Supporting Information for:

A safe and compact flow platform for the neutralization of a mustard gas simulant with air and light

Noémie Emmanuel,^{a,¶} Pauline Bianchi,^{a,¶} Julien Legros^b and Jean-Christophe M. Monbaliu^{a,*}

a. Center for Integrated Technology and Organic Synthesis, MolSys Research Unit, University of Liège, B-4000 Liège (Sart Tilman), Belgium. <u>jc.monbaliu@uliege.be</u> <u>www.citos.uliege.be</u>

b. Normandie Université, INSA Rouen, UNIROUEN, CNRS COBRA laboratory (UMR 6014 & FR3038) 76000 Rouen (France)

Table of contents

1. Continuous flow setups		ous flow setups
	1.1	Microfluidic setups and parts3
	1.1.1	Pumps3
	1.1.2	Gas module3
	1.1.3	Connectors, ferrules and mixers3
	1.1.4	Check-valves3
	1.1.5	Back-pressure regulator3
	1.1.6	Reactor setups
	1.1.7	Thermoregulatory devices3
	1.2	Part numbers & vendors4
	1.3	Detailed continuous flow setup5
2.	Additio	nal experimental details6
	2.1	Chemicals6
	2.2	Additional experimental data7
	2.2.1	Analytical methods7
	2.2.2	Representative GC results for CEES oxidation8
	2.2.3	Continuous flow procedure for the photooxidation of sulfides18
	2.2.3.1	Continuous flow procedure for the photooxidation of 2-chloroethylethyl sulfide18
	2.2.3.2	Continuous flow procedure for the photooxidation of dipropyl sulfide 1a 18
	2.2.3.3	Continuous flow procedure for the photooxidation of benzyl methyl sulfide 1c18
	2.2.3.4	Continuous flow procedure for the photooxidation of thioanisole 1d 18
	2.2.3.5	Continuous flow procedure for the photooxidation of diphenyl sulfide 1e 19
	2.2.3.6	Continuous flow procedure for the photooxidation of dibenzothiophene 1f 19

	2.2.3.7	Continuous flow procedure for the photooxidation of diethyl sulfide	19
	2.2.3.8	Continuous flow procedure for the photooxidation of thiodipropionic acid	19
	2.2.3.9	Continuous flow procedure for the photooxidation of tetrahydrothiophene	19
	2.2.3.1	Continuous flow procedure for the photooxidation of dibenzyl sulfide	20
	2.2.3.1	1 Continuous flow procedure for the photooxidation of benzyl phenyl sulfide	20
	2.2.3.12	2 Continuous flow procedure for the photooxidation of 2-chloroethylphenyl sulfide	20
	2.2.4	Batch procedures for the synthesis of products and by-products resulting from 2- chloroethylethylsulfide oxidation	21
	2.2.4.1	Batch procedure for the synthesis of vinyl ethyl sulfoxide (EVSO, I-2)	21
	2.2.4.2	Batch procedure for the synthesis of 2-ethoxyethylethyl sulfane (I-1)	21
	2.2.4.3	Batch procedure for the synthesis of 1-ethoxy-2-(ethylsulfinyl)ethane (I-3)	21
	2.2.4.4	Batch procedure for the synthesis of 1-ethoxy-2-(ethylsulfonyl)ethane	21
	2.3	Characterization of compounds	22
	2.3.1	In-line NMR	22
	2.3.2	In-line IR	23
	2.4	Structural identity of compounds	24
	2.5	Copies of NMR spectra	26
3.	Detaile	d data on the photooxidation trials	29
	3.1	Photo oxidation of model thioethers	29
	3.2	CEES photooxidation tests	30
	3.2.1	Impact of the residence time	30
	3.2.2	Comparison of oxygen and air	30
	3.2.3	Comparison of photosensitizers	31
	3.2.4	Comparison of light (wavelength and intensity)	31
4.	Compu	tations	32
	4.1	Stationary points for compounds CEES, HD and 1a-f	32
	4.2	Selected transition states, peroxysulfoxides and sulfoxides	35

1. **Continuous flow setu**ps

1.1 Microfluidic setups and parts

All microfluidic setups were assembled with commercially available parts.

1.1.1 Pumps

ThalesNano microHPLC[®] pumps (wetted parts: SS 316, ruby and sapphire) were utilized to handle the liquid feeds.

1.1.2 Gas module

The gas flow rate was controlled with a Bronkhorst® F210CTM mass flow controller (MFC).

1.1.3 Connectors, ferrules and mixers

1/8" PFA tubings (Swagelok[®]) were equipped with Super Flangeless PEEK nuts, ETFE ferrules and SS rings. 1/4" PFA tubings (Swagelok[®]) were equipped with 1/4" PFA Swagelok Tube Fitting unions and elbows. Connectors, ferrules and unions were purchased from IDEX/Upchurch (details in Table S1).

1.1.4 Check-valves

Check-valves (IDEX/Upchurch Scientific) were inserted between the pumps and the reactor.

1.1.5 Back-pressure regulator

A dome-type BPR (Zaiput Flow Technologies, BPR-10) was inserted downstream. The dometype BPR was connected to a compressed gas cylinder (air or nitrogen) to set the working pressure.

1.1.6 Reactor setups

The flow reactor setups were manufactured by Corning SAS. The preliminary experiments relied on a Corning[®] Advanced-Flow[™] Lab Photo Reactor (1 fluidic module, 2.6 mL internal volume) and the final optimized setup relied on a Corning[®] Advanced-Flow[™] LF/G1 skid Photo Reactor (5 fluidic modules integrated with static mixers and connected in series, 13 mL total internal volume).

1.1.7 Thermoregulatory devices

The reactor was maintained at reaction temperature with a LAUDA Integral XT 280 thermostat. The LED panels were maintained at 10 °C with a LAUDA RP845 (LAUDA Therm 180 silicone oil).

1.2 Part numbers & vendors

Standard fluidic elements and connectors were purchased from IDEX/Upchurch Scientific or from Swagelok (Table S1).

Table S1	. Connectors.	ferrules	and	unions
	. connectors,	iciiaico	ana	annonis

ltem	Details	Vendor	Reference
	Super Flangeless [™] Nut PEEK, 1/4-28 Flat-Bottom, for 1/8"	IDEX/ Upchurch Scientific	P-331
Connectors	Super Flangeless [™] Ferrule Tefzel [™] (ETFE), 1/4-28 Flat-Bottom, for 1/8" OD	IDEX/ Upchurch Scientific	P-359
connectors	PFA Swagelok Tube Fitting, Union, 1/4 in. Tube Fitting	Swagelok	PFA-420-6
	PFA Swagelok Tube Fitting, Union Elbow, 1/4 in. Tube Fitting	Swagelok	PFA-420-9
Unions	Large Bore Union PEEK for 3/16" OD	IDEX/ Upchurch Scientific	P-134
Check-valve	Check-valve inline cartridge 1.5 psi and cartridge holder, PEEK	IDEX/ Upchurch Scientific	CV-3000
Dome-type BPR	Dome-type BPR, metal-free, with adjustable set point	Zaiput Flow Techn.	BPR-10
Tubing	PFA Tubing, 1/8 in. OD x 0.030 in. wall x 100 feet	Swagelok	PFA-T2-030- 100
TUDING	PFA Tubing, 1/4 in. OD x 0.047 in. wall x 100 feet	Swagelok	PFA-T4-047- 100

1.3 Detailed continuous flow setup

Photooxidation of thioethers in a Corning[®] Advanced-Flow[™] LF/G1 skid Photo Reactor. See manuscript for experimental details (Tables 2 and 3).

Figure S1. Detailed setup for the continuous flow photooxidation of sulfides.

2. Additional experimental details

2.1 Chemicals

Chemicals, purities, CAS numbers and suppliers are provided in Table S2.

Solvents	Purity (%)	CAS number	Supplier
Ethanol	99	64-17-5	VWR
Acetonitrile	≥99.8	75-05-8	VWR
2-Methyltetrahydrofuran	≥99	96-47-9	Merck
Chemicals	Purity (%)	CAS number	Supplier
Thioanisole (methyl phenyl sulfide)	>99	100-68-5	TCI
Thioanisole sulfoxide (methyl phenyl sulfoxide)	>98	1193-82-4	TCI
Thioanisole sulfone (methyl phenyl sulfone)	>97	3112-85-4	TCI
Dipropyl sulfide	>98	111-47-7	TCI
Dipropyl sulfone	>99	598-03-8	TCI
Thiodipropionic acid	>99	111-17-1	тсі
Benzyl sulfide	>98	538-74-9	TCI
Benzyl sulfoxide	>98	621-08-9	TCI
Benzyl sulfone	>98	620-32-6	Alfa Aesar
Diphenyl sulfide	>98	139-66-2	TCI
Diphenyl sulfoxide	>99	945-51-7	TCI
Diphenyl sulfone	>99	127-63-9	TCI
Tetrahydrothiophene sulfide	>99	110-01-0	TCI
Tetrahydrothiophene sulfoxide	>95	1600-44-8	TCI
Tetrahydrothiophene sulfone	>99	126-33-0	TCI
Benzyl phenyl sulfide	98	831-91-4	Alfa Aesar
Diethyl sulfide	>98	352-93-2	TCI
Benzyl methyl sulfide	>98	766-92-7	TCI
Benzyl methyl sulfone	>98	3112-90-1	Alfa Aesar
Dibenzothiophene sulfide	98	132-65-0	Alfa Aesar
Dibenzothiophene sulfone	>98	1016-05-3	TCI
2-Chloroethylethyl sulfide	>98	693-07-2	TCI
2-Chloroethylethyl sulfone	95	25027-40-1	Sigma Aldrich
Ethyl vinyl sulfide	>93	627-50-9	TCI
Ethyl vinyl sulfone	98	1889-59-4	Sigma Aldrich
Methyl vinyl sulfone	95	3680-02-2	Alfa Aesar
2-Chloroethylphenyl sulfide	>98	5535-49-9	TCI
2-Chloroethylphenyl sulfone	98	938-09-0	abcr
Phenyl vinyl sulfone	99	5535-48-8	Sigma Aldrich
Gas	Purity (%)	Ref	Supplier
Alphagaz 1 Oxygen	O ₂ ≥ 99.995	P0361L50S2A 001	Air Liquide
Alphagaz 1 Air	$N_2 + O_2 \ge 99.999$	P0291L50S2A 001	Air Liquide

Table S2. Solvents, chemicals and suppliers

2.2 Additional experimental data

2.2.1 Analytical methods

Conversions and selectivities were determined by GC-FID or by HPLC-DAD using the following methods:

GC method: The GC-FID oven program consisted of the following steps: a 3 min hold at 50 °C, a 20 °C min⁻¹ ramp to 250 °C, and a 2 min hold at 250 °C. The temperature of the injector was set at 250 °C and the temperature of the FID detector was set at 270 °C. Prior to analysis unless specified otherwise, the sample was homogenized, 50 μ L of the sample was mixed with 1 mL of EtOH (denaturated with 5% MeOH) in a 1.5 mL Eppendorf[®] vial. Conversions and selectivities for compounds **1a** and **CEES** were determined using this method.

HPLC method:

Eluent: A: Water + 0.1% CF₃COOH (v:v) B: Acetonitrile Gradient Table:

Time (min)	A (%)	B (%)	
0	100	0	
20	20	80	
23	20	80	
25	100	0	
31	100	0	
Flow:	1 mL min ⁻¹		
Injection Volume:	10 µL		
Column:	C18, 100 × 4	C18, 100 $ imes$ 4.6 mm, 3 μ m	
Oven Temperature:	40 °C		
Diode Array Detector	r: 180-800 nm	(processed at 240 nm	

Conversions and selectivities for compounds **1c**, **1d**, **1e** and **1f** were determined using this method.

2.2.2 Representative GC results for **CEES** oxidation GC chromatogram – see manuscript: Table 3, Entry 1

Figure S2. GC chromatogram of the oxidation of **CEES**. See manuscript for experimental details (Table 3, Entry 1).

	Ret. time (min)	Conversion (%)
CEES	5.9	0.10
EVSO (I-2)	7.2	0.94
I-3	8.2	3.39
CEESO	9.75	94.70
CEESO ₂	10.15	0.85

Conversion 99.92%

Selectivity for **CEESO** = 94.8%

GC chromatogram – see manuscript: Table 3, Entry 6

Figure S3. GC chromatogram of the oxidation of **CEES**. See manuscript for experimental details (Table 3, Entry 6).

