1
 Supplementary Information

 2
 3
 Upcycling of biowaste carbon and nutrients in line with consumer

 4
 confidence: the "full gas" route to single cell protein

 5
 6

 6
 Authors: Silvio Matassa⊠, Stefano Papirio, Ilje Pikaar, Tim Hülsen, Evert Leijenhorst,

 7
 Giovanni Esposito, Francesco Pirozzi, Willy Verstraete

 8
 *Correspondence should be addressed to: Silvio Matassa, Department of Civil, Architectural

 10
 and Environmental Engineering, University of Naples Federico II, via Claudio 21, 80125

11 Naples, Italy. E-mail: silvio.matassa@unina.it

12 **1. Supplementary information**

13 In the present section, additional details regarding the assumptions, the calculation and the

14 results of this study are presented under the form of supporting tables.

15 Table S1. Composition and properties of the specific biowaste substrates considered to define

16 the final reference average values

Biowaste	Reference in Phyllis database ¹	Water content (wt%)	VS content (% dry wt)	LHV (MJ/kg)	C content (% dry wt)	N content (% dry wt)	P content (% dry wt)
	Barley straw #3169	12%	76%	17.43	46.2%	0.60%	0.04%
Lignocellulosic	Corn stalk #2790	8%	73%	15.76	44.8%	0.85%	-
biomass	Poplar #700	5%	85%	18.19	49.4%	0.23%	0.01%
	Avg.	8%	78%	17.13	46.8%	0.56%	0.02%
				1	1	I	ΙΙ.
	0 11		54%	14.03	34.0%	4.70%	
Sewage sludge	Sewage sludge #658, #1178,		52%	14.19	33.7%	5.38%	0.37%
Serrage stange	#3004		52%	12.46	30.9%	4.76%	
	Avg.	>98%	52%	13.56	32.9%	4.95%	0.37%
	0			I			1
	Organic wet fraction municipal waste #3198	57%	52%	14.52	34.0%	1.73%	0.63%
Organic	Organic domestic waste, the Netherlands #1341	54%		15.00	42.1%	1.75%	-
Fraction of Municipal Solid Waste	Municipal solid waste, organic wet fraction #1300	54%		16.86	42.1%	1.78%	
	Organic domestic waste #3199		53%	14.43	34.4%	1.69%	0.06%
	Avg.	55%	53%	15.20	38.3%	1.74%	0.35%
	Cattle manure, fresh #1882		70%	16.19	45.4%	0.96%	0.21%
Manure	Cow manure #2833	83%	76%		28.6%	1.50%	0.30%
	Pig manure #1366	92%	51%	12.83	35.0%	2.79%	-
	Avg.	87%	66%	14.51	36.3%	1.75%	0.25%

17

18 Table S2. Biogas production through AD treatment of biowastes.

	Mass	VS content	Bioga	s produced	(Nm ³)	VS destruction	AD digestate
Biowaste	(ton dry dw)	(% dry wt)	Biogas ^a	CH ₄	CO ₂	(%) ^b	residual mass (ton dry wt)
Sewage	1.0	52.5%	251.9	151.2	100.8	58.3%	0.69
Manure	1.0	65.9%	267.2	160.3	106.9	49.2%	0.68

19 ^a See Table S4 for the average biochemical methane potential considered for each substrate. Biogas is assumed to be 60%

20 CH₄ and 40% CO₂.

21 ^b Volatile solids destruction is calculated based on the amount of biogas produced, see paragraph 2.1.3 in the manuscript.

22

24	Table S3.	Syngas	production	through	Pv/Gs	treatment	of biowastes
2		Dyngub	production	unougn	1 9/00	ucutillent	or blowaster

	Mass	Syngas produced through Py/Gs (Nm ³)									
Biowaste	(ton dry dw)	Syngas ^a	Syngas processing	СО	H ₂	CH ₄	CO ₂				
OFMSW 1.0	1.0	506 9	no	116.6	192.6	45.6	116.6				
	1.0	300.8	yes	0.0	525.7	298.1	0.0				
Lignocellulosics 1.	1.0	570.9	no	131.3	216.9	51.4	131.3				
	1.0		yes	0.0	592.3	335.8	0.0				

25 ^a See Table 4 in the manuscript for the syngas yield considered for each substrate

- 26 **Table S4.** Range of values used to perform the parametric analysis. The carbon content of
- 27 biochar was assumed to be constant under all scenarios.

