000 0.000000   C 0.000000 0.000000   C 1.778165 0.000000   O -0.221301 1.830609   O -0.221301 1.830609   O -0.221301 1.830609   O -0.221301 1.830609   O 0.635652 2.526376   C 2.091289 0.114762   C 2.091289 0.114762   C 1.369262 0.036962 4.103784   H 2.182014 -0.912821 0.181894   H 2.125075 0.881481 0.298229   H 1.729914 -0.743979 -2.292796   H 1.679041 1.029718 -2.149896   H 0.479444 <td>H = -1623.364778</td> | H = -1623.364778                                                                   |
| 17   scf done: -1623.501380   S 0.000000 0.000000   C 0.000000 0.000000   C 1.778165 0.000000 -0.253799   O -0.221301 1.830609 -0.194652   O 0.635652 2.526376 0.604954   C 2.091289 0.114762 -1.733662   C -1.418767 -0.077036 2.322683   CI -1.369262 0.036962 4.103784   H 2.182014 -0.912821 0.181894   H 2.125075 0.881481 0.298229   H 1.729914 -0.743979 -2.292796   H 1.679041 1.029718 -2.149896   H 0.479444 0.958472 2.040216   H 0.611517 -0.833669 2.134774   H -2.018930 0.753831 1.961509   H -1.897531 -1.018450 2.068487   CI 3.863063 0.185112 -1.939820                            | H = -1623.364778<br>G = -1623.416916                                               |
| 17   scf done: -1623.501380   S 0.000000 0.000000   C 0.000000 0.000000   C 1.778165 0.000000   O -0.221301 1.830609 -0.194652   O 0.635652 2.526376 0.604954   C 2.091289 0.114762 -1.733662   C -1.418767 -0.077036 2.322683   CI -1.369262 0.036962 4.103784   H 2.182014 -0.912821 0.181894   H 2.125075 0.881481 0.298229   H 1.679041 1.029718 -2.149896   H 0.479444 0.958472 2.040216   H 0.611517 -0.833669 2.134774   H -2.018930 0.753831 1.961509   H -1.897531 -1.018450 2.068487   CI 3.863063 0.185112 -1.939820                                                                       | H = -1623.364778<br>G = -1623.416916<br>MP2/6-31+G** (Hartree)<br>H = -1623.364796 |
| 17   scf done: -1623.501380   S 0.000000 0.000000   C 0.000000 0.000000   C 1.778165 0.000000   O -0.221301 1.830609   O -0.221301 1.830609 -0.194652   O 0.635652 2.526376 0.604954   C 2.091289 0.114762 -1.733662   C -1.418767 -0.077036 2.322683   CI -1.369262 0.036962 4.103784   H 2.182014 -0.912821 0.181894   H 2.125075 0.881481 0.298229   H 1.729914 -0.743979 -2.292796   H 1.679041 1.029718 -2.149896   H 0.479444 0.958472 2.040216   H 0.611517 -0.833669 2.134774   H -2.018930 0.753831 1.961509   H -1.897531 -1.018450 2.068487   CI 3.863063 0.185112 -1.939820               | H = -1623.364778<br>G = -1623.416916                                               |