	Ret. time (min)	Conversion (%)
CEES	5.9	0.79
I-1	6.3	2.79
EVSO (I-2)	7.2	0.95
I-3	8.2	3.36
CEESO	9.75	91.69
CEESO ₂	10.15	0.43

Conversion 99.26%

Selectivity for **CEESO** = 92.4%

GC chromatogram – see manuscript: Table 3, Entry 4

Figure S4. GC chromatogram of the oxidation of **CEES**. See manuscript for experimental details (Table 3, Entry 4).

	Ret. time (min)	Conversion (%)
CEES	5.9	0.27
EVSO (I-2)	7.2	0.79
I-3	8.2	14.56
CEESO	9.75	83.81
CEESO ₂	10.15	0.57

Conversion 99.74%

Selectivity for **CEESO** = 84.0%

Figure S5. GC chromatogram of the oxidation of **CEES**. See manuscript for experimental details (Table 3, Entry 5).

	Ret. time (min)	Conversion (%)
CEES	5.9	0.13
I-1	6.3	0.43
EVSO (I-2)	7.2	0.76
I-3	8.2	13.71
CEESO	9.75	84.71
CEESO ₂	10.15	0.27

Conversion 99.88%

Selectivity for **CEESO** = 84.8%

GC chromatogram – see manuscript: Table 3, Entry 2

Figure S6. GC chromatogram of the oxidation of **CEES**. See manuscript for experimental details (Table 3, Entry 2).

	Ret. time (min)	Conversion (%)
CEES	5.9	0.12
I-1	6.3	0.49
EVSO (I-2)	7.2	1.58
I-3	8.2	1.26
CEESO	9.75	95.94
CEESO ₂	10.15	0.60

Conversion 99.91%

Selectivity for **CEESO** = 96.1%

GC chromatogram – see manuscript: Table 3, Entry 3

Figure S7. GC chromatogram of the oxidation of **CEES**. See manuscript for experimental details (Table 3, Entry 3).

	Ret. time (min)	Conversion (%)
CEES	5.9	0.10
I-1	6.3	0.12
EVSO (I-2)	7.2	1.41
I-3	8.2	2.51
CEESO	9.75	95.30
CEESO ₂	10.15	0.56

Conversion 99.92%

Selectivity for **CEESO** = 95.4%

Figure S8. GC chromatogram of the oxidation of **CEES**. See manuscript for experimental details (Table 3, Entry 10).

	Ret. time (min)	Conversion (%)			
CEES	5.9	28.15			
I-1	6.3	2.02			
EVSO (I-2)	7.2	1.28			
CEESO	9.75	68.47			
CEESO ₂	10.15	0.08			

Conversion 81.88%

Selectivity for **CEESO** = 95.3%

GC chromatogram – see manuscript: Table 3, Entry 7

Figure S9. GC chromatogram of the oxidation of **CEES**. See manuscript for experimental details (Table 3, Entry 7).

	Ret. time (min)	Conversion (%)
CEES	5.9	81.06
I-1	6.3	4.48
EVSO (I-2)	7.2	0.44
CEESO	9.75	14.02

Conversion 51.42%

Selectivity for **CEESO** = 74.0%

GC chromatogram – see manuscript: Table 3, Entry 8

Figure S10. GC chromatogram of the oxidation of **CEES**. See manuscript for experimental details (Table 3, Entry 8).

	Ret. time (min)	Conversion (%)
EVSO (I-2)	7.2	1.68
CEESO	9.75	97.79
CEESO ₂	10.15	0.53

Conversion 100%

Selectivity for **CEESO** = 97.8%

GC chromatogram – See manuscript: Table 3, Entry 9

Figure S11. GC chromatogram of the oxidation of **CEES**. See manuscript for experimental details (Table 3, Entry 9).

	Ret. time (min)	Conversion (%)			
CEES	5.9	41.43			
I-1	6.3	2.56			
EVSO (I-2)	7.2	1.27			
CEESO	9.75	54.74			

Conversion 68.23%

Selectivity for **CEESO** = 93.5%

2.2.3 Continuous flow procedure for the photooxidation of sulfides

2.2.3.1 Continuous flow procedure for the photooxidation of 2-chloroethylethyl sulfide (CEES)

A solution of **CEES** (1 M) and MB (560 μ M) was prepared in EtOH. The pump used to deliver the solution of sulfide/catalyst and the gas flow meter used to deliver oxygen were set to 1 mL min⁻¹ and 20 mL_N min⁻¹, respectively. Both streams were mixed in the fluidic modules (5 x 2.6 mL internal volume, estimated 4 min residence time) at room temperature under 9 bar of counterpressure. White LEDs (4000K) were selected and used at 100% of their maximum intensity. The reactor effluent was collected at steady state, diluted with ethanol and analyzed by GC-FID (>99% conversion, 97.8% selectivity). Photooxidation of 2-chloroethylethyl sulfide with air was conducted following the same procedure with conditions described in Table 3 (>99% conversion, 84% selectivity).

2.2.3.2 Continuous flow procedure for the photooxidation of dipropyl sulfide 1a

A solution of dipropyl sulfide (**1a**, 1 M) and MB (560 μ M) was prepared in EtOH. The pump used to deliver the solution of sulfide/catalyst and the gas flow meter used to deliver oxygen were set to 0.5 mL min⁻¹ and 10 mL_N min⁻¹, respectively. Both streams were mixed in the fluidic modules (5 x 2.6 mL internal volume, estimated 10 min residence time) at room temperature under 9 bar of counterpressure. Orange LEDs (610 nm) were selected and used at 70% of their maximum intensity. The reactor effluent was collected at steady state, diluted with ethanol and analyzed by GC-FID (>99% conversion, 97.2% selectivity).

2.2.3.3 Continuous flow procedure for the photooxidation of benzyl methyl sulfide **1c** A solution of benzyl methyl sulfide (**1c**, 1 M) and MB (560 μ M) was prepared in EtOH. The pump used to deliver the solution of sulfide/catalyst and the gas flow meter used to deliver oxygen were set to 0.5 mL min⁻¹ and 10 mL_N min⁻¹, respectively. Both streams were mixed in the fluidic modules (5 x 2.6 mL internal volume, estimated 10 min residence time) at room temperature under 9 bar of counterpressure. Orange LEDs (610 nm) were selected and used at 70% of their maximum intensity. The reactor effluent was collected at steady state, diluted with ethanol and analyzed by HPLC-DAD (>99% conversion, >99% selectivity).

2.2.3.4 Continuous flow procedure for the photooxidation of thioanisole **1d**

A solution of thioanisole (**1d**, 1 M) and MB (560 μ M) was prepared in EtOH. The pump used to deliver the solution of sulfide/catalyst and the gas flow meter used to deliver oxygen were set to 0.5 mL min⁻¹ and 10 mL_N min⁻¹, respectively. Both streams were mixed in the fluidic modules (5 x 2.6 mL internal volume, estimated 10 min residence time) at room temperature under 9 bar of counterpressure. Orange LEDs (610 nm) were selected and used at 70% of their maximum intensity. The reactor effluent was collected at steady state, diluted with ethanol and analyzed by HPLC-DAD (>99% conversion, >99% selectivity).

2.2.3.5 Continuous flow procedure for the photooxidation of diphenyl sulfide **1e** A solution of diphenyl sulfide (**1e**, 0.1 M) and 9,10-dicyanoanthracene (56 μ M) was prepared in MeCN. The pump used to deliver the solution of sulfide/catalyst and the gas flow meter used to deliver oxygen were set to 0.5 mL min⁻¹ and 10 mL_N min⁻¹, respectively. Both streams were mixed in the fluidic modules (5 x 2.6 mL internal volume, estimated 10 min residence time) at room temperature under 9 bar of counterpressure. Purple LEDs (395 nm) were selected and used at 70% of their maximum intensity. The reactor effluent was collected at steady state, diluted with MeCN and analyzed by HPLC-DAD (46.6% conversion, >99% selectivity).

2.2.3.6 Continuous flow procedure for the photooxidation of dibenzothiophene ${\bf 1f}$

A solution of dibenzothiophene (**1f**, 0.1 M) and 9,10-dicyanoanthracene (56 μ M) was prepared in MeCN. The pump used to deliver the solution of sulfide/catalyst and the gas flow meter used to deliver oxygen were set to 0.5 mL min⁻¹ and 10 mL_N min⁻¹, respectively. Both streams were mixed in the fluidic modules (5 x 2.6 mL internal volume, estimated 10 min residence time) at room temperature under 9 bar of counterpressure. Orange LEDs (610 nm) were selected and used at 70% of their maximum intensity. The reactor effluent was collected at steady state, diluted with MeCN and analyzed by HPLC-DAD (48.9% conversion, 20.3% selectivity).

2.2.3.7 Continuous flow procedure for the photooxidation of diethyl sulfide

A solution of diethyl sulfide (1 M) and MB (560 μ M) was prepared in EtOH. The pump used to deliver the solution of sulfide/catalyst and the gas flow meter used to deliver oxygen were set to 0.5 mL min⁻¹ and 10 mL_N min⁻¹, respectively. Both streams were mixed in the fluidic modules (5 x 2.6 mL internal volume, estimated 10 min residence time) at room temperature under 9 bar of counterpressure. Orange LEDs (610 nm) were selected and used at 70% of their maximum intensity. The reactor effluent was collected at steady state, diluted with ethanol and analyzed by GC-FID (>99% conversion, 97.3% selectivity).

2.2.3.8 Continuous flow procedure for the photooxidation of thiodipropionic acid

A solution of thiodipropionic acid (1 M) and MB (560 μ M) was prepared in EtOH. The pump used to deliver the solution of sulfide/catalyst and the gas flow meter used to deliver oxygen were set to 0.5 mL min⁻¹ and 10 mL_N min⁻¹, respectively. Both streams were mixed in the fluidic modules (5 x 2.6 mL internal volume, estimated 10 min residence time) at room temperature under 9 bar of counterpressure. Orange LEDs (610 nm) were selected and used at 70% of their maximum intensity. The reactor effluent was collected at steady state, diluted with ethanol and analyzed by NMR (>99% conversion, >99% selectivity).

2.2.3.9 Continuous flow procedure for the photooxidation of tetrahydrothiophene A solution of tetrahydrothiophene (1 M) and MB (560 μ M) was prepared in EtOH. The pump used to deliver the solution of sulfide/catalyst and the gas flow meter used to deliver oxygen were set to 0.5 mL min⁻¹ and 10 mL_N min⁻¹, respectively. Both streams were

mixed in the fluidic modules (5 x 2.6 mL internal volume, estimated 10 min residence time) at room temperature under 9 bar of counterpressure. Orange LEDs (610 nm) were selected and used at 70% of their maximum intensity. The reactor effluent was collected at steady state, diluted with ethanol and analyzed by GC-FID (>99% conversion, >99% selectivity).

2.2.3.10 Continuous flow procedure for the photooxidation of dibenzyl sulfide

A solution of dibenzyl sulfide (0.1 M) and MB (560 μ M) was prepared in EtOH/2-MeTHF. The pumps used to deliver the solution of sulfide/catalyst and the gas flow meter used to deliver oxygen were set to 0.5 mL min⁻¹ and 10 mL_N min⁻¹, respectively. Both streams were mixed in the fluidic modules (5 x 2.6 mL internal volume, estimated 10 min residence time) at 60 °C under 9 bar of counterpressure. Orange LEDs (610 nm) were selected and used at 70% of their maximum intensity. The reactor effluent was collected at steady state, diluted with ethanol and analyzed by HPLC-DAD (>99% conversion, >63.9% selectivity).

2.2.3.11 Continuous flow procedure for the photooxidation of benzyl phenyl sulfide

A solution of benzyl phenyl sulfide (1 M) and MB (560 μ M) was prepared in EtOH. The pump used to deliver the solution of sulfide/catalyst and the gas flow meter used to deliver oxygen were set to 0.1 mL min⁻¹ and 25 mL_N min⁻¹, respectively. Both streams were mixed in the fluidic modules (1 x 2.6 mL internal volume, estimated 1 min residence time) at room temperature under 9 bar of counterpressure. Orange LEDs (610 nm) were selected and used at 70% of their maximum intensity. The reactor effluent was collected at steady state, diluted with ethanol and analyzed by HPLC-DAD (13.1% conversion, 55.7% selectivity).

2.2.3.12 Continuous flow procedure for the photooxidation of 2-chloroethylphenyl sulfide A solution of 2-chloroethylphenyl sulfide (0.1 M) and MB (56 μ M) was prepared in EtOH. The pump used to deliver the solution of sulfide/catalyst and the gas flow meter used to deliver oxygen were set to 0.5 mL min⁻¹ and 10 mL_N min⁻¹, respectively. Both streams were mixed in the fluidic modules (5 x 2.6 mL internal volume, estimated 10 min residence time) at room temperature under 9 bar of counterpressure. Orange LEDs (610 nm) were selected and used at 70% of their maximum intensity. The reactor effluent was collected at steady state, diluted with ethanol and analyzed by GC-MS (>93.1% conversion, >99% selectivity).