Parameter	Low value	Average value	High value
Biochemical methane potential of sewage	230	288	346
sludge (Nm ³ CH ₄ /ton VS) ²⁷			
Biochemical methane potential of manure	195	243	292
(Nm ³ CH ₄ /ton VS) ²⁸			
Cold gas efficiency $(\%)^2$	20	40	60
Biochar yield (% wt) ³	14.8	18.5	22.0
Biochar carbon content (% wt) ³		81.5	
N conversion efficiency as NH ₃ (% wt) ⁴	60	75	90

- 29 Table S5. Assumptions and calculations used to define the energy requirements of mechanical
- 30 dewatering and the final water content of the co-substrate for combined treatment settings.

Process	Parameter	Value	Unit	Remarks and references	
stage					
	AD digestate water content	96%	wt%	AD digestate resulting from the AD of both sewage sludge and manure is considered to have a 4% of dry solids content ¹	
	Dewatered AD digestate water content	70%	wt%	AD digestate is mechanically dewatered through centrifuging ¹	
Co-substrate	Mass of AD digestate	0.69	ton dry wt	Mass of AD digestate resulting from the AD of 1 ton dry wt of biowaste (average of sewage sludge and manure). See Table S2	
generation	Wet weight of AD digestate	2.31	ton	Wet weight based on a 70% water content	
	Wet weight of OFMSW	2.22	ton	Wet weight based on a 55% water content (see Table S1)	
	Wet weight of lignocellulosic biomass	1.09	ton	Wet weight based on a 8% water content (see Table S1)	
	Co-substrate water content	52%	wt%	Calculated as the weighted average of AD digestate, Lignocellulosics and OFMSW	
	Specific energy demand for AD digestate centrifuging	0.70	kWh/ton	A decanter centrifuge used in industrial settings is considered ⁵	
	Energy demand for AD digestate dewatering	11.99	kWh	Energy needed to dewater AD digestate at 96% water content in order to obtain a final mass of solid dry wt of 0.69 ton	
AD digestate	Combined heat and power (CHP) generation efficiency	35	%	Electrical efficiency assumed for a CHP unit fed with biogas. Note that electrical efficiencies as high as 40% have been reported ⁶	
dewatering	Energy demand for AD digestate dewatering through CHP	123.30	MJ	Primary energy needed to provide electrical energy to the decanter centrifuge through the CHP unit. 1 kWh is equal to 3.6 MJ	
	Low heating value of biomethane	35.80	MJ/Nm ³	7	
	Average biomethane produced from biowaste	155.75	Nm ³ /ton dry wt	Value obtained by averaging the biomethane potential of sewage sludge and manure, see Table S2	

		Total primary available from bi	energy omethane	55	75.85	MJ		Energy in the biomethane produced by digesting 1 ton dry wt of biowaste
]	Parameter		Value		Unit		Re	marks and references
]	Amount of bic produce SCP	waste needed to	9.8		Dry biowa /ton S	ton ste CP	Ma SCI SCI	ss of biowaste to be treated in order to produce 1 ton P. This value is based on a SCP potential of 102.16 kg P/ton biowaste (see Table S10)
1	Amount of carl biochar (CCS)	oon captured into	4.1		ton eq/ton	CO ₂ - SCP	Thi cap an S1)	s value is calculated by considering an average carbon ture and storage potential of 29.9% (see Table S10) and average biowaste carbon content of 38.6% (see Table
		Share of b primary energy for AD dewatering	iomethane required digestate	2.2	21%	% total prima energ	of iry y	Share of primary energy from the produced biomethane that would be required to provide electricity to the centrifuging step through a CHP unit

31

Table S6. Assumptions and calculations performed to identify the amount of nutrients embedded in the AD digestate deriving from sewage sludge and manure and obtained after mechanical dewatering. The residual fraction of nutrients here calculated was applied to the N and P available from sewage sludge and manure reported in Table S1, and further used to identify the amount of nutrients available for recovery through thermochemical Py/Gs treatment under combined treatment settings.