| C                                                                                           | 0.000000                                                                                                                                                                                   | 0.000000                                                                                                                                                         | 1.792323                                                                                                                                                     |                        |
|---------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|
| С                                                                                           | 1.778164                                                                                                                                                                                   | 0.000000                                                                                                                                                         | -0.253799                                                                                                                                                    |                        |
| 0                                                                                           | -0.221301                                                                                                                                                                                  | -1.830611                                                                                                                                                        | -0.194652                                                                                                                                                    |                        |
| 0                                                                                           | 0.635666                                                                                                                                                                                   | -2.526379                                                                                                                                                        | 0.604936                                                                                                                                                     |                        |
| С                                                                                           | -1.418767                                                                                                                                                                                  | 0.077036                                                                                                                                                         | 2.322684                                                                                                                                                     |                        |
| CI                                                                                          | -1.369262                                                                                                                                                                                  | -0.036962                                                                                                                                                        | 4.103785                                                                                                                                                     | T                      |
| С                                                                                           | 2.091287                                                                                                                                                                                   | -0.114737                                                                                                                                                        | -1.733664                                                                                                                                                    |                        |
| CI                                                                                          | 3.863062                                                                                                                                                                                   | -0.185088                                                                                                                                                        | -1.939823                                                                                                                                                    |                        |
| н                                                                                           | 0.611503                                                                                                                                                                                   | 0.833679                                                                                                                                                         | 2.134775                                                                                                                                                     |                        |
| н                                                                                           | 0.479444                                                                                                                                                                                   | -0.958472                                                                                                                                                        | 2.040217                                                                                                                                                     |                        |
| н                                                                                           | -1.897531                                                                                                                                                                                  | 1.018450                                                                                                                                                         | 2.068488                                                                                                                                                     |                        |
| н                                                                                           | -2.018930                                                                                                                                                                                  | -0.753831                                                                                                                                                        | 1.961510                                                                                                                                                     |                        |
| н                                                                                           | 2.125053                                                                                                                                                                                   | -0.881495                                                                                                                                                        | 0.298219                                                                                                                                                     |                        |
| н                                                                                           | 2.182016                                                                                                                                                                                   | 0.912813                                                                                                                                                         | 0.181910                                                                                                                                                     |                        |
| н                                                                                           | 1.679038                                                                                                                                                                                   | -1.029685                                                                                                                                                        | -2.149914                                                                                                                                                    |                        |
| н                                                                                           | 1.729915                                                                                                                                                                                   | 0.744015                                                                                                                                                         | -2.292783                                                                                                                                                    |                        |
|                                                                                             |                                                                                                                                                                                            |                                                                                                                                                                  |                                                                                                                                                              |                        |
| 1.15                                                                                        | 00                                                                                                                                                                                         |                                                                                                                                                                  |                                                                                                                                                              | MP2/6-31+G** (Hartree) |