- 2.2.4 Batch procedures for the synthesis of products and by-products resulting from 2-chloroethylethylsulfide oxidation
- 2.2.4.1 Batch procedure for the synthesis of vinyl ethyl sulfoxide (EVSO, I-2)

A solution of ethyl vinyl sulfide (1 M, 5 mL) was prepared in EtOH and oxidized with an aqueous solution of 30% H_2O_2 (1 mL). An aliquot was taken after 5 min, diluted in EtOH, analyzed by GC-FID. Vinyl ethyl sulfoxide (**EVSO**) was detected alongside with vinyl ethyl sulfone (**EVSO**₂) and identified by MS.

2.2.4.2 Batch procedure for the synthesis of 2-ethoxyethylethyl sulfane (I-1) A solution of 2-chloroethyl ethyl sulfide (1 M, 5 mL) was prepared in EtOH and heated in a microwave oven (CEM Discovery, 150 °C, 3 x 20 min, 150 W). An aliquot was diluted in EtOH, analyzed by GC-FID and identified by NMR and MS.

The formation of 2-ethoxyethylethyl sulfane (I-1) was also studied by leaving a solution of CEES (1 M) in EtOH for a week at room temperature without mixing. An aliquot was diluted in EtOH and analyzed by GC-FID over 4 days. From day 1 to day 4, the quantity of 2-ethoxyethylethylsulfane (I-1) increased from 1.19% to 4.03%. Even if I-1 is detectable in GC when a fresh solution of CEES in EtOH is injected, this increase over time demonstrates that the formation of additional I-1 occurs slowly upon standing in solution at room temperature.

2.2.4.3 Batch procedure for the synthesis of 1-ethoxy-2-(ethylsulfinyl)ethane (I-3) A solution of 2-ethoxyethylethyl sulfane (0.1 M, 2 mL) was prepared in EtOH and oxidized with an aqueous solution of 30% H_2O_2 (0.3 mL). An aliquot was taken immediately, diluted in EtOH, analyzed by GC-FID. 1-Ethoxy-2-(ethylsulfinyl)ethane (I-3) was identified by MS.

I-3 was not detected in GC when a solution of **EVSO** (**I-2**) in EtOH was injected; thus rejecting the filiation between **EVSO** and **I-3**.

2.2.4.4 Batch procedure for the synthesis of 1-ethoxy-2-(ethylsulfonyl)ethane A solution of 2-ethoxyethylethyl sulfane (0.1 M, 2 mL) was prepared in EtOH and oxidized with an aqueous solution of 30% H_2O_2 (0.3 mL). An aliquot was taken after 5 min, diluted in EtOH, analyzed by GC-FID. 1-Ethoxy-2-(ethylsulfonyl)ethane was identified by MS.

2.3 Characterization of compounds

Commercial references for sulfoxides were purchased for **CEES**, **1d** and **1e** (see Table S2). For compounds **1a**, **1c** and **1f**, reference sulfoxides were synthesized by oxidation with H_2O_2 for peak identification in HPLC or GC. Commercial references for sulfones were purchased for **CEES**, **1a**, **1c**, **1d**, **1e** and **1f** (see Table S2).

2.3.1 In-line NMR

A study of the evolution of **1d** oxidation regarding to an increase of light intensity was conducted. An In-line NMR was equipped downstream (43 MHz Spinsolve[™] Carbon NMR spectrometer from Magritek[®] equipped with the flow-through module). A T-mixer was used to vent the excess gas before entering the NMR flow cell.

Figure S12. Detailed setup for the continuous flow photooxidation of sulfides.

A solution of **1d** (1 M) and MB (560 μ M) was prepared in EtOH. The pumps used to deliver the solution of sulfide/catalyst and the gas flow meter used to deliver oxygen were set to 0.5 mL min⁻¹ and 10 mL_N min⁻¹, respectively. Both streams were mixed in the fluidic modules (5 x 2.6 mL internal volume, estimated 10 min residence time) at 20 °C under 9 bar of counterpressure. LEDs were set on a 610 nm wavelength with an increasing intensity (from 0% to 100% with a 10% increment). A first ¹H NMR spectrum was recorded for the solvent alone. When the reaction started, a ¹H NMR spectrum was recorded after each increment of light intensity. The evolution of the oxidation can be studied by following the shift of the -CH₃ signal from 2.42 ppm to 2.81 ppm. The reaction reached completion upon irradiation at 70% of light intensity (see Figure S13).

Figure S13. In-line ¹H NMR (43 MHz) spectra of **1d** photooxidation. Evolution of the sulfoxide appearance with an increase of light intensity.

2.3.2 In-line IR

To assess the efficiency of the In-line IR as an analytical tool to follow the oxidation of **CEES**, a first set of experiments was carried out on **1a** as a model thioether (see Figure S14).

A solution of dipropyl sulfide (**1a**, 1 M) was prepared in EtOH and injected first. Every 2 min, the amount of **1a** was reduced and the amount of dipropyl sulfoxide (**2a**) was increased to the point where the solution only contained the sulfoxide (1 M). The same procedure was applied with a decrease in sulfoxide and an increase in the corresponding sulfone **3a** until a concentration of 1 M was reached. Compound **1a** does not show any easily distinguishable signals from the solvent backbone and fingerprint. The corresponding sulfoxide **2a** shows a characteristic broad peak between 980 and 1020 cm⁻¹ that can be utilized to monitor the appearance of **2a**. The IR spectrum of dipropyl sulfone (**3a**) also displays characteristic vibration bands at 1130, 1280 and 1315 cm⁻¹ (see Figure S15) that can be utilized to monitor variations in its concentration.

Figure S15. In-line IR spectra following **1a** oxidation to sulfoxide and overoxidation to sulfone.

The same procedure was applied to the oxidation of **CEES** for establishing a usable library of IR spectra. The characteristic vibration bands for the corresponding sulfoxide **CEESO** can be seen at 980 and 1020 cm⁻¹, while the characteristic vibration bands for the sulfone **CEESO₂** appear between 1220 and 1360 cm⁻¹ and at about 1730 cm⁻¹ (see Figure S16). These

experiments confirm that In-line IR can be used as a suitable monitoring tool for the monitoring of **CEES** oxidation.

Figure S16. In-line IR spectra following **CEES** oxidation to sulfoxide and overoxidation to sulfone.

2.4 Structural identity of compounds

C₆H₁₄OS MW 134,24

C₈H₁₀OS MW 154,23

C₇H₈OS MW 140,20

CEESO. ¹H NMR (CDCl₃, 400 MHz): δ = 3.96 (m, 2H), 3.21 (m, 2H), 2.91 (m, 2H), 1.37 (t, *J* = 7.5 Hz, 3H) ppm. The NMR data match those reported in the literature.^{S1} **ESI HRMS** *m/z* C₄H₁₀O³⁵Cl³²S⁺ [M+H]⁺: calcd 141.01354; found 141.01366.

Dipropyl sulfoxide (**2a**). ¹H NMR (MeOD, 400 MHz): δ = 2.66 – 8.62 (m, 4H), 1.74 – 1.63 (m, 4H), 1.00 – 0.96 (t, *J* = 7.4 Hz, 6H) ppm. The NMR data match those reported in the literature.^{S2}

Benzyl methyl sulfoxide (**2c**). ¹H NMR (CDCl₃, 400 MHz): δ = 7.31 – 7.22 (m, 5H), 3.99 (d, J = 12.9 Hz, 1H), 3.92 (d, J = 12.9 Hz, 1H), 2.42 (s, 3H) ppm. The NMR data match those reported in the literature.^{S3}

Phenyl methyl sulfoxide (**2d**). ¹H NMR (CDCl₃, 43 MHz): δ = 7.69 – 7.62 (m, 5H), 2.79 (s, 3H) ppm. The NMR data match the commercial reference and those reported in the literature.⁵⁴

C₆H₁₄OS MW 134,24

Diphenyl sulfoxide (**2e**). ¹H NMR (CDCl₃, 400 MHz): δ = 7.54 – 7.51 (m, 4H), 7.35 – 7.34 (m, 6H) ppm. The NMR data match the commercial reference and those reported in the literature.^{S3}

Dibenzothiophene (**2f**). ¹H NMR (CDCl₃, 400 MHz): δ = 7.98 (d, J = 7.6 Hz, 2H), 7.81 (d, J = 7.6 Hz, 1H), 7.70 – 7.63 (m, 3H), 7.57 – 7.52 (m, 2H) ppm. The NMR data match those reported in the literature.^{S2}

2-ethoxyethylethyl sulfane (I-1). ¹H NMR (CDCl₃, 400 MHz): δ = 3.52 – 3.32 (m, 4H), 2.63 – 2.53 (m, 2H), 2.48 – 2.38 (m, 2H), 1.15 – 1.03 (m, 6H) ppm. GC-MS: m/z = 134

Figure S17. ¹H NMR spectrum (400 MHz) of **CEESO** in CDCl₃.

Figure S18. ¹H NMR spectrum (400 MHz) of dipropyl sulfoxide (**2a**) in CDCl₃.

Figure S19. ¹H NMR spectrum (400 MHz) of benzyl methyl sulfoxide (**2c**) in CDCl₃.

Figure S20. ¹H NMR spectrum (400 MHz) of phenyl methyl sulfoxide (**2d**) in CDCl₃.

Figure S21. ¹H NMR spectrum (400 MHz) of diphenyl sulfide (**2e**) in CDCl₃.

Figure S22. ¹H NMR spectrum (400 MHz) of dibenzothiophene sulfoxide (**2f**) in CDCl₃.

Figure S23. ¹H NMR spectrum (400 MHz) of 2-ethoxyethylethyl sulfane (I-1) in CDCl₃.

- 3. Detailed data on the photooxidation trials
- 3.1 Photooxidation of model thioethers

Table S3. General table of oxidation tests (part 1). Selectivity is only specified when not total towards the sulfoxide.