	Va	lue				
Parameter	Sewage sludge	Manure	Unit	Remarks and references		
AD digestate water content	96%		96%		wt%	AD digestate resulting from the AD of both sewage sludge and manure is considered to have a 4% of dry solids content ¹
Dewatered AD digestate water content	70%		wt%	AD digestate is mechanically dewatered through centrifuging ¹		
Mass of AD digestate	0.69	0.69 0.68		Mass of AD digestate resulting from the AD of 1 ton dry wt of biowaste. See Table S2		
Wet weight of AD digestate	17.25	17.25 17.00		Wet weight based on a 96% water content		
Amount of water removed	16.56	16.56 16.32		Water removed during mechanical AD digestate dewatering		
Fraction of residual water	9.7%	9.7%	wt%	Fraction of initial water that is retained in the dewatered AD digestate		
Amount of particulate nutrients (N and P)	41.7%	41.7% 51.0%		Percentage of nutrients that are embedded in the solid AD digestate matrix, which is obtained by assuming that the share of VS that is not degraded during AD retains the nutrients in a particulate form (see Table S2)		
Amount of dissolved nutrients (N and P) in the dewatered AD digestate	5.8%	4.9%	wt%	Obtained by multiplying the amount of residual water by the percentage of VS destruction during AD, which corresponds to the amount of nutrients released into a water- soluble form		
Fraction of nutrients (N and P) from the biowaste residual in the AD digestate	47.5%	55.9%	wt%	Overall balance of the nutrient fraction that is still available into the AD digestate and that can be recovered through Py/Gs treatment		

CO ₂ emission production	ns for SCP	1.7	ton CO ₂ - eq/ton SCP	- Emissions are calculated based on a LCA study on SCP production using biomethane from AD. ⁸ It is here assumed that the carbon capture and utilization (CCU) potential has been already considered in the overall balance indicated by
Para	meter	Value	Unit	Remarks and references
Final CO ₂ balance Social cost	ce t of carbon	-2.4 42.0	\$9fhetric ^{O2} eg/tenSCP	Constant of the amount of CO ₂ -eq captured in Constant or reader where CO ₂ - eq captured in Constant of the CO ₂ - eq captured in
	SCP	-2.4		See Table S7
CO ₂ emission factors	Soybean meal	14.0	ton CO ₂ - eq/ton feed additive	The CO_2 emission factor derives from an LCA study that considers land use change emissions due to use of rainforest land (non-tillage production scenario) ¹¹
	Fishmeal	2.6		Emission factor based on LCA study on fishmeal production ⁸
Social cost of	SCP	-102.6		
feed additive	Soybean meal	588.0	\$/ton feed additive	Calculated by multiplying the CO ₂ emission factors by the social cost of carbon
production	Fishmeal	109.2	uuuntive	

Table S7. Estimation of the overall CO₂ balance for SCP production under sub-scenario 1.4.

- **Table S8.** Estimation of SCP production costs based on the study of Pikaar et al. (2018).⁹ The
- 42 table reports the production pathways (SCP pathway), direct expenses for production
- 43 (*Production cost*) and the total costs (*Total costs*) for producing SCP using gaseous substrates
- 44 based on dedicated crops (biogas for MOB obtained through AD of energy maize and syngas
- 45 for HOB obtained through gasification of a *Miscanthus* species). The cost section reports
- 46 expenses for conventional gas-based SCP production requiring virgin mineral nutrients (N &
- 47 P), aeration (O_2), running costs for fermentation (*Mixing & pumping*) and final processing

			Total costs						
SCP pathway	Annuity of capital cost	Gas substrate cost	O ₂	N & P	Mixing & pumping	SCP dewatering and drying	Overhead	\$/ton SCP	\$/ton SCP (protein- equivalent)
CH ₄ -oxidizing bacteria		831	109					1692	2417
H ₂ -oxidizing bacteria	203	666	90	149	38	160	203	1507	2153

48 (SCP dewatering and drying).

