Supplementary data

General Methods and Materials	2
S.1 Expression of recombinant genes in <i>E. coli</i>	2
S.1.1 Protein determination and SDS-PAGE analysis	3
S.1.2 Spectrophotometric assay	3
S.1.3 Analytical scale biotransformations	4
S.1.4 Protein purification	6
S.1.5 Analytical scale biotransformations with conditioned medium	7
S.1.6 pH study	7
S.2 Colony based solid-phase ATA assay	8
S.3 Expression of recombinant genes in <i>C. glutamicum</i>	8
S.3.1 Analytical scale whole cell biotransformation of ${f 1}$	9
S.3.2 Preparative scale biotransformation of 1	.10
S.3.3 NMR-data	.12
S.3.4 References	.12
S.4 Strains, plasmids and oligonucleotides used	.14
S.4.1 References for strains and plasmids:	.18

General Methods and Materials

Methods: NMR spectra were recorded on a Bruker Avance 400 spectrometer (¹H 400 MHz, ¹³C 100 MHz) and are referenced internally according to residual solvent signal. The chemical shifts (δ) were recorded in ppm and the coupling constants (*J*) were reported in Hz, are corrected and refer to the apparent peak multiplicities. GC-FID spectra were recorded on Bruker Gas Chromatographer using Flame Ionization Detectors (FID). Thin layer chromatography (TLC) was performed on silica gel 60 F₂₅₄ plates (Merck). Flash column chromatography was performed on silica gel (60 Å, 40-60 micron) from Fluorochem.

Materials: All chemicals were of analytical grade purity and obtained from Sigma Aldrich (München, Germany), Merck (Darmstadt, Germany), VWR (Hannover, Germany) or Acros (Geel, Belgium). Restriction enzymes, 1kb plus protein marker and phusion polymerase were bought from Thermo Fisher Scientific (Waltham, MA, US), T4 ligase and NEBuilder[®] HiFi DNA assembly were purchased from New England Biolabs (Ipswich, MA, USA), oligos and sequencing services were purchased from Eurofins Genomics (Ebersberg, Germany). *Escherichia coli* DH5α and BL21(DE3) cells were purchased from New England Biolabs (Ipswich, MA, USA)

S.1 Expression of recombinant genes in E. coli

All ATA genes were codon-optimized and were kindly supplied by Prof. Nicholas Turner and his group from University of Manchester, UK, and Prof. Uwe Bornscheuer and his group from University of Greifswald, Germany. (*S*)-Selective ATAs (3HMU, 3I5T, Vibflu, ChrVio, *Pc*ATA, *Pp*ATA) and the (*R*)-selective ATAs (AspFum, NeoFis) were cloned into pET-22b. (*S*)-Selective *Pf*ATA was cloned in pET-28b and the (*R*)-selective MycVan and AspOry were cloned in pGASTON. Transformed *E. coli* BL21(DE3) cells were cultivated in 500 mL LB, supplemented with 100 µg mL⁻¹ ampicillin or 50 µg mL⁻¹ kanamycin, at 37 °C shaking at 200 rpm, starting with 5 mL inoculum of single-colony culture previously grown overnight. The culture was grown until the OD₆₀₀ reached 0.5-0.7 and then expression was induced by addition of isopropyl β-D-1-thiogalactopyranoside (IPTG) (1 mM) or Rhamnose (5% w/v) and the cultures were incubated at 20 °C (VibFlu, ChrVio, AspFum, AspOry, NeoFis, MycVan) for 20 h or 30 °C (3HMU and 3I5T) for 6 h. Following incubation, cells were harvested by centrifugation (1450 x g, 20 mins) and stored at -20 °C. Cell pellets were thawed, resuspended in lysis buffer containing potassium phosphate buffer (50 mM, pH 7), pyridoxal-5'-phosphate (0.1 mM) and 1X cocktail of proteases inhibitors and disrupted by sonication at 4 °C with 10 cycles of 30 s of sonication and 30 s of cooling at 40% amplitude, using QSonica model Q55. After centrifugation (24,000 rpm, 4 °C, 25 mins) in an Eppendorf 5424R microcentrifuge, the supernatant was clarified *via* filtration (0.45 μ m filter) and used directly or purified on Äkta pure.