						Concer	ntration (M)	Flow rate (m	L.min ⁻¹)					
n°exp	Substrate	Oxidant	Photosensib.	Solvent	Temp. (°C)	Substrate	Photosensib.	Substrate	02	BPR (bar)	Light (nm) (Intensity (%))	Res. Time (min)	Conversion (%)	Selectivity (%)
1	thioanisole	0 ₂	MB	EtOH	rt	1	0.00056	1.5	15	8	610 (50)	-4	14.6	
2	thioanisole	0,	MB	EtOH	rt	1	0.00056	1.5	15	8	610 (50)	.4	14.4	
3	thioanisole	0.	MB	EtOH	rt	1	0.00056	1.5	15	8	610 (50)	.4	14.5	
4	thiognicale	0	MB	EtOH		1	0.00056	2.5	15	0	610 (50) 610 (E0)	2	10.0	
4	thioanisole	02	IVID	ELOH	11. 	1	0.00030	2	15	0	610 (50)	~3	10.9	
5	thioanisole	02	IVIB	ELUH	n	1	0.00056	2	15	8	610 (50)	~3	11.12	
6	thioanisole	02	MB	EtOH	rt	1	0.00056	2	15	8	610 (50)	~3	10.8	
7	thioanisole	0 ₂	MB	EtOH	rt	1	0.00056	20.2	15	8	610 (100)	~3	27.3	
8	thioanisole	02	MB	EtOH	rt	1	0.00056	2.5	15	8	610 (50)	~3	7.8	
9	thioanisole	O ₂	MB	EtOH	rt	1	0.00056	3	15	8	610 (50)	~3	7.1	
10	thioanisole	0,	MB	EtOH	rt	1	0.00056	3.5	15	8	610 (50)	~3	6.3	
11	thioanisole	0,	MB	EtOH.	rt	1	0.00056	1.5	15	8	610 (50)	4	10.7	
12	thioanisole	-2	MR	EtOH	 	1	0.00056	2.0	15	°	610 (50)	2	9.7	
12	thioanisole	02	NID	Etoni		1	0.00050	2	15	0	610 (50)	~5	6.7	
13	thioanisole	02	IVIB	ELUH	n	1	0.00056	2.5	15	8	610 (50)	~3	6.7	
14	thioanisole	02	MB	EtOH	rt	1	0.00056	3	15	8	610 (50)	~3	7.2	
15	thioanisole	0 ₂	MB	EtOH	rt	1	0.00056	3.5	15	8	610 (50)	~3	7.0	
16	thioanisole	O ₂	MB	EtOH	rt	1	0.00056	1.5	20	8	610 (50)	~3	0.14	
17	thioanisole	O2	MB	EtOH	rt	1	0.00056	1.5	25	8	610 (50)	~3	14.2	
18	thioanisole	0,	MB	EtOH	rt	1	0.00056	1.5	30	8	610 (50)	-3	10.9	
19	thioanisole	0,	MB	FtOH	rt	1	0.00056	1.5	35	8	610 (50)	2	10.44	
20	thioanisole		MR	EtOH	rt	1	0.00056	2	20	9	610 (50)	2	10.6	
20	thioanisole	02	MD	EtOII		1	0.00050	2	20	0	610 (50)		10.0	
21	thioanisole	02	IVIB	ELUH	n	1	0.00056	2	25	8	610 (50)	~3	10.1	
22	thioanisole	02	MB	EtOH	rt	1	0.00056	2	30	8	610 (50)	~3	9.9	
23	thioanisole	02	MB	EtOH	rt	1	0.00056	2	35	8	610 (50)	2	9.8	
24	thioanisole	0 ₂	MB	EtOH	rt	1	0.00056	1.5	10	8	610 (50)	~5	14.6	
25	thioanisole	02	MB	EtOH	rt	1	0.00056	2	10	8	610 (50)	-4	10.9	
26	thioanisole	0,	MB	EtOH	rt	1	0.00056	1	15	8	610 (50)	4	19.8	
27	thioanisole	0.	MB	EtOH	rt	1	0.00056	1.5	20	8	610 (60)	-3	16.7	
29	thioanisolo	0	MP	EtOH	rt	1	0.00056	1.5	20	8	610 (70)	.2	21.9	
20	thioartistic	02	NID NID	Etou	it it	1	0.00050	1.5	20	0	610 (00)	~3	21.5	
29	thioanisole	02	IVIB	ELUH	rt	1	0.00056	1.5	20	8	010 (00)	.3	23.9	
30	thioanisole	02	MB	EtOH	rt	1	0.00056	1.5	20	8	610 (90)	~3	32.8	
31	thioanisole	02	MB	EtOH	rt	1	0.00056	1.5	20	8	610 (100)	~3	35.8	
32	thioanisole	02	MB	EtOH	rt	1	0.00056	1	50	8	610 (50)	2	15.5	
33	thioanisole	0,	MB	EtOH	rt	1	0.000056	1	50	8	610 (50)	2	3.4	
34	thioanisole	0,	MB	FtOH	rt	1	0.000056	1	15	8	610 (50)	4	3.4	
35	thioanisole	0.	MB	EtOH	rt	1	0.000056	1.5	15	8	610 (50)	.4	2.6	
26	thiognicale	0	MB	EtOH	rt	1	0.000056	2.5	15	0	610 (50) 610 (E0)		2.0	
50	unioanisole	02	IVID	ELUH	11	1	0.000036	2	15	0	010 (30)	~3	2.2	
37	thioanisole	02	кв	EtUH	rt	1	0.00056	1	50	8	532 (50)	~Z	9.2	
38	thioanisole	02	RB	EtOH	rt	1	0.00056	1	15	8	532 (50)	-4	3.7	
39	thioanisole	0 ₂	RB	EtOH	rt	1	0.00056	1.5	15	8	532 (50)	-4	10.4	
40	thioanisole	O2	RB	EtOH	rt	1	0.00056	2	15	8	532 (50)	~3	10.9	
41	thioanisole	0,	MB	EtOH	rt	1	0.00056	1	15	8	610 (100)	-4	43.9	
42	thioanisole	0,	MB	EtOH.	rt	1	0.00056	0.5	10	8	610 (50)	7	61.2	
42	thioanisole		MR	EtOH	 	1	0.00056	0.5	15	0	610 (50)	6	40.9	
45	thioanisole	02	MD	EtOH	rt	1	0.00056	0.5	10	0	610 (100)	~0	40.0	
44	thioanisole	02	IVIB	ELUH	n	1	0.00056	0.5	10	8	610 (100)	~/	6.66	
45	thioanisole	02	MB	EtOH	rt	1	0.0056	0.5	10	8	610 (50)	~7	25.9	
46	thioanisole	0 ₂	MB	EtOH	rt	1	0.0056	1	15	8	610 (50)	-4	25.6	
47	thioanisole	0 ₂	MB	EtOH	rt	1	0.0056	1.5	15	8	610 (50)	-4	15.05	
48	thioanisole	0 ₂	MB	EtOH	rt	1	0.0056	2	15	8	610 (50)	-4	11.6	
49	thioanisole	0,	MB	EtOH	rt	1	0.000056	0.5	10	8	610 (50)	~6	6.7	
50	thioanisole	0,	MB	EtOH.	rt	1	0.00056	0.5	10	9	610 (50)	~10	N.D	
51	thiognicole	0	MR	E+OH	rt	1	0.00056	0.5	10	7	610 (50)	6	45.4	
51	thiognicale	0	MB	EtOH		1	0.00056	0.5	10	0	610 (50) 610 (E0)	10	94.0	
52	thioanisole	02	IVID	ELOH	11. 	1	0.00030	0.3	10	9	610 (50)	~10	94.0	
53	thioanisole	02	IVIB	ELUH	n	1	0.00056	0.5	10	9	610 (50)	~10	94.8	
54	thioanisole	02	MB	EtOH	rt	1	0.00056	0.5	10	9	610 (80)	~10	66.2	
55	thioanisole	02	MB	EtOH	rt	1	0.001	0.5	10	9	610 (50)	~10	33.9	
56	thioanisole	02	MB	EtOH	rt	1	0.001	0.5	10	9	610 (50)	~10	39.1	
57	thioanisole	O2	MB	EtOH	rt	1	0.001	0.5	10	9	610 (60)	~10	72.8	
58	thioanisole	02	MB	EtOH	rt	1	0.00056	0.5	10	9	610 (70)	~10	99.4	
59	thioanisole	0,	MB	EtOH	rt	1	0.00056	0.5	10	9	610 (70)	10	93.2	
60	thioanisole	0,	MB	EtOH	rt	1	0.00056	0.5	10	9	610 (70)	~10	total	
61	thioanisole	0	MP	EtOH	rt	1	0.00056	0.5	10	0	610 (70)	.10	97.6	
62	henryl methyl sulfid-	02	MP	EtOH		1	0.00056	0.5	10	0	610 (50)	10	total	
02	beneril methyl sunide	02	IVID	Eton .		1	0.00050	0.5	10	,	610 (50)	~10	totai	
03	benzyi methyi suffide	02	IVIB	ELUH	t	1	0.00056	0.5	10	9	610 (60)	~10	total	
64	benzyl methyl sulfide	02	MB	EtOH	rt	1	0.00056	0.5	10	9	610 (80)	~10	total	
65	benzyl methyl sulfide	02	MB	EtOH	rt	1	0.00056	0.5	10	9	610 (70)	10	total	
66	tetrathiophene	02	MB	EtOH	rt	1	0.00056	0.5	10	9	610 (60)	~10	94.8	
67	tetrathiophene	O ₂	MB	EtOH	rt	1	0.00056	0.5	10	9	610 (80)	~10	97.6	97.0
68	tetrathiophene	02	MB	EtOH	rt	1	0.00056	0.5	10	9	610 (70)	10	total	
69	dipropylsulfide	O2	MB	EtOH	rt	1	0.00056	0.5	10	9	610 (80)	~10	total	97.2
70	dipropylsulfide	0,	MB	EtOH	rt	1	0.00056	0.5	10	9	610 (70)	~10	total	92.5
71	diphenyl sulfide	0.	MB	EtOH	rt	1	0,00056	0.5	10	9	610 (70)	.10	6.2	
72	dinhanyi sulfida	0	MD	Etou		1	0.00056	0.5	10	0	610 (70)	10	2.0	
72	diphenyi sumae	02	IVIB	ELUH	it i	1	0.00056	0.5	10	9	010 (70)	~10	5.8	
73	diphenyl sulfide	02	MB	EtOH	rt	1	0.00056	0.5	10	11	610 (70)	~10	6.0	
74	diethyl sulfide	02	MB	EtOH	rt	1	0.00056	0.5	10	9	610 (70)	~10	total	97.3
75	dibenzothiophene	02	MB	EtOH	rt	1	0.00056	0.5	10	9	610 (70)	~10	0.0	
76	Thiodipropionic acid	O ₂	MB	EtOH	rt	1	0.00056	0.5	10	9	610 (70)	~10	total	
77	dibenzyl sulfide	0,	MB	EtOH/2-MeTHF (1:1)	rt	1	0.00056	0.5	10	9	610 (70)	~10	clogged	reactor
78	dibenzyl sulfide	0,	MB	EtOH/2-MeTHF (1:1)	60	0.1	0.00056	0.5	10	9	610 (70)	~10	total	63.9
79	dibenzyl sulfide	0-	MB	EtOH/2-MeTHE (1-1)	70	1	0.00056	0.5	10	9	610 (70)	.10	total	60.5
00	dishand will de	5 ₂		ACN/05:05:45	.0	-	0.00050	0.5	10	-	610 (70)	-10	0.0	55.5
80	dipnenyl sulfide	02	IVIB	ACN/eau 85:15	n	1	0.00056	0.5	10	9	610 (70)	~10	0.0	
81	diphenyl sulfide	02	MB	ACN/eau 85:15	rt	1	0.00056	1.5	20	11,6	610 (70)	~4	0.0	
87	thioanisole	air	MB	EtOH	rt	1	0.00056	0.5	10	9	610 (70)	~10	21.5	
88	thioanisole	air	MB	EtOH	rt	1	0.00056	0.5	10	9	610 (70)	~10	19.3	
89	thioanisole	air	MB	EtOH	rt	1	0.00056	1	20	9	610 (70)	~ 4	15.6	
90	thioanisole	air	MB	EtOH	rt	1	0.00056	1	20	9	610 (70)	~ 4	15.3	
91	thioanisole	air	MB	EtOH	rt	0.1	0.000056	0.5	10	9	610 (70)	~10	total	
02	thiognicals	air	MP	EtOU		0.1	0.000056	0.5	10	0	610 (70)	10	total	
92	thioanisole	alf	IVIB	ELUH	it	0.1	0.000050	0.5	10	9	610 (70)	~10	total	
93	thioanisole	air	MB	EtOH	rt	0.1	0.000056	1.5	30	5	610 (70)	~ 2	46.7	
94	thiognisole	air	MR	EtOH	rt	0.1	0.000056	15	20	5	610 (70)	2	46.2	

Table S3. General table of oxidation tests (part 2). Selectivity is only specified when not total toward the sulfoxide.