Adjusted cost	usted cost SCP 1497	Calculated by subtracting the social cost of carbon from the SCP average production cost of MOB and HOB (see Table S8)					
of feed additive	Soybean meal	959	additive	additive (2015 2020) and the social cost of carbon to the 5-yea			
	Fishmeal	1575		average (2015-2020) market price of soybean meal (3/1 \$/ton) and of fishmeal (1466 \$/ton). ¹²			
Adjusted cost	SCP	1996-2303	\$/ton feed	Calculated by considering a SCP protein content ranging between 65 and 75%			
of feed additive (protein- equivalent)	Soybean meal	2398-3197	additive (protein-	Calculated by considering a soybean meal protein content ranging between 30 and 40%			
	Fishmeal	2423-2864	equivalent)	Calculated by considering a fishmeal protein content ranging between 55 and 65%			

Table S9. Calculations used to estimate the adjusted cost of soybean meal, fishmeal and SCP

58			
59			
60			
61			
62			
63			
64			
65			
66			
67			
68			
69			
70			

Sub-scenarios		1.1		1.2		1.3		1.4		2.3		2.4		2.3		2.4		
Treatment		AD	Pv/Gs	AD	Pv/Gs	AD	Pv/Gs	AD	Pv/Gs	AD	Pv/Gs	AD	Pv/Gs	AD	Pv/Gs	AD	Pv/Gs	
	Sewage	61.00	0.00	61.00	0.00	61.00	18.92	61.00	51.66	61.00	0.00	61.00	0.00	61.00	33.19	61.00	56.45	
Specific SCP production	Manure	64.70	0.00	64.70	0.00	64.70	30.57	64.70	53.80	64.70	0.00	64.70	0.00	64.70	34.57	64.70	58.79	
potential (kg SCP/ton	OFMSW	0.00	30.57	0.00	83.45	0.00	30.57	0.00	83.45	0.00	53.61	0.00	91.18	0.00	53.61	0.00	91 18	
biomwaste	Lignocellulosics	0.00	29.17	0.00	94.01	0.00	29.17	0.00	94.01	0.00	54.65	0.00	102 72	0.00	54.65	0.00	102 72	
Avenage SCB preduction	n notontial (kg SCP/ton biowasto)	21.42	14.02	21.42	44.26	21.42	27.21	21.42	70.72	21.42	27.07	21.42	49.47	21.42	44.00	21.42	77.29	
Average SCP production potential (kg SCP/ton biowaste)		31.42	14.75	31.42	44.30	51.42	27.51	31.42	10.75	51.42	40	51.42	40.47	31.42	44.00	31.42	0.71	
Total SCP production	Total SCP production potential (kg SCP/ton biowaste)		40.50 /5.79		5.79	58./3		102.10		58.49		79.90		/5.43		108./1		
Specific SCP CCU potential	Manung	0.17/8		0.17/8		0.1776	1.02/0	0.1778	7.409/	0.1776	s	0.1776		0.1776	5.05%	0.1776	9.609/	
(% Carbon from biowaste	Manure	9.40%	1.0.10/	9.40%	11.000/	9.40%	4.04%	9.40%	11.020/	9.40%	7.420/	9.40%	10 (10 (9.40%	3.03%	9.40%	8.00%	
captured in SCP)	OrMSW		4.04%		10.102%	0.00%	2.13%	0.00%	10.102%		7.43%		12.04%	0.00%	7.43%	0.00%	12.04%	
	Lignocellulosics	· · · · · · · · · · · · · · · · · · ·	1.98%		10.10%	0.00%	1.98%	0.00%	10.10%		0.20%		11.05%	0.00%	0.20%	0.00%	11.05%	
Average SCP CCU potential	(% Carbon from biowaste captured in	7.000/	2 2124	7.000/	10 500/	0.010/	0.000	0.010/	0.4407	7.000/	6 000/	7.000/	10.150/	0.010/	5 5104	0.010/	0.000	
SCP)		7.82%	3.01%	7.82%	10.59%	3.91%	2.05%	3.91%	8.41%	1.82%	0.82%	1.82%	12.15%	3.91%	5.51%	3.91%	9.05%	
Total SCP CCU potential (Total SCP CCU potential (% Carbon from biowaste captured in SCP)		5.41% 9.20%		6.55% 12.32%		7.32%		9.98%		9.42%		13.56%					
Bioshan CCS notonticl (0/	Sewage		0.00%		0.00%		19.94%		19.94%		0.00%		0.00%		19.94%		19.94%	
Carbon from biowasto	Manure		39.35%		39.35%		39.35%		39.35%		39.35%		39.35%		39.35%		39.35%	
captured in SCP)	OFMSW		0.00%		0.00%		28.05%		28.05%		0.00%		0.00%		28.05%		28.05%	