S.1.1 Protein determination and SDS-PAGE analysis

Total protein concentration in clarified and purified extracts was determined spectrophotometrically at 280 nm. The extinction co-efficient of each ATA at 280 nm (measured in water) was estimated by ExPASy ProtoParam tool (<u>www.expasy.org</u>).^[1] SDS-PAGE analysis was carried out with 15% resolving and 5% stacking gel in Tris-glycine buffer system. The gel was stained with Coomassie Brilliant Blue G-250 and a broad range of protein marker (10-200 kDa) was used to determine the relative molecular weight.

Figure S1. Sample SDS-PAGE of the clarified crude extracts of the ATAs.

S.1.2 Spectrophotometric assay

A kinetic assay developed from Schatzle *et al.*^[2] was used as a standard enzymatic assay, employing pyruvate and S-phenylethylamine ((S)-PEA) as amine acceptor and donor, respectively. The reactions were carried out at 25 °C in HEPES buffer (1 mL, 50 mM, pH 8.0) containing pyruvate (2.5 mM), (S)-PEA (2.5 mM) and the appropriate amount of enzyme (0.04 to 4 µg purified enzyme or 0.5 to 900 µL of crude extract with an OD₆₀₀ of 10, depending on the respective activity). The activity was determined by following the production of

acetophenone during the first two minutes of the reaction at 245 nm, using the spectrophotometer EPOCH2.

Figure S2. The increase in absorbance at 245 nm over time is measured, which corresponds to the amount acetophenone produced during the enzymatic assay.

S.1.3 Analytical scale biotransformations

A solution of PLP (0.1 mM), ketone substrate (5 mM from a 500 mM stock in DMSO) and amine donor (1 or 3 equiv.) in phosphate (100 mM, pH 7-8), HEPES (100 mM, pH 7-8) or Tris buffer (100 mM, pH 9-10) was prepared and the pH was adjusted according to the enzyme employed. To this, clarified extract of the ATA preparation (1.5 mg mL⁻¹) was added and reactions were incubated at 30 °C in a gyratory incubator at 200 rpm. After 24 hours, the reactions were basified (pH 12), extracted with EtOAc (750 µL), derivatized with triethylamine 10 µL and acetic anhydride and analyzed by GC-FID.

GC Method

GC analysis was performed on a ThermoFisher 1310 chromatograph equipped with a flame ionizing detector, an AI 1310 autosampler and a CP-Chirasil-Dex-CB chiral column (25 m x 0.25 mm x 0.36 mm) and helium as a carrier gas. The front inlet temperature was set to 230 °C and the front detector was set to 250 °C. Split flow was set to 170 mL min⁻¹ and the helium gas was set to a constant flow of 1.7 mL min⁻¹. The GC-FID temperature program for all compounds was the following; 40 °C hold for 2 min followed by 20 °C min⁻¹ temperature rise

to 150 °C and then a hold for 5 minutes followed by a 30 °C min⁻¹ temperature rise to 225 °C and a further hold for 8 min.

Table S1. Conversion of ketones **1**, **2** or **3** (5 mM) to the corresponding chiral amine, utilizing the ATA as clarified crude extract (1.5 mg mL⁻¹), PLP (0.1 mM) and amine donor (5 mM), at 30 °C, 200 rpm, 24 h.