						Concer	ntration (M)	Flow rate (mL.min ⁻¹)					
n°exp	Substrate	Oxidant	Photosensib.	Solvent	Temp. (°C)	Substrate	Photosensib.	Substrate	02	BPR (bar)	Light (nm) (Intensity (%))	Res. Time (min)	Conversion (%)	Selectivity (%)
95	propyIS	air	MB	EtOH	rt	0.1	0.000056	0.5	10	9	610 (70)	~10	total	
96	propyIS	air	MB	EtOH	rt	0.1	0.000056	0.5	10	9	610 (70)	~10	total	
97	diphenyl sulfide	O ₂	MB	ACN	rt	0.1	0.00056	0.5	10	9	610 (70)	~10	0.0	
98	diphenyl sulfide	02	MB	ACN	rt	0.1	0.00056	0.5	10	9	610 (70)	~10	0.0	
99	diphenyl sulfide	O ₂	DCA	ACN	rt	0.1	0.000056	0.5	10	9	395 (100)	~10	N.D	
100	diphenyl sulfide	O ₂	DCA	ACN	rt	0.1	0.000056	0.5	10	9	395 (70)	~10	46.6	
101	dibenzothiophene	O ₂	DCA	MeCN	rt	0.1	0.000056	0.5	10	9	395 (100)	~10	20.1	12.5
102	dibenzothiophene	O ₂	DCA	MeCN	rt	0.1	0.000056	0.5	10	9	395 (70)	~10	22.7	7.9
103	dibenzothiophene	O ₂	DCA	MeCN	rt	0.1	0.00056	0.5	10	9	395 (100)	~10	48.9	20.3
104	dibenzothiophene	O ₂	DCA	MeCN	rt	0.1	0.00056	0.5	10	9	395 (70)	~10	47.8	17.2
105	dibenzyl sulfide	0 ₂	DCA	MeCN	rt	0.1	0.00056	0.5	10	9	395 (100)	~10	total	19.0
106	dibenzyl sulfide	O ₂	DCA	MeCN	rt	0.1	0.00056	0.5	10	9	395 (70)	~10	total	21.2
107	CEES	0 ₂	MB	EtOH	rt	1	0.00056	0.5	10	9	610 (100)	~10	99.92	94.8
108	CEES	O ₂	MB	EtOH	rt	1	0.00056	0.5	10	9	610 (70)	~10	99.92	95.5
109	CEES	0 ₂	MB	EtOH	rt	1	0.00056	1	20	9	610 (100)	~ 4	99.26	92.4
110	CEES	Air	MB	EtOH	rt	1	0.00056	0.5	10	9	610 (100)	~10	99.74	84.0
111	CEES	Air	MB	EtOH	rt	0.1	0.000056	0.5	10	9	610 (100)	~10	99.88	84.8
112	CEES	Air	MB	EtOH	rt	0.1	0.000056	0.5	10	9	610 (70)	~10	total	83.4
113	CEES	Air	RB	EtOH	rt	0.1	0.000056	0.5	10	9	530 (100)	~10	83.69	83.4
114	CEES	Air	RB	EtOH	rt	0.1	0.000056	0.5	10	9	530 (70)	~10	80.94	79.5
115	CEES	02	RB	EtOH	rt	1	0.00056	0.5	10	9	530 (70)	~10	94.51	97.3
116	CEES	O ₂	MB	EtOH	rt	1	0.00056	0.5	10	9	white light (100)	~10	99.91	96.1
117	CEES	O ₂	RB	EtOH	rt	1	0.00056	0.5	10	9	white light (100)	~10	99.92	95.4
118	CEES	O ₂	MB	EtOH	rt	1	0.00056	2	40	9	610 (100)	~ 2	81.88	95.3
119	CEES	Air	MB	EtOH	rt	1	0.00056	1	20	9	610 (100)	~ 4	51.42	74.0
120	CEES	O ₂	MB	EtOH	rt	1	0.00056	1	20	9	white light (100)	~ 4	total	97.8
121	CEES	Air	MB	EtOH	rt	1	0.00056	1	20	9	white light (100)	~ 4	68.23	93.5
122	CEPS	0 ₂	MB	EtOH	rt	1	0.00056	1	20	9	610 (100)	~ 4	58.0	97.6
123	CEPS	O ₂	MB	EtOH	rt	1	0.00056	0.5	10	9	610 (100)	~10	57.8	97.6
124	CEPS	02	MB	EtOH	rt	0.1	0.000056	1	20	9	610 (100)	~ 4	65.4	98.1
125	CEPS	O ₂	MB	EtOH	rt	0.1	0.000056	0.5	10	9	610 (100)	~10	93.11	99.9
126	CEPS	0,	MB	EtOH	rt	0.1	0.000056	0.5	10	10	white light (100)	~10	74.7	99.99

3.2 **CEES** photooxidation tests

3.2.1 Impact of the residence time

Table S4. Comparison of residence time for the neutralization of **CEES**. PS is always MB when not specified, Rose Bengal when (RB) is specified.

				Flow rate	(mL.min ⁻¹)					
In Table 3	[CEES] (M)	[PS] (µM)	Oxidant	Liquid	Gas	BPR (bar)	Light (nm) (Intensity (%))	Res. time (min)	Conversion (%)	Selectivity (%)
Entry 1	1	560	O ₂	0.5	10	9	610 (100)	~10	99.92	94.8
Entry 6	1	560	0 ₂	1	20	9	610 (100)	~ 4	99.26	92.4
Entry 10	1	560	02	2	40	9	610 (100)	~ 2	81.88	95.3

3.2.2 Comparison of oxygen and air

Table S5. Comparison of oxidant gas for the neutralization of **CEES**. PS is always MB when not specified, Rose Bengal when (RB) is specified.

				Flow rate	(mL.min ⁻¹)					
In Table 3	[CEES] (M)	[PS] (µM)	Oxidant	Liquid	Gas	BPR (bar)	Light (nm) (Intensity (%))	Res. time (min)	Conversion (%)	Selectivity (%)
Entry 1	1	560	O ₂	0.5	10	9	610 (100)	~10	99.92	94.8
Entry 4	1	560	Air	0.5	10	9	610 (100)	~10	99.74	84
Entry 6	1	560	O ₂	1	20	9	610 (100)	~ 4	99.26	92.4
Entry 7	1	560	Air	1	20	9	610 (100)	~ 4	51.42	74
entry 8	1	560	O ₂	1	20	9	white light (100)	~ 4	total	97.8
Entry 9	1	560	Air	1	20	9	white light (100)	~ 4	68.23	93.5

3.2.3 Comparison of photosensitizers

Table S6. Comparison of photosensitizers for **CEES** oxidation. PS is always MB when not specified, Rose Bengal when (RB) is specified.

				Flow rate	(mL.min ⁻¹)					
In Table 3	[CEES] (M)	[PS] (µM)	Oxidant	Liquid	Gas	BPR (bar)	Light (nm) (Intensity (%))	Res. time (min)	Conversion (%)	Selectivity (%)
not shown 1	1	560	O ₂	0.5	10	9	610 (70)	~10	99.92	95.5
not shown 2	1	560 (RB)	O ₂	0.5	10	9	530 (70)	~10	94.51	97.3
Entry 5	0.1	56	Air	0.5	10	9	610 (100)	~10	99.88	84.8
not shown 3	0.1	56 (RB)	Air	0.5	10	9	530 (100)	~10	83.69	83.4
Entry 2	1	560	02	0.5	10	9	white light (100)	~10	99.91	96.1
Entry 3	1	560 (RB)	0,	0.5	10	9	white light (100)	~10	99.92	95.4

3.2.4 Comparison of light (wavelength and intensity)

Table S7. Comparison of light for **CEES** oxidation. PS is always MB when not specified, Rose Bengal when (RB) is specified.

				Flow rate	(mL.min ⁻¹)]				
In Table 3	[CEES] (M)	[PS] (µM)	Oxidant	Liquid	Gas	BPR (bar)	Light (nm) (Intensity (%))	Res. time (min)	Conversion (%)	Selectivity (%)
Entry 1	1	560	O ₂	0.5	10	9	610 (100)	~10	99.92	94.8
not shown 1	1	560	O ₂	0.5	10	9	610 (70)	~10	99.92	95.5
Entry 2	1	560	02	0.5	10	9	white light (100)	~10	99.91	96.1
Entry 6	1	560	0 ₂	1	20	9	610 (100)	~ 4	99.26	92.4
Entry 8	1	560	02	1	20	9	white light (100)	~ 4	total	97.8
Entry 5	0.1	56	Air	0.5	10	9	610 (100)	~10	99.88	84.8
not shown 4	0.1	56	Air	0.5	10	9	610 (70)	~10	total	83.4
not shown 3	0.1	56 (RB)	Air	0.5	10	9	530 (100)	~10	83.69	83.4
not shown 5	0.1	56 (RB)	Air	0.5	10	9	530 (70)	~10	80.94	79.5
not shown 2	1	560 (RB)	O ₂	0.5	10	9	530 (70)	~10	94.51	97.3
Entry 3	1	560 (RB)	O ₂	0.5	10	9	white light (100)	~10	99.92	95.4
Entry 7	1	560	Air	1	20	9	610 (100)	~ 4	51.42	74
Entry 9	1	560	Air	1	20	9	white light (100)	~ 4	68.23	93.5

4. Computations

4.1 Stationary points for compounds CEES, HD and 1a-f

CE	ES			MP2/6-31+G** (Hartree)
15				H = -1014.432024
scf	done: -1014	.569720		G = -1014.476153
S	0.000000	0.000000	0.00000	
C	0.000000	0.000000	1.792323	
C	1.778165	0.000000	-0.253799	
C	-1.418766	0.077061	2.322684	
C	2.091289	-0.114762	-1.733662	
CI	3.863064	-0.185112	-1.939820	🔩 🦲 🎞
H	0.611517	0.833668	2.134774	
н	0.479444	-0.958472	2.040217	
н	-1.897513	1.018484	2.068487	
н	-2.018943	-0.753796	1.961510	
н	2.125054	-0.881495	0.298219	
н	2.182014	0.912821	0.181894	
н	1.679041	-1.029718	-2.149896	
н	1.729914	0.743979	-2.292796	
H	-1.389099	0.008742	3.390088	
HC				MP2/6-31+G** (Hartree)
15				H = -1473.462357
scf	done: -1473	.592520		G = -1473.509951
S	0.000000	0.000000	0.000000	
C	0.000000	0.000000	1.820206	
C	1.804791	0.000000	-0.236227	
C	2.110725	-0.346458	-1.679465	
CI	3.880480	-0.306183	-1.959382	
C	-1.388127	0.359382	2.310690	
	-1.43//11	0.315289	4.101684	
н	0./1/538	0.740596	2.1/3039	
н	0.290074	-0.982675	2.190699	
н	-1.664/99	1.365389	2.008006	
	-2.133454		1.954439	
	2.240850	-0.747053	0.422788	
	2.210/30	1 240009	0.012172	
	1.771159	-1.540050	-1.924051	
	1.003803	0.308300	-2.505524	
12				MD2/6-31+G** (Hartree)
10				
21				H = -633.708181
scf	done: -633.	914467		G = -633.756180
S	0.000000	0.000000	0.000000	
C	0.000000	0.000000	1.540000	
C	1.451926	0.000000	-0.513333	
C	-1.451926	0.000025	2.053333	
		0 00000	2 052222	

С	2.903849	0.002154	-2.566668	
С	-1.451926	0.000025	3.593333	👗 🔍 🖄 ,
н	3.410060	-0.870298	-2.209628	
н	3.406441	0.877001	-2.210375	
н	2.903849	0.001696	-3.636668	
н	0.945720	0.871827	-2.410359	
н	0.949329	-0.875471	-2.409640	
н	1.956202	0.873871	-0.157026	
н	1 956456	-0 873431	-0 156307	
н	0 504418	0 873643	1 896667	
н	0 504388	-0.873660	1 896667	
н	-1 956344	-0 873617	1 696667	
н	-1 95631/	0.873685	1.696667	
и П	0.047509	0.073660	2.050007	
	-0.94/508	0.075000	3.950000	
	-2.400/32	0.000043	3.950000	
н	-0.947538	-0.8/3035	3.950000	
1b				MP2/6-31+G** (Hartree)
12				Н = -975.272292
scf	done: -975.	379095		C 075 214752
S	0.000000	0.000000	0.000000	G = -975.514752
C	0.000000	0.000000	1.818307	
C	1 799460	0.000000	-0 265304	
c	-1 424972	0.0000000	2 345894	
ц	0 58/580	0.0000000	2.545654	
ц	0.304300	-0.01/758	2.100042	
	1 006056	1 011075	2.106073	
	2 025221	0.752542	1 000022	
	-2.025521	-0.752545	1.999925	
	2.234003	-0.717060	0.417904	
	2.208892	0.989390	-0.062891	
H	-1.412332	0.070800	3.435348	
CI	2.135823	-0.470131	-1.927662	
1c				MP2/6-31+G** (Hartree)
19				H = -707.359079
scf	⁻ done: -668.	343358		G = -707.405066
S	-2.053586	-0.000084	-0.680770	
С	-3.684737	0.000088	0.102417	
С	-1.021695	-0.000008	0.821936	
С	0.429459	-0.000008	0.436546	
С	1.116949	-1.208986	0.251973	
с	2.461562	-1.210638	-0.131914	
с	3.138224	0.000028	-0.320319	
с	2.461522	1.210676	-0.131948	
C	1.116910	1.208989	0.251936	
H	-3.821623	-0.890355	0.713532	
н	-4.429205	0.000060	-0.691155	
н	-3.821512	0.890660	0.713367	
н	-1.257091	0.887812	1.411464	
н	-1.257086	-0.887764	1.411563	