captared in Ser ;	Lignocellulosics		32.22%		32.22%		32.22%		32.22%		32.22%		32.22%		32.22%		32.22%	
	Low scenario - Sewage + Manure	33	.52	33	3.52	46	5.72	61	.64	33.52		33	.52	51.59		64	.25	
	Low scenario - OFMSW	4.08		11.13		4.08		11	.13	7.	15	12	.16	7.15		12.16		
	Low scenario - Lignocellulosics	21.07		67.90		21.07		67.90		39	.47	74.19		39.47		74.19		
SCB Clobal notantial (Mt)	LOW SCENARIO	58.67		112.54		71.86		140.67		80.14		119.86		98.21		150.59		
SCP Global potential (1411)	High scenario -Sewage + Manure	149.89		149.89		208	208.90		275.64		.89	149.89		230.68		287.29		
	High scenario - OFMSW	18	.22	49.75		18.22		49.75		31.96		54.36		31.96		54.36		
	High scenario - Lignocellulosics	75	.11	242.03		75.11		242.03		140.70		264.45		140.70		264.45		
	HIGH SCENARIO	243	3.22	44	1.67	30	2.23	56	7.43	32:	2.54	46	8.70	403.34		606.11		
	Low scenario - Sewage + Manure	0.	05	0	.05	0.	.07	0.	.10	0.	05	0.05		0.08		0.10		
	Low scenario - OFMSW	0.	0.01		0.02		0.00		0.02		0.01		0.02		0.01		0.02	
	Low scenario - Lignocellulosics	0.02		0.13		0.02		0.13		0.08		0.14		0.08		0.14		
SCP Global CCU potential	LOW SCENARIO	0.08		0.20		0.10		0.24		0.14		0.22		0.17		0.27		
(Gt CO ₂ -eq)	High scenario -Sewage + Manure	0.	0.24		0.24		0.33		0.43		0.24		0.24		0.36		0.45	
	High scenario - OFMSW	0	03	0	08	0.02		0.08		0.06		0.10		0.06		0.10		
	High scenario - Lignocellulosics	0	0.09		0.45		0.09		0.45		0.27		0.51		0.27		0.51	
	HIGH SCENARIO	0.	35	0.77		0.43		0	96	0	57	0.85		0.69		1.06		
	Low scenario - Sewage + Manuro	0	0.00		0.00		0.16		0.16		0.00		0.00		0.16		0.16	
	Low scenario - OFMSW	0.	27	0	27	0	27	0.27		0.27		0.27		0.27		0.27		
	Low scenario - Lignocollulogics	0.	05	0.05		0.05		0.05		0.05		0.05		0.05		0.05		
Biochar Global CCS	LOW SCENARIO	0.	32	0.32		0.48		0.48		0.32		0.32		0.48		0.48		
potential (Gt CO ₂ -eq)	High scenario -Sewage + Manuro	0.	00	0.00		0.73		0.73		0.00		0.00		0.73		0.73		
	High scenario - OFMSW	0.	30	0.30		0.30		0.30		0.30		0.00		0.75		0.30		
	High scenario - Lignosollulosiar	0.	24	0.30		0.30		0.24		0.30		0.30		0.30		0.24		
	HIGH SCENARIO	0.24		0.24		1.27		1.24		0.24		0.24		0.24		1.27		
Clabel CCUS and and 1 (C)	LOWSCENARIO	0.54		0.54		1.2/		0.72		0.54		0.54		1.2/		0.75		
Global CCUS potential (Gt	LOW SCENARIO	0.40		0.52		0.58		0.72		0.40		0.54		0.	06	0.75		
CO ₂ -eq)	HIGH SCENARIO	0.90		1.31		1.70		2.22		1.11		1.39		1.96		2.33		
N required for SCP	LOW SCENARIO	0.57		12.60		8.05		15.75		8.98		13.42		11.00		16.87		
production (Mt)	HIGH SCENARIO	27	.24	49	9.47	33	.85	63	.55	36	.13	52	.49	45	.17	67	.88	
NH ₃ -N recoverable from	LOW SCENARIO	3.59	54.69%	3.59	28.51%	5.83	72.48%	5.83	37.03%	3.59	40.04%	3.59	26.77%	5.83	53.04%	5.83	34.59%	
Py/Gs (Mt) and amount of																		
SCP nutrient requirement covered (%)	HIGH SCENARIO	13.32	48.89%	13.32	26.92%	23.33	68.93%	23.33	36.72%	13.32	36.86%	13.32	25.37%	23.33	51.65%	23.33	34.37%	
Total P available from	LOW SCENARIO	0.62	106.40%	0.62	55.46%	2.28	316.74%	2.28	161.81%	0.62	77.89%	0.62	52.08%	2.28	231.77%	2.28	151.15%	
biowaste (Mt) and amount of SCP nutrient requirement																		
covered (%)	HIGH SCENARIO	2.65	108.79%	2.65	59.91%	10.03	331.95%	10.03	176.81%	2.65	82.03%	2.65	56.45%	10.03	248.74%	10.03	165.53%	