Selectivity	Transaminase	рΗ	Acceptor	Conversion (%)			ee (%)
				Cadaverine	Putrescine	<i>o</i> -xylylene	
				4	5	diamine 6	
		9.0	1	75	72	74	99
	3HMU		2	21	19	20	85
			3	nd	nd	nd	nd
		9.0	1	43	20	23	99
	ΡϲΑΤΑ		2	14	6	8	80
			3	nd	nd	nd	nd
		9.0	1	54	28	35	99
(S)	<i>Pf</i> ATA		2	25	9	17	82
			3	9	nd	7	99
		9.0	1	53	24	25	99
	ΡρΑΤΑ		2	18	9	11	85
			3	nd	nd	nd	nd
	315T	9.0	1	12	15	10	99
			2	14	10	7	80
			3	nd	nd	nd	nd
		7.0	1	2	nd	4	99
	ChrVio		2	8	2	7	99
			3	3	nd	3	99
		7.0	1	nd	nd	7	99
	Vibflu		2	nd	nd	6	99
			3	nd	nd	nd	nd
			1	nd	nd	4	99
	MycVan	7.5	2	nd	nd	5	99
(-)			3	nd	nd	nd	nd
(<i>R</i>)			1	nd	nd	nd	nd
	AspFum	7.5	2	nd	nd	nd	nd
			3	nd	nd	nd	nd
			1	nd	nd	nd	nd
	NeoFis	7.5	2	nd	nd	nd	nd
			3	nd	nd	nd	nd

Table S2. Conversions of 5 mM of **1** to the corresponding chiral amine utilizing purified extract of 3HMU, Pc, Pf or Pp ATA (1 mg mL⁻¹) in conditioned culture medium (GRLys1, NA6, Cada1) at 30 °C, 200 rpm, 24 h.

C. glutamicum	Transaminase	Conversion (%)		ee (%)
Culture		1d	2d	
	3HMU	15	15	99
GRLys1	pcATA	nd	nd	nd
	<i>pf</i> ATA	nd	nd	nd
	ррАТА	nd	nd	nd
	3HMU	81	83	99
NA6	pcATA	75	75	99
	<i>pf</i> ATA	68	68	99
	ррАТА	71	71	99
	3HMU	55	98	99
Cada1	<i>pc</i> ATA	6	78	99
	<i>pf</i> ATA	6	70	99
	ppATA	7	60	99

Table S3. Conversion of **1** (5 mM) to the corresponding chiral amine, utilizing clarified crude extract (1.5 mg mL⁻¹) of 3HMU, Pc, Pf or PpATA, PLP (0.1 mM) and L-lysine (15 mM) at 30 °C, 200 rpm, 24h.

Transaminase	Conversion (%)	ee (%)
3HMU	16	99
<i>Pc</i> ATA	nd	nd
<i>Pf</i> ATA	nd	nd
РрАТА	nd	nd

S.1.4 Protein purification

Purification of the ATAs was carried on Äkta Pure system (GE, Healthcare, Little Chalfont, UK). Clarified extract was loaded onto a 5 mL HisTrap column, washed with 10 column volumes of de-gassed phosphate buffer (50 mM, pH 8.0 containing PLP (0.1 mM) and imidazole (30 mM)) and eluted with de-gassed phosphate buffer (50 mM, pH 8.0 containing PLP (0.1 mM) and imidazole (300 mM)). Fractions of 5 mL were collected during the elution phase and SDS-PAGE gel was used to identify fractions containing the ATA. The protein solution was concentrated using VivaSpin 20, 50,000 MWCO PES (Sartorius, Gottingen, Germany) and the imidazole was removed *via* dialysis (tubing from Sigma Aldrich). Purified protein was analyzed by SDS-PAGE (found 95% pure) and instantly used for biotransformations.

S.1.5 Analytical scale biotransformations with conditioned medium

Cultures of *C. glutamicum* NA6 or Cada1 were grown (see section S.3) and an aliquot was taken after 24 h and 48 h. To the one-day or two-day mature culture media (1 mL) was added PLP (0.1 mM), 1-phenyl-1,4-pentanedione (5 mM from 500 mM stock in DMSO) and purified ATA extract (1 mg mL⁻¹), and the reaction mixture was incubated at 30 °C shaking at 200 rpm