|                                                                                             |                                                                                                                                                                                            |                                                                                                                                                                  |                                                                                                                                                              |                        |
| пL<br>16                                                                                    |                                                                                                                                                                                            |                                                                                                                                                                  |                                                                                                                                                              | H = -1548.468056       |
| 16                                                                                          |                                                                                                                                                                                            | 3.6024474                                                                                                                                                        |                                                                                                                                                              |                        |
| 16                                                                                          | ;                                                                                                                                                                                          | 3.6024474<br>0.000000                                                                                                                                            | 0.000000                                                                                                                                                     | H = -1548.468056       |
| 16<br>sc                                                                                    | f done: -1548<br>0.000000<br>0.000000                                                                                                                                                      | 0.000000<br>0.000000                                                                                                                                             | 1.818220                                                                                                                                                     | H = -1548.468056       |
| 16<br>sc<br>S                                                                               | f done: -1548<br>0.000000                                                                                                                                                                  | 0.000000                                                                                                                                                         |                                                                                                                                                              | H = -1548.468056       |
| 16<br>sc<br>S<br>C                                                                          | f done: -1548<br>0.000000<br>0.000000<br>1.808010<br>-0.478699                                                                                                                             | 0.000000<br>0.000000<br>0.000000<br>-1.395541                                                                                                                    | 1.818220                                                                                                                                                     | H = -1548.468056       |
| 16<br>sc<br>S<br>C<br>C                                                                     | f done: -1548<br>0.000000<br>0.000000<br>1.808010<br>-0.478699<br>-1.427710                                                                                                                | 0.000000<br>0.000000<br>0.000000                                                                                                                                 | 1.818220<br>-0.187222                                                                                                                                        | H = -1548.468056       |
| 16<br>sc<br>S<br>C<br>C<br>C<br>C<br>C                                                      | f done: -1548<br>0.000000<br>0.000000<br>1.808010<br>-0.478699<br>-1.427710<br>-1.443668                                                                                                   | 0.000000<br>0.000000<br>-1.395541<br>-0.105771<br>-0.130669                                                                                                      | 1.818220<br>-0.187222<br>-0.430838<br>2.316231<br>4.104558                                                                                                   | H = -1548.468056       |
| 16<br>sc<br>S<br>C<br>C<br>C<br>C<br>C<br>C<br>C                                            | f done: -1548<br>0.000000<br>0.000000<br>1.808010<br>-0.478699<br>-1.427710<br>-1.443668<br>2.155318                                                                                       | 0.000000<br>0.000000<br>-1.395541<br>-0.105771<br>-0.130669<br>-0.116456                                                                                         | 1.818220<br>-0.187222<br>-0.430838<br>2.316231<br>4.104558<br>-1.658278                                                                                      | H = -1548.468056       |
| 16<br>sc<br>S<br>C<br>C<br>C<br>C<br>C<br>C<br>C                                            | f done: -1548<br>0.000000<br>0.000000<br>1.808010<br>-0.478699<br>-1.427710<br>-1.443668<br>2.155318<br>3.932253                                                                           | 0.000000<br>0.000000<br>-1.395541<br>-0.105771<br>-0.130669<br>-0.116456<br>-0.134343                                                                            | 1.818220<br>-0.187222<br>-0.430838<br>2.316231<br>4.104558<br>-1.658278<br>-1.860394                                                                         | H = -1548.468056       |
| 16<br>sc<br>S<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>H                             | f done: -1548<br>0.000000<br>1.808010<br>-0.478699<br>-1.427710<br>-1.443668<br>2.155318<br>3.932253<br>0.464737                                                                           | 0.000000<br>0.000000<br>-1.395541<br>-0.105771<br>-0.130669<br>-0.116456<br>-0.134343<br>0.931059                                                                | 1.818220<br>-0.187222<br>-0.430838<br>2.316231<br>4.104558<br>-1.658278<br>-1.860394<br>2.145582                                                             | H = -1548.468056       |
| 16<br>sc<br>S<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>H<br>H                             | f done: -1548<br>0.000000<br>0.000000<br>1.808010<br>-0.478699<br>-1.427710<br>-1.443668<br>2.155318<br>3.932253<br>0.464737<br>0.594233                                                   | 0.000000<br>0.000000<br>-1.395541<br>-0.105771<br>-0.130669<br>-0.116456<br>-0.134343<br>0.931059<br>-0.853590                                                   | 1.818220<br>-0.187222<br>-0.430838<br>2.316231<br>4.104558<br>-1.658278<br>-1.860394<br>2.145582<br>2.147648                                                 | H = -1548.468056       |
| 16<br>sc<br>S<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>H<br>H<br>H                        | f done: -1548<br>0.000000<br>0.000000<br>1.808010<br>-0.478699<br>-1.427710<br>-1.443668<br>2.155318<br>3.932253<br>0.464737<br>0.594233<br>-2.024582                                      | 0.000000<br>0.000000<br>-1.395541<br>-0.105771<br>-0.130669<br>-0.116456<br>-0.134343<br>0.931059<br>-0.853590<br>0.746006                                       | 1.818220<br>-0.187222<br>-0.430838<br>2.316231<br>4.104558<br>-1.658278<br>-1.860394<br>2.145582<br>2.147648<br>1.999767                                     | H = -1548.468056       |
| 16<br>sc<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>H<br>H<br>H                             | f done: -1548<br>0.000000<br>1.808010<br>-0.478699<br>-1.427710<br>-1.443668<br>2.155318<br>3.932253<br>0.464737<br>0.594233<br>-2.024582<br>-1.892606                                     | 0.000000<br>0.000000<br>-1.395541<br>-0.105771<br>-0.130669<br>-0.116456<br>-0.134343<br>0.931059<br>-0.853590<br>0.746006<br>-1.026858                          | 1.818220<br>-0.187222<br>-0.430838<br>2.316231<br>4.104558<br>-1.658278<br>-1.860394<br>2.145582<br>2.147648<br>1.999767<br>1.977126                         | H = -1548.468056       |
| 16<br>sc<br>S<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>H<br>H<br>H<br>H         | f done: -1548<br>0.000000<br>1.808010<br>-0.478699<br>-1.427710<br>-1.443668<br>2.155318<br>3.932253<br>0.464737<br>0.594233<br>-2.024582<br>-1.892606<br>2.198552                         | 0.000000<br>0.000000<br>-1.395541<br>-0.105771<br>-0.130669<br>-0.116456<br>-0.134343<br>0.931059<br>-0.853590<br>0.746006<br>-1.026858<br>-0.848668             | 1.818220<br>-0.187222<br>-0.430838<br>2.316231<br>4.104558<br>-1.658278<br>-1.860394<br>2.145582<br>2.147648<br>1.999767<br>1.977126<br>0.376037             | H = -1548.468056       |
| 16<br>sc <sup>c</sup><br>S<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>H<br>H<br>H<br>H<br>H | f done: -1548<br>0.000000<br>0.000000<br>1.808010<br>-0.478699<br>-1.427710<br>-1.443668<br>2.155318<br>3.932253<br>0.464737<br>0.594233<br>-2.024582<br>-1.892606<br>2.198552<br>2.179326 | 0.000000<br>0.000000<br>-1.395541<br>-0.105771<br>-0.130669<br>-0.116456<br>-0.134343<br>0.931059<br>-0.853590<br>0.746006<br>-1.026858<br>-0.848668<br>0.935341 | 1.818220<br>-0.187222<br>-0.430838<br>2.316231<br>4.104558<br>-1.658278<br>-1.860394<br>2.145582<br>2.147648<br>1.999767<br>1.977126<br>0.376037<br>0.233369 | H = -1548.468056       |
| 16<br>sc<br>S<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>C<br>H<br>H<br>H<br>H         | f done: -1548<br>0.000000<br>1.808010<br>-0.478699<br>-1.427710<br>-1.443668<br>2.155318<br>3.932253<br>0.464737<br>0.594233<br>-2.024582<br>-1.892606<br>2.198552                         | 0.000000<br>0.000000<br>-1.395541<br>-0.105771<br>-0.130669<br>-0.116456<br>-0.134343<br>0.931059<br>-0.853590<br>0.746006<br>-1.026858<br>-0.848668             | 1.818220<br>-0.187222<br>-0.430838<br>2.316231<br>4.104558<br>-1.658278<br>-1.860394<br>2.145582<br>2.147648<br>1.999767<br>1.977126<br>0.376037             | H = -1548.468056       |

References

S1 Yangyang Liu, Ashlee J. Howarth, Joseph T. Hupp, and Omar K. Farha, *Angew.Chem. Int. Ed.*, **2015**, 54, 9001–9005

S2 Bing Yu, An-Hua Liu, Liang-Nian He, Bin Li, Zhen-Feng Diao and Yu-Nong L, *Green Chem.*, **2012**, 14, 957 - 962.

S3 Tomás Nevesely, Eva Svobodová, Josef Chudoba, Marek Sikorski, and Radek Cibulka, *Adv. Synth. Catal.*, **2016**, 358, 1654–1663.

S4 Jitka Dad'ová, Eva Svobodová, Marek Sikorski, Burkhard König, and Radek Cibulka, *ChemCatChem.*, **2012**, 4, 620–623.