Supporting Information

Glucose oxidation to formic acid and methyl formate in perfect selectivity

Entry	Solvent	Physical properties		NMR Analysis	
		solubility of HPA-5	Color of solution	³¹ P	⁵¹ V
1	Distilled Water	+	orange red	reference	
2	Methanol	+	orange red	+	+
3	Ethanol	+	orange yellow	+	+
4	<i>n</i> -Propanol	+	yellow	+	+
5	<i>n</i> -Butanol	+	orange yellow	+	+
6	<i>n</i> -Pentanol	+	orange yellow	+	+
7	<i>n</i> -Hexanol	+	orange red	+	+
8	Dimethylsulfoxide	+	red orange	+	+
9	Acetone	+	dark green	-	-
10	gamma-Valerolactone	+	dark green	-	-
11	Butyl acetate	+	dark green	-	-
12	Polyethylene carbonate	+	dark green	-	-
13	Trimethylphosphate	+	dark green	-	-
14	Tri- <i>n</i> -butylphosphat	+	green	-	-
15	Triethyleneglycol-monomethyl ether	+	dark green	-	-
16	n-Heptanol	-	orange		
17	Tetrahydrofuran	-	blue green		
18	Limonene	-	dark green		
19	Ethyl acetate	-	dark orange		
20	Ethyl lactate	-	dark green		10
21	Polyethylene glycol 200	-	dark green	n,	d
22	Tris(2-butoxyethyl)phosphate	-	green		
23	Diethyleneglycol-monomethyl ether	-	dark blue		
24	Tetraethyleneglycol-dimethyl ether	-	dark blue		

Table S1. Results of screening tests with various solvents.

Reaction conditions: 0.1 mmol HPA-5 catalyst dissolved in 10 mL different solvents, 20 bar initial O_2 , 90 °C, 24 h, 1000 rpm. **Note**: The representation of (+) to be good for using as oxidative solvent, (-) show bad effect

Headspace GC-MS analysis of liquid products from ¹³C-labelled oxidation in methanol

The measurements using headspace GC-MS analysis showed spectra of the experiments using different ¹³C-labelling of the substrate or solvent using the HPA-5 catalyst. The liquid samples after oxidation were analysed by headspace GC-MS using a Shimadzu QC 2010/ QP2010 SE GCMS-system equipped with CTC combi PAL headspace and separated with CP-Sil PONA CB column (50 m x 210 μ m x 0.5 μ m) and with liquid injection method.

Figure S1. Chromatogram of ¹³C-glucose:glucose (1:1) oxidative liquid products by headspace GC-MS analysis; reaction conditions: 0.5 mmol ¹³C-glucose and 0.5 mmol glucose, 0.1 mmol HPA-5 catalyst dissolved in 10 mL MeOH, 20 bar initial O₂, 90 °C, 24 h, 1000 rpm.

Figure S2. Mass spectrum of ¹³C-labelled oxidative liquid products by GC-MS analysis; Mass spectrum of A. benchmark oxidative glucose in MeOH, B. oxidative glucose in ¹³C-MeOH:MeOH (1:9), C. oxidative ¹³C-glucose in MeOH, D. oxidative ¹³C-glucose:glucose (1:1) in MeOH. Reaction conditions: 1 mmol glucose, 0.1 mmol HPA-5 catalyst dissolved in 10 mL MeOH, 20 bar initial O₂, 90 °C, 24 h, 1000 rpm.

Catalyst characterisation

Figure S3. FT-IR spectrum of synthesized HPA-5 catalyst showing the respective stretching vibrations of the Keggin oxoanion including the stretching vibrations of the Keggin oxoanion at 1065 cm⁻¹ (v_{as} P-O_a), 959 cm⁻¹ (v_{as} Mo-O_d), 865 cm⁻¹ (v_{as} Mo O_b Mo) and 771 cm⁻¹ (v_{as} M-O_b-Mo).

Figure S4. Thermogram of the solid HPA-5 catalyst. Conditions: 80 mg of the substance were weighed into a quartz crucible, heated at a constant rate of 10 °C min–1 up to 350 °C and kept there for 20 min. Helium was used as a carrier gas.

Figure S5. ⁵¹V-NMR (above) and ³¹P-NMR- (below) spectra of the synthesized HPA-5 catalyst (blue) in D_2O compared with a literature-known reference [27] (red) showing all expected isomers of the corresponding HPA-1, HPA-2, HPA-3/VO₂⁺, HPA-4 and HPA-5 species.