Н	0.595190	-2.148260	0.401851	
н	2.981818	-2.150839	-0.269979	
н	4.180855	0.000040	-0.613839	
Н	2.981745	2.150892	-0.270040	
Н	0.595118	2.148249	0.401784	
1d				MP2/6-31+G** (Hartree)
1	6			H = -668.204306
scf	done: -668.	343357		G = -668.246695
S	0.000000	0.000000	0.000000	
C	0.000000	0.000000	1.782446	
C	1.789167	0.000000	-0.300110	
С	0.511104	-1.092331	2.501333	
С	0.486722	-1.085431	3.898840	
C	-0.073107	-0.003484	4.588916	
С	-0.599080	1.077646	3.874408	
С	-0.558043	1.084222	2.475656	
н	0.923556	-1.943237	1.971916	
н	0.887379	-1.930398	4.445687	
н	-0.099439	-0.004497	5.671551	
н	-1.033777	1.918284	4.401491	
н	-0.950451	1.928941	1.922456	
н	2.252006	0.873983	0.152735	
н	1.931386	0.041215	-1.378688	
н	2.251737	-0.907353	0.080207	
1e				MP2/6-31+G** (Hartree)
1e				MP2/6-31+G** (Hartree) H = -859.318588
1e 23 scf	done: -859.	512841		MP2/6-31+G** (Hartree) H = -859.318588 G = -859.371122
1e 23 scf S	done: -859. 0.000000	512841 0.000000	0.000000	MP2/6-31+G** (Hartree) H = -859.318588 G = -859.371122
1e 23 scf S C	done: -859. 0.000000 0.000000	512841 0.000000 0.000000	0.000000 1.783633	MP2/6-31+G** (Hartree) H = -859.318588 G = -859.371122
1e 23 scf S C C	done: -859. 0.000000 0.000000 1.760523	512841 0.000000 0.000000 0.000000	0.000000 1.783633 -0.284007	MP2/6-31+G** (Hartree) H = -859.318588 G = -859.371122
1e 23 scf S C C C C	done: -859. 0.000000 0.000000 1.760523 2.568803	512841 0.000000 0.000000 0.000000 1.020720	0.000000 1.783633 -0.284007 0.241188	MP2/6-31+G** (Hartree) H = -859.318588 G = -859.371122
1e 23 scf S C C C C C	done: -859. 0.000000 0.000000 1.760523 2.568803 3.944685	512841 0.000000 0.000000 0.000000 1.020720 1.011514	0.000000 1.783633 -0.284007 0.241188 0.000690	MP2/6-31+G** (Hartree) H = -859.318588 G = -859.371122
1e 23 scf S C C C C C C	done: -859. 0.000000 0.000000 1.760523 2.568803 3.944685 4.517217	512841 0.000000 0.000000 0.000000 1.020720 1.011514 0.007196	0.000000 1.783633 -0.284007 0.241188 0.000690 -0.790861	MP2/6-31+G** (Hartree) H = -859.318588 G = -859.371122
1e 23 scf S C C C C C C C	done: -859. 0.000000 0.000000 1.760523 2.568803 3.944685 4.517217 3.707571	512841 0.000000 0.000000 1.020720 1.011514 0.007196 -0.996516	0.000000 1.783633 -0.284007 0.241188 0.000690 -0.790861 -1.331341	MP2/6-31+G** (Hartree) H = -859.318588 G = -859.371122
1e 23 scf S C C C C C C C C	done: -859. 0.000000 0.000000 1.760523 2.568803 3.944685 4.517217 3.707571 2.331385	512841 0.000000 0.000000 1.020720 1.011514 0.007196 -0.996516 -1.006744	0.000000 1.783633 -0.284007 0.241188 0.000690 -0.790861 -1.331341 -1.074285	MP2/6-31+G** (Hartree) H = -859.318588 G = -859.371122
1e 23 scf S C C C C C C C C C C	done: -859. 0.000000 0.000000 1.760523 2.568803 3.944685 4.517217 3.707571 2.331385 -0.838860	512841 0.000000 0.000000 1.020720 1.011514 0.007196 -0.996516 -1.006744 0.892889	0.000000 1.783633 -0.284007 0.241188 0.000690 -0.790861 -1.331341 -1.074285 2.464438	MP2/6-31+G** (Hartree) H = -859.318588 G = -859.371122
1e 23 scf S C C C C C C C C C C C C C	done: -859. 0.000000 1.760523 2.568803 3.944685 4.517217 3.707571 2.331385 -0.838860 -0.894860	512841 0.000000 0.000000 1.020720 1.011514 0.007196 -0.996516 -1.006744 0.892889 0.871065	0.000000 1.783633 -0.284007 0.241188 0.000690 -0.790861 -1.331341 -1.074285 2.464438 3.862937	MP2/6-31+G** (Hartree) H = -859.318588 G = -859.371122
1e 23 scf S C C C C C C C C C C C C C C C	done: -859. 0.000000 0.000000 1.760523 2.568803 3.944685 4.517217 3.707571 2.331385 -0.838860 -0.894860 -0.111651	512841 0.000000 0.000000 1.020720 1.011514 0.007196 -0.996516 -1.006744 0.892889 0.871065 -0.034442	0.000000 1.783633 -0.284007 0.241188 0.000690 -0.790861 -1.331341 -1.074285 2.464438 3.862937 4.585381	MP2/6-31+G** (Hartree) H = -859.318588 G = -859.371122
1e 23 scf S C C C C C C C C C C C C C C C C C C	done: -859. 0.000000 0.000000 1.760523 2.568803 3.944685 4.517217 3.707571 2.331385 -0.838860 -0.894860 -0.111651 0.728501	512841 0.000000 0.000000 1.020720 1.011514 0.007196 -0.996516 -1.006744 0.892889 0.871065 -0.034442 -0.923675	0.000000 1.783633 -0.284007 0.241188 0.000690 -0.790861 -1.331341 -1.074285 2.464438 3.862937 4.585381 3.902836	MP2/6-31+G** (Hartree) H = -859.318588 G = -859.371122
1e 23 scf c c c c c c c c c c c c c c c c c c	done: -859. 0.000000 0.000000 1.760523 2.568803 3.944685 4.517217 3.707571 2.331385 -0.838860 -0.894860 -0.111651 0.728501 0.770391	512841 0.000000 0.000000 1.020720 1.011514 0.007196 -0.996516 -1.006744 0.892889 0.871065 -0.034442 -0.923675 -0.924513	0.000000 1.783633 -0.284007 0.241188 0.000690 -0.790861 -1.331341 -1.074285 2.464438 3.862937 4.585381 3.902836 2.506508	MP2/6-31+G** (Hartree) H = -859.318588 G = -859.371122
1e 23 scf S C C C C C C C C C C C C C C C C C C	done: -859. 0.000000 0.000000 1.760523 2.568803 3.944685 4.517217 3.707571 2.331385 -0.838860 -0.894860 -0.111651 0.728501 0.770391 -1.427658	512841 0.000000 0.000000 1.020720 1.011514 0.007196 -0.996516 -1.006744 0.892889 0.871065 -0.034442 -0.923675 -0.924513 1.611064	0.000000 1.783633 -0.284007 0.241188 0.000690 -0.790861 -1.331341 -1.074285 2.464438 3.862937 4.585381 3.902836 2.506508 1.906155	MP2/6-31+G** (Hartree) H = -859.318588 G = -859.371122
1e 23 scf S C C C C C C C C C C C C C C C C C C	done: -859. 0.000000 0.000000 1.760523 2.568803 3.944685 4.517217 3.707571 2.331385 -0.838860 -0.894860 -0.111651 0.728501 0.770391 -1.427658 -1.543407	512841 0.000000 0.000000 1.020720 1.011514 0.007196 -0.996516 -1.006744 0.892889 0.871065 -0.034442 -0.923675 -0.924513 1.611064 1.565895	0.000000 1.783633 -0.284007 0.241188 0.000690 -0.790861 -1.331341 -1.074285 2.464438 3.862937 4.585381 3.902836 2.506508 1.906155 4.382645	MP2/6-31+G** (Hartree) H = -859.318588 G = -859.371122
1e 23 scf S C C C C C C C C C C C C C C C C C C	done: -859. 0.000000 0.000000 1.760523 2.568803 3.944685 4.517217 3.707571 2.331385 -0.838860 -0.894860 -0.111651 0.728501 0.770391 -1.427658 -1.543407 -0.148118	512841 0.000000 0.000000 1.020720 1.011514 0.007196 -0.996516 -1.006744 0.892889 0.871065 -0.034442 -0.923675 -0.924513 1.611064 1.565895 -0.043179	0.000000 1.783633 -0.284007 0.241188 0.000690 -0.790861 -1.331341 -1.074285 2.464438 3.862937 4.585381 3.902836 2.506508 1.906155 4.382645 5.667647	MP2/6-31+G** (Hartree) H = -859.318588 G = -859.371122
1e 23 scf c c c c c c c c c c c c c c c c c c	done: -859. 0.000000 0.000000 1.760523 2.568803 3.944685 4.517217 3.707571 2.331385 -0.838860 -0.894860 -0.111651 0.728501 0.770391 -1.427658 -1.543407 -0.148118 1.333639	512841 0.000000 0.000000 1.020720 1.011514 0.007196 -0.996516 -1.006744 0.892889 0.871065 -0.034442 -0.923675 -0.924513 1.611064 1.565895 -0.043179 -1.632348	0.000000 1.783633 -0.284007 0.241188 0.000690 -0.790861 -1.331341 -1.074285 2.464438 3.862937 4.585381 3.902836 2.506508 1.906155 4.382645 5.667647 4.455451	MP2/6-31+G** (Hartree) H = -859.318588 G = -859.371122
1e 23 scf S C C C C C C C C C C C C C C C C C C	done: -859. 0.000000 0.000000 1.760523 2.568803 3.944685 4.517217 3.707571 2.331385 -0.838860 -0.894860 -0.111651 0.728501 0.770391 -1.427658 -1.543407 -0.148118 1.333639 1.411825	512841 0.000000 0.000000 1.020720 1.011514 0.007196 -0.996516 -1.006744 0.892889 0.871065 -0.034442 -0.923675 -0.924513 1.611064 1.565895 -0.043179 -1.632348 -1.622689	0.000000 1.783633 -0.284007 0.241188 0.000690 -0.790861 -1.331341 -1.074285 2.464438 3.862937 4.585381 3.902836 2.506508 1.906155 4.382645 5.667647 4.455451 1.981196	MP2/6-31+G** (Hartree) H = -859.318588 G = -859.371122
1е 23 scf S C C C C C C C C C C C C C C C C C C	done: -859. 0.000000 1.760523 2.568803 3.944685 4.517217 3.707571 2.331385 -0.838860 -0.894860 -0.111651 0.728501 0.770391 -1.427658 -1.543407 -0.148118 1.333639 1.411825 2.124972	512841 0.000000 0.000000 1.020720 1.011514 0.007196 -0.996516 -1.006744 0.892889 0.871065 -0.034442 -0.923675 -0.924513 1.611064 1.565895 -0.043179 -1.632348 -1.622689 1.804515	0.000000 1.783633 -0.284007 0.241188 0.000690 -0.790861 -1.331341 -1.074285 2.464438 3.862937 4.585381 3.902836 2.506508 1.906155 4.382645 5.667647 4.455451 1.981196 0.844196	MP2/6-31+G** (Hartree) H = -859.318588 G = -859.371122
1е 23 scf S C C C C C C C C C C C C C C C C C C	done: -859. 0.000000 0.000000 1.760523 2.568803 3.944685 4.517217 3.707571 2.331385 -0.838860 -0.894860 -0.111651 0.728501 0.770391 -1.427658 -1.543407 -0.148118 1.333639 1.411825 2.124972 4.565503	512841 0.000000 0.000000 1.020720 1.011514 0.007196 -0.996516 -1.006744 0.892889 0.871065 -0.034442 -0.923675 -0.924513 1.611064 1.565895 -0.043179 -1.632348 -1.622689 1.804515 1.796256	0.000000 1.783633 -0.284007 0.241188 0.000690 -0.790861 -1.331341 -1.074285 2.464438 3.862937 4.585381 3.902836 2.506508 1.906155 4.382645 5.667647 4.455451 1.981196 0.844196 0.415988	MP2/6-31+G** (Hartree) H = -859.318588 G = -859.371122

Н	4.143571	-1.778185	-1.941561		
Н	1.706606	-1.796681	-1.473691		
1f				1	MP2/6-31+G** (Hartree)
21	L				H = -858.185869
sfc	done: -858.	3527375			G = -858.231417
S	0.000000	0.000000	0.000000		
C	0.000000	0.000000	1.754929		
C	1.754671	0.000000	-0.030842		
C	2.557844	0.000000	-1.180068		
C	3.943026	0.000000	-1.021781		n n n n n n n n n n n n n n n n n n n
C	4.522511	0.000000	0.262174		
C	3.722322	0.000000	1.402038		
С	2.321976	0.000000	1.265399		
C	1.306029	0.000000	2.299326		
C	1.467328	0.000000	3.697018		
C	0.341788	0.000000	4.517234		
С	-0.952155	0.000000	3.960456		
C	-1.134810	0.000000	2.578280		
н	5.600907	0.000000	0.362802		
н	4.578977	0.000000	-1.898668		
н	2.114729	0.000000	-2.168810		
н	4.174636	0.000000	2.387342		
н	-2.131183	0.000000	2.152723		
н	-1.817686	0.000000	4.611781		
н	0.461410	0.000000	5.593691		
н	2.460476	0.000000	4.131761		