Table S10. Specific values obtained from the calculations, divided by sub-scenario and by type of biowaste considered

73 2. References

- ECN, Phyllis2 Database for biomass and waste https://phyllis.nl/ (accessed Oct 2, 2019).
- 76 2. M. Villarini, V. Marcantonio and A. Colantoni, *Energies*, 2019, 12,
 77 DOI:10.3390/en12040688.
- 78 3. Z. Yao, S. You, T. Ge and C. Wang, *Appl. Energy*, 2018, **209**, 43–55.
- 79 4. J. Hongrapipat, W. Saw and S. Pang, *Biomass Convers. Biorefinery*, 2012, 2, 327–348.
- 80 5. Energy-saving decanters for dewatering of sludge Chemical Engineering
 81 https://www.chemengonline.com/energy-saving-decanters-for-dewatering-of82 sludge/?printmode=1 (accessed Apr 4, 2020).
- 83 6. R. Hakawati, B.M. Smyth, G. McCullough, F. De Rosa and D. Rooney, *Appl. Energy*,
 2017, **206**, 1076–1087.
- 85 7. B. Abderezzak, B. Khelidj, A. Kellaci and M.T. Abbes, *AASRI Procedia*, 2012, 2, 156–162.
- S. Matassa, N. Boon, I. Pikaar and W. Verstraete, *Microb. Biotechnol.*, 2016, 9, 568–
 575.
- 89 9. I. Pikaar, S. Matassa, B.L. Bodirsky, I. Weindl, F. Humpenöder, K. Rabaey, N. Boon,
 90 M. Bruschi, Z. Yuan, H. Van Zanten, M. Herrero, W. Verstraete and A. Popp, *Environ*.
 91 Sci. Technol., 2018, **52**, 7351–7359.
- 92 10. EPA, The Social Cost of Carbon | Climate Change | US EPA
 93 https://19january2017snapshot.epa.gov/climatechange/social-cost-carbon_.html
 94 (accessed Apr 6, 2020).
- 95 11. É.G. Castanheira and F. Freire, J. Clean. Prod., 2013, 54, 49-60.
- 96 12. Indexmundi, Commodity Prices Price Charts, Data, and News IndexMundi
 97 http://www.indexmundi.com/commodities/ (accessed Apr 6, 2020).
- 98