Calculations of conversion, product selectivity and carbon mass balance:

$$Gucose conversion (\%) = \frac{moles (of consumed C in glucose)}{moles (of initial C in glucose)} \times 100$$
(1)
Equation S1: Calculation of glucose conversion

$$Product \ selectivity \ (\%) = \frac{moles \ (C \ in \ product)}{moles \ (of \ initial \ C \ in \ glucose)} \times 100$$
(2)

Equation S2: Calculation of product selectivity

The total carbon yield (TOC) was calculated by equation 3 and served as a representative for the carbon mass balance.

$$TOC = \frac{\sum_{i}^{n_{product,i}}}{n_{C-atoms,glucose}}$$

<mark>(3)</mark>

¹³C-NMR spectra of methanol oxidation products

Figure S6. Substrate variation without catalyst; Reaction conditions: 1 mmol formaldehyde dissolved in 10 mL methanol, 20 bar O2 pressure, 90 °C, 24 h, 1000 rpm.

Figure S7. Substrate variation; Reaction conditions: 0.1 mmol HPA-5 catalyst 1 mmol dimethoxymethane dissolved in 10 mL methanol, 20 bar O2 pressure, 90 °C, 24 h, 1000 rpm.

Figure S8. Substrate variation without catalyst; Reaction conditions: 1 mmol methyl formate dissolved in 10 mL methanol, 20 bar O2 pressure, 90 °C, 24 h, 1000 rpm.

Water content variation

Table S2.Detailed product composition depending on water content (Figures 6A and 6B).Reaction conditions: 1 mmol glucose, 0.1 mmol HPA-5 catalyst dissolved in 10 mL solvent, 20 barinitial O2, 90 °C, 24 h, 1000 rpm.

W _{H2O,before}	W _{H2O,after}	X _{Glu} / % (HPLC)	Y (FA) (NMR)	Y (MF) (NMR)	Y (CO₂) (GC)	Y (CO) (GC)	тос /%
0	4.4	100	0	100	0	0	100
10	14.0	100	19.9	79.6	0.5	0	100
20	n.d.	99	24.6	73.8	0.6	0	99
30	n.d.	99	34.2	63.6	1.0	0.2	99
40	n.d.	98	40.6	56.0	1.2	0.2	98
48	n.d.	98	42.2	53.7	1.8	0.3	98
49	n.d.	98	44.3	51.9	1.6	0.2	98
70	n.d.	97	59.2	37.8	2.3	0.2	99
90	n.d.	93	72.4	16.9	3.3	0.3	93
100	n.d.	100	56	0	43	1	100

Kinetic experiments

Table S3. Kinetics of glucose oxidation in water. Reaction conditions: 20 mmol glucose, 2 mmol HPA-5 catalyst dissolved in 200 ml water, 90°C, 5 bar synthetic air (21 vol% oxygen), 1000 rpm, 22h.

time / h	c _{Glucose} / mol L ⁻¹	X _{Glu} / % (HPLC)	Y _{FA/MF} / % (HPLC)	Y _{co2/co} / % (GC)	Catalyst (Colour)
0	0.10	0	0.6		orange
0,25	0.094	8	1.3		dark brown
0,5	0.089	13	2.6		dark brown
0,75	0.084	17	4.5		dark brown
1,0	0.077	24	6.4		dark green
1,5	0.066	35	11.6		dark green
2	0.062	39	13.5		dark green
3	0.060	40	14.8		dark blue
4	0.060	41	15.4		dark blue
5	0.060	41	15.4		dark blue
6	0.058	43	15.4		dark blue
22	0.056	45	16.7	3.7 / -	dark blue

Table S4.Kinetics of glucose oxidation in methanol.Reaction conditions: 20 mmol glucose, 2mmol HPA-5 catalyst dissolved in 200 ml methanol, 90°C, 5 bar synthetic air (21 vol% oxygen),1000 rpm, 22h.

time / h	c _{Glucose} / mol L ⁻¹	X _{Glu} / % (HPLC)	w _{H20} / wt % (KFT)	Y _{co2/co} / % (GC)	Catalyst (Colour)
0	0.018	82	0.84		orange
0.25	0.010	90	0.94		orange
0.5	0.007	93	0.94		orange
0.75	0.007	93	0.94		orange
1.0	0.005	95	0.99		orange
1.5	0.005	95	0.97		orange
2	0.004	96	0.94		orange
3	0.004	96			orange
4	0.004	97			orange
5	0.003	97	1.1		orange
24	0.000	100	1.6	0.04 / -	orange

Figure S10. ⁵¹V-NMR spectrum of methanolic HPA-5 solution before Oh (top) and after 24 h (bottom) catalytic oxidation of glucose.

Figure S11. Determination of kinetic rate constants using Arrhenius' law.