4.2 Selected transition states, peroxysulfoxides and sulfoxides

TS ¹ _{1a}	MP2/6-31+G** (Hartree)
23	H = -783.617775
scf done : -783.8306078	G = -783.672039
S 0.001090 -0.230173 -0.802643	
C 1.371445 -0.560524 0.302297	
C -1.368535 -0.567589 0.300751	
0 -0.003749 1.635150 -0.548470	
O -0.007288 1.962681 0.769973	Y Y Y
H 1.211938 0.151555 1.124357	
H 1.256531 -1.580546 0.672130	
H -1.253045 -1.590475 0.662164	
H -1.209147 0.138421 1.127929	
C 2.714263 -0.343585 -0.380861	
H 2.815401 -1.024173 -1.228255	
H 2.759935 0.675783 -0.768102	
C -2.711302 -0.344919 -0.380645	
H -2.754759 0.676224 -0.763369	
H -2.814224 -1.021559 -1.230966	
C 3.854936 -0.570112 0.607725	

H 4.817150 -0.413167 0.121601	
H 3.781632 0.121402 1.447398	
H 3.833986 -1.587507 0.999295	
C -3.852298 -0.572873 0.607316	
H -4.814169 -0.411296 0.121994	
H -3.834290 -1.591904 0.994727	
H -3.777135 0.114974 1.449864	
14a	MP2/6-31+G** (Hartree)
23	H = -705.310617
scf done: -705.4646392	G = -705.355168
S 0.000000 0.000000 0.000000	
O 0.000000 0.000000 1.632804	
O 1.372865 0.000000 2.142795	
C 1.061157 1.390146 -0.429241	
C 1.054479 -1.393613 -0.437150	
C 0.467723 -2.699838 0.080800	💚 👝 🍙 🔴 👝 👝 💚
C 0.420700 2.709889 -0.020802	
H 2.007000 1.219826 0.083053	
H 1.198791 1.320790 -1.510676	
H -0.547928 2.819379 -0.512472	
H 0.247740 2.704755 1.056036	
H 2.036733 -1.192678 -0.013099	
H 1.103495 -1.374989 -1.528368	
H -0.538012 -2.839294 -0.320754	
H 0.388104 -2.646164 1.166718	
C 1.355687 -3.874880 -0.319864	
H 0.942369 -4.808516 0.059741	
H 1.433731 -3.953551 -1.404446	
H 2.359631 -3.757324 0.088486	
C 1.330023 3.877669 -0.393965	
H 1.504217 3.908339 -1.469761	
H 0.875846 4.821920 -0.096115	
H 2.294371 3.791752 0.107114	
2a	MP2/6-31+G** (Hartree)
23	H = -708.717905
scf done: -708.9285944	G = -708.766896
S 0.000000 0.000000 0.000000	
O 0.000000 0.000000 1.632804	
O 1.372865 0.000000 2.142795	
C 1.061157 1.390146 -0.429241	
C 1.054479 -1.393613 -0.437150	🦿 👝 🌳 💭 🗬 👝 🏋
C 0.467723 -2.699838 0.080800	
C 0.420700 2.709889 -0.020802	
H 2.007000 1.219826 0.083053	
H 1.198791 1.320790 -1.510676	
H -0.547928 2.819379 -0.512472	
H 0.247740 2.704755 1.056036	
H 2.036733 -1.192678 -0.013099	

H 1.103495 -1.374989 -1.528368	
H -0.538012 -2.839294 -0.320754	
H 0.388104 -2.646164 1.166718	
C 1.355687 -3.874880 -0.319864	
H 0.942369 -4.808516 0.059741	
H 1.433731 -3.953551 -1.404446	
H 2.359631 -3.757324 0.088486	
C 1.330023 3.877669 -0.393965	
H 1.504217 3.908339 -1.469761	
H 0.875846 4.821920 -0.096115	
H 2.294371 3.791752 0.107114	
TC1	$MD2/6.21 \pm C^{**} (Hartroo)$
IS-CEES	
17	H = -1164.337868
scf done: -1164.482060	G = -1164.386512
S 0.000000 0.000000 0.000000	
C 0.000000 0.000000 1.789866	
C 1.774045 0.000000 -0.283965	
O -0.258618 1.826513 -0.186958	I I I I I I I I I I I I I I I I I I I
O 0.566664 2.535674 0.633915	
C 2.085775 0.116971 -1.766937	
C -1.415598 -0.099510 2.324229	
Cl -1.369695 0.020003 4.105785	
H 2.166592 -0.916977 0.155039	
H 2.131050 0.866780 0.281900	
H 1.688229 -0.726025 -2.329350	
H 1.683864 1.041752 -2.176465	
H 0.462901 0.967797 2.035413	
H 0.627229 -0.821659 2.132371	
H -2.029965 0.720006 1.960869	
H -1.880032 -1.048909 2.073243	
H 3.167516 0.132391 -1.890482	
CEESOO	MP2/6-31+G** (Hartree)
17	H = -1164.342699
scr done: -1164.4888327	G = -1164.391685
5 U.888004 -U.2/2016 -U.659449	
0 0.999348 1.351888 -0.559551	—
C = -0.682107 = -0.630748 = 0.156663	
C 3.4/4415 -U.583499 U.166/04	T J 🗕 I 🦒
C = 1.794041 0.138153 -0.531620	
LI -3.343617 -0.250641 0.265914	
н 1.839625 -1.939456 0.671268	
н 1.//0/84 -0.362256 1.511530	
H 3./21//8 -1.0/0824 -0.//4/61	
H 3.643386 U.48/130 U.0/1114	
н -0.582/42 -0.336324 1.198192	

H	-1.632012	1.207033	-0.435266	
н	-1.888347	-0.136564	-1.578951	
н	4.140964	-0.966479	0.937524	
CEESO				MP2/6-31+G** (Hartree)
1	.6			H = -1089.439828
scf	⁻ done: -1089	9.5818305		G = -1089485407
S	0.000000	0.000000	0.000000	
0	0.000000	0.000000	1.630775	
C	1.757404	0.000000	-0.414364	
C	-0.433364	1.692868	-0.440747	🌒 🖓 🥊 🌒 🕘 🖉
C	-1.883155	1.978776	-0.083066	
C	2.426993	-1.197316	0.233266	
CI	4.156509	-1.201202	-0.210771	
н	-0.248817	1.761431	-1.513955	
н	0.262301	2.328306	0.103370	
н	-2.565928	1.313874	-0.609142	
н	-2.044355	1.882773	0.988724	
н	2.177967	0.933885	-0.050597	
н	1.801083	-0.049989	-1.502941	
н	2.363749	-1.128356	1.314601	
н	1.999820	-2.135586	-0.110879	
н	-2.110621	3.003502	-0.371716	
TS ¹ _{HD}				MP2/6-31+G** (Hartree)
	HD			
17	нр			H = -1623.364778
17 scf	done: -1623	.501380		H = -1623.364778 G = -1623.416916
17 scf S	done: -1623 0.000000	.501380 0.000000	0.000000	H = -1623.364778 G = -1623.416916
17 scf S C	done: -1623 0.000000 0.000000	.501380 0.000000 0.000000	0.000000 1.792322	H = -1623.364778 G = -1623.416916
17 scf S C C	done: -1623 0.000000 0.000000 1.778165	.501380 0.000000 0.000000 0.000000	0.000000 1.792322 -0.253799	H = -1623.364778 G = -1623.416916
17 scf S C C O	done: -1623 0.000000 0.000000 1.778165 -0.221301	.501380 0.000000 0.000000 0.000000 1.830609	0.000000 1.792322 -0.253799 -0.194652	H = -1623.364778 G = -1623.416916
17 scf S C C O O	done: -1623 0.000000 0.000000 1.778165 -0.221301 0.635652	.501380 0.000000 0.000000 0.000000 1.830609 2.526376	0.000000 1.792322 -0.253799 -0.194652 0.604954	H = -1623.364778 G = -1623.416916
17 scf S C C O O C	done: -1623 0.000000 0.000000 1.778165 -0.221301 0.635652 2.091289	.501380 0.000000 0.000000 0.000000 1.830609 2.526376 0.114762	0.000000 1.792322 -0.253799 -0.194652 0.604954 -1.733662	H = -1623.364778 G = -1623.416916
17 scf S C C C O O C C	done: -1623 0.000000 0.000000 1.778165 -0.221301 0.635652 2.091289 -1.418767	.501380 0.000000 0.000000 1.830609 2.526376 0.114762 -0.077036	0.000000 1.792322 -0.253799 -0.194652 0.604954 -1.733662 2.322683	H = -1623.364778 G = -1623.416916
17 scf S C C O O C C C C	done: -1623 0.000000 1.778165 -0.221301 0.635652 2.091289 -1.418767 -1.369262	.501380 0.000000 0.000000 1.830609 2.526376 0.114762 -0.077036 0.036962	0.000000 1.792322 -0.253799 -0.194652 0.604954 -1.733662 2.322683 4.103784	H = -1623.364778 G = -1623.416916
17 scf S C C O O C C C I H	done: -1623 0.000000 1.778165 -0.221301 0.635652 2.091289 -1.418767 -1.369262 2.182014	.501380 0.000000 0.000000 1.830609 2.526376 0.114762 -0.077036 0.036962 -0.912821	0.000000 1.792322 -0.253799 -0.194652 0.604954 -1.733662 2.322683 4.103784 0.181894	H = -1623.364778 G = -1623.416916
17 scf S C C O C C C H H	done: -1623 0.000000 0.000000 1.778165 -0.221301 0.635652 2.091289 -1.418767 -1.369262 2.182014 2.125075	.501380 0.000000 0.000000 1.830609 2.526376 0.114762 -0.077036 0.036962 -0.912821 0.881481	0.000000 1.792322 -0.253799 -0.194652 0.604954 -1.733662 2.322683 4.103784 0.181894 0.298229	H = -1623.364778 G = -1623.416916
17 scf S C C O C C C I H H H	done: -1623 0.000000 1.778165 -0.221301 0.635652 2.091289 -1.418767 -1.369262 2.182014 2.125075 1.729914	.501380 0.000000 0.000000 1.830609 2.526376 0.114762 -0.077036 0.036962 -0.912821 0.881481 -0.743979	0.000000 1.792322 -0.253799 -0.194652 0.604954 -1.733662 2.322683 4.103784 0.181894 0.298229 -2.292796	H = -1623.364778 G = -1623.416916
17 scf S C C O C C C C H H H H	done: -1623 0.000000 1.778165 -0.221301 0.635652 2.091289 -1.418767 -1.369262 2.182014 2.125075 1.729914 1.679041	.501380 0.000000 0.000000 1.830609 2.526376 0.114762 -0.077036 0.036962 -0.912821 0.881481 -0.743979 1.029718	0.000000 1.792322 -0.253799 -0.194652 0.604954 -1.733662 2.322683 4.103784 0.181894 0.298229 -2.292796 -2.149896	H = -1623.364778 G = -1623.416916
17 scf S C C O O C C C I H H H H H H	done: -1623 0.000000 0.000000 1.778165 -0.221301 0.635652 2.091289 -1.418767 -1.369262 2.182014 2.125075 1.729914 1.679041 0.479444	.501380 0.000000 0.000000 1.830609 2.526376 0.114762 -0.077036 0.036962 -0.912821 0.881481 -0.743979 1.029718 0.958472	0.000000 1.792322 -0.253799 -0.194652 0.604954 -1.733662 2.322683 4.103784 0.181894 0.298229 -2.292796 -2.149896 2.040216	H = -1623.364778 G = -1623.416916
17 scf S C C O O C C C H H H H H H H H	done: -1623 0.000000 0.000000 1.778165 -0.221301 0.635652 2.091289 -1.418767 -1.369262 2.182014 2.125075 1.729914 1.679041 0.479444 0.611517	.501380 0.000000 0.000000 1.830609 2.526376 0.114762 -0.077036 0.036962 -0.912821 0.881481 -0.743979 1.029718 0.958472 -0.833669	0.000000 1.792322 -0.253799 -0.194652 0.604954 -1.733662 2.322683 4.103784 0.181894 0.298229 -2.292796 -2.149896 2.040216 2.134774	H = -1623.364778 G = -1623.416916
17 scf S C C C C C C H H H H H H H H	done: -1623 0.000000 1.778165 -0.221301 0.635652 2.091289 -1.418767 -1.369262 2.182014 2.125075 1.729914 1.679041 0.479444 0.611517 -2.018930	.501380 0.000000 0.000000 1.830609 2.526376 0.114762 -0.077036 0.036962 -0.912821 0.881481 -0.743979 1.029718 0.958472 -0.833669 0.753831	0.000000 1.792322 -0.253799 -0.194652 0.604954 -1.733662 2.322683 4.103784 0.181894 0.298229 -2.292796 -2.149896 2.040216 2.134774 1.961509	H = -1623.364778 G = -1623.416916
17 scf S C C O O C C C H H H H H H H H H H	done: -1623 0.000000 1.778165 -0.221301 0.635652 2.091289 -1.418767 -1.369262 2.182014 2.125075 1.729914 1.679041 0.479444 0.611517 -2.018930 -1.897531	.501380 0.000000 0.000000 1.830609 2.526376 0.114762 -0.077036 0.036962 -0.912821 0.881481 -0.743979 1.029718 0.958472 -0.833669 0.753831 -1.018450	0.000000 1.792322 -0.253799 -0.194652 0.604954 -1.733662 2.322683 4.103784 0.181894 0.298229 -2.292796 -2.149896 2.040216 2.134774 1.961509 2.068487	H = -1623.364778 G = -1623.416916
17 scf S C C O O C C C H H H H H H H H H C	done: -1623 0.000000 0.000000 1.778165 -0.221301 0.635652 2.091289 -1.418767 -1.369262 2.182014 2.125075 1.729914 1.679041 0.479444 0.611517 -2.018930 -1.897531 3.863063	.501380 0.000000 0.000000 1.830609 2.526376 0.114762 -0.077036 0.036962 -0.912821 0.881481 -0.743979 1.029718 0.958472 -0.833669 0.753831 -1.018450 0.185112	0.000000 1.792322 -0.253799 -0.194652 0.604954 -1.733662 2.322683 4.103784 0.181894 0.298229 -2.292796 -2.149896 2.040216 2.134774 1.961509 2.068487 -1.939820	H = -1623.364778 G = -1623.416916
17 scf S C C O O C C C I H H H H H H H H H H H C	done: -1623 0.000000 1.778165 -0.221301 0.635652 2.091289 -1.418767 -1.369262 2.182014 2.125075 1.729914 1.679041 0.479444 0.611517 -2.018930 -1.897531 3.863063	.501380 0.000000 0.000000 1.830609 2.526376 0.114762 -0.077036 0.036962 -0.912821 0.881481 -0.743979 1.029718 0.958472 -0.833669 0.753831 -1.018450 0.185112	0.000000 1.792322 -0.253799 -0.194652 0.604954 -1.733662 2.322683 4.103784 0.181894 0.298229 -2.292796 -2.149896 2.040216 2.134774 1.961509 2.068487 -1.939820	H = -1623.364778 G = -1623.416916
17 scf S C C C C C C C H H H H H H H H H H H H	done: -1623 0.000000 1.778165 -0.221301 0.635652 2.091289 -1.418767 -1.369262 2.182014 2.125075 1.729914 1.679041 0.479444 0.611517 -2.018930 -1.897531 3.863063	.501380 0.000000 0.000000 1.830609 2.526376 0.114762 -0.077036 0.036962 -0.912821 0.881481 -0.743979 1.029718 0.958472 -0.833669 0.753831 -1.018450 0.185112	0.000000 1.792322 -0.253799 -0.194652 0.604954 -1.733662 2.322683 4.103784 0.181894 0.298229 -2.292796 -2.149896 2.040216 2.134774 1.961509 2.068487 -1.939820	H = -1623.364778 G = -1623.416916 MP2/6-31+G** (Hartree)
17 scf S C C O O C C C C H H H H H H H H H H H T T	done: -1623 0.000000 0.000000 1.778165 -0.221301 0.635652 2.091289 -1.418767 -1.369262 2.182014 2.125075 1.729914 1.679041 0.479444 0.611517 -2.018930 -1.897531 3.863063	.501380 0.000000 0.000000 1.830609 2.526376 0.114762 -0.077036 0.036962 -0.912821 0.881481 -0.743979 1.029718 0.958472 -0.833669 0.753831 -1.018450 0.185112	0.000000 1.792322 -0.253799 -0.194652 0.604954 -1.733662 2.322683 4.103784 0.181894 0.298229 -2.292796 -2.149896 2.040216 2.134774 1.961509 2.068487 -1.939820	H = -1623.364778 G = -1623.416916 MP2/6-31+G** (Hartree) H = -1623.364796
17 scf S C C C C C C C C C C C C C C C C C C	done: -1623 0.000000 0.000000 1.778165 -0.221301 0.635652 2.091289 -1.418767 -1.369262 2.182014 2.125075 1.729914 1.679041 0.479444 0.611517 -2.018930 -1.897531 3.863063	.501380 0.000000 0.000000 1.830609 2.526376 0.114762 -0.077036 0.036962 -0.912821 0.881481 -0.743979 1.029718 0.958472 -0.833669 0.753831 -1.018450 0.185112	0.000000 1.792322 -0.253799 -0.194652 0.604954 -1.733662 2.322683 4.103784 0.181894 0.298229 -2.292796 -2.149896 2.040216 2.134774 1.961509 2.068487 -1.939820	H = -1623.364778 G = -1623.416916 MP2/6-31+G** (Hartree) H = -1623.364796 G = -1623.417406

С	0.000000	0.000000	1.792323	
С	1.778164	0.000000	-0.253799	
0	-0.221301	-1.830611	-0.194652	
0	0.635666	-2.526379	0.604936	
С	-1.418767	0.077036	2.322684	
Cl	-1.369262	-0.036962	4.103785	
С	2.091287	-0.114737	-1.733664	
Cl	3.863062	-0.185088	-1.939823	
Н	0.611503	0.833679	2.134775	
Н	0.479444	-0.958472	2.040217	
Н	-1.897531	1.018450	2.068488	
Н	-2.018930	-0.753831	1.961510	
Н	2.125053	-0.881495	0.298219	
Н	2.182016	0.912813	0.181910	
Н	1.679038	-1.029685	-2.149914	
Н	1.729915	0.744015	-2.292783	
HD	\mathbf{D}			MP2/6-31+G** (Hartree)
	<i>,</i> 0			
16				$H = -1548 \ 468056$
16 sct	f done: -1548	3.6024474		H = -1548.468056 $G = -1548.517442$
16 sct S	f done: -1548 0.000000	3.6024474 0.000000	0.00000	H = -1548.468056 G = -1548.517443
16 scf S C	f done: -1548 0.000000 0.000000	3.6024474 0.000000 0.000000	0.000000 1.818220	H = -1548.468056 G = -1548.517443
16 scf S C C	f done: -1548 0.000000 0.000000 1.808010	3.6024474 0.000000 0.000000 0.000000	0.000000 1.818220 -0.187222	H = -1548.468056 G = -1548.517443
16 scf S C C O	f done: -1548 0.000000 0.000000 1.808010 -0.478699	3.6024474 0.000000 0.000000 0.000000 -1.395541	0.000000 1.818220 -0.187222 -0.430838	H = -1548.468056 G = -1548.517443
16 scf S C C O C	f done: -1548 0.000000 0.000000 1.808010 -0.478699 -1.427710	3.6024474 0.000000 0.000000 0.000000 -1.395541 -0.105771	0.000000 1.818220 -0.187222 -0.430838 2.316231	H = -1548.468056 G = -1548.517443
16 scl S C C O C C	f done: -1548 0.000000 0.000000 1.808010 -0.478699 -1.427710 -1.443668	3.6024474 0.000000 0.000000 -1.395541 -0.105771 -0.130669	0.000000 1.818220 -0.187222 -0.430838 2.316231 4.104558	H = -1548.468056 G = -1548.517443
16 scf S C C C C C C C C	done: -1548 0.000000 0.000000 1.808010 -0.478699 -1.427710 -1.443668 2.155318	3.6024474 0.000000 0.000000 -1.395541 -0.105771 -0.130669 -0.116456	0.000000 1.818220 -0.187222 -0.430838 2.316231 4.104558 -1.658278	H = -1548.468056 G = -1548.517443
16 scf S C C C C C C C C	done: -1548 0.000000 0.000000 1.808010 -0.478699 -1.427710 -1.443668 2.155318 3.932253	3.6024474 0.000000 0.000000 -1.395541 -0.105771 -0.130669 -0.116456 -0.134343	0.000000 1.818220 -0.187222 -0.430838 2.316231 4.104558 -1.658278 -1.860394	H = -1548.468056 G = -1548.517443
16 scf S C C C C C C C C C I C H	f done: -1548 0.000000 0.000000 1.808010 -0.478699 -1.427710 -1.443668 2.155318 3.932253 0.464737	3.6024474 0.000000 0.000000 -1.395541 -0.105771 -0.130669 -0.116456 -0.134343 0.931059	0.000000 1.818220 -0.187222 -0.430838 2.316231 4.104558 -1.658278 -1.860394 2.145582	H = -1548.468056 G = -1548.517443
16 scf C C C C C C C C C H H	done: -1548 0.000000 1.808010 -0.478699 -1.427710 -1.443668 2.155318 3.932253 0.464737 0.594233	3.6024474 0.000000 0.000000 -1.395541 -0.105771 -0.130669 -0.116456 -0.134343 0.931059 -0.853590	0.000000 1.818220 -0.187222 -0.430838 2.316231 4.104558 -1.658278 -1.860394 2.145582 2.147648	H = -1548.468056 G = -1548.517443
16 sct S C C C C C C C C H H H	done: -1548 0.000000 1.808010 -0.478699 -1.427710 -1.443668 2.155318 3.932253 0.464737 0.594233 -2.024582	3.6024474 0.000000 0.000000 -1.395541 -0.105771 -0.130669 -0.116456 -0.134343 0.931059 -0.853590 0.746006	0.000000 1.818220 -0.187222 -0.430838 2.316231 4.104558 -1.658278 -1.860394 2.145582 2.147648 1.999767	H = -1548.468056 G = -1548.517443
16 scf S C C C C C C C C H H H H	done: -1548 0.000000 0.000000 1.808010 -0.478699 -1.427710 -1.443668 2.155318 3.932253 0.464737 0.594233 -2.024582 -1.892606	3.6024474 0.000000 0.000000 -1.395541 -0.105771 -0.130669 -0.116456 -0.134343 0.931059 -0.853590 0.746006 -1.026858	0.000000 1.818220 -0.187222 -0.430838 2.316231 4.104558 -1.658278 -1.860394 2.145582 2.147648 1.999767 1.977126	H = -1548.468056 G = -1548.517443
16 scf S C C C C C C C C C H H H H H	done: -1548 0.000000 1.808010 -0.478699 -1.427710 -1.443668 2.155318 3.932253 0.464737 0.594233 -2.024582 -1.892606 2.198552	3.6024474 0.000000 0.000000 -1.395541 -0.105771 -0.130669 -0.116456 -0.134343 0.931059 -0.853590 0.746006 -1.026858 -0.848668	0.000000 1.818220 -0.187222 -0.430838 2.316231 4.104558 -1.658278 -1.860394 2.145582 2.147648 1.999767 1.977126 0.376037	H = -1548.468056 G = -1548.517443
16 scf S C C C C C C C C C H H H H H H	done: -1548 0.000000 1.808010 -0.478699 -1.427710 -1.443668 2.155318 3.932253 0.464737 0.594233 -2.024582 -1.892606 2.198552 2.179326	3.6024474 0.000000 0.000000 -1.395541 -0.105771 -0.130669 -0.116456 -0.134343 0.931059 -0.853590 0.746006 -1.026858 -0.848668 0.935341	0.000000 1.818220 -0.187222 -0.430838 2.316231 4.104558 -1.658278 -1.860394 2.145582 2.147648 1.999767 1.977126 0.376037 0.233369	H = -1548.468056 G = -1548.517443
16 sct S C C C C C C C C H H H H H H H	done: -1548 0.000000 1.808010 -0.478699 -1.427710 -1.443668 2.155318 3.932253 0.464737 0.594233 -2.024582 -1.892606 2.198552 2.179326 1.773842	3.6024474 0.000000 0.000000 -1.395541 -0.105771 -0.130669 -0.116456 -0.134343 0.931059 -0.853590 0.746006 -1.026858 -0.848668 0.935341 -1.042852	0.000000 1.818220 -0.187222 -0.430838 2.316231 4.104558 -1.658278 -1.860394 2.145582 2.147648 1.999767 1.977126 0.376037 0.233369 -2.077579	H = -1548.468056 G = -1548.517443

References

S1 Yangyang Liu, Ashlee J. Howarth, Joseph T. Hupp, and Omar K. Farha, *Angew.Chem. Int. Ed.*, **2015**, 54, 9001–9005

S2 Bing Yu, An-Hua Liu, Liang-Nian He, Bin Li, Zhen-Feng Diao and Yu-Nong L, *Green Chem.*, **2012**, 14, 957 - 962.

S3 Tomás Nevesely, Eva Svobodová, Josef Chudoba, Marek Sikorski, and Radek Cibulka, *Adv. Synth. Catal.*, **2016**, 358, 1654–1663.

S4 Jitka Dad'ová, Eva Svobodová, Marek Sikorski, Burkhard König, and Radek Cibulka, *ChemCatChem.*, **2012**, 4, 620–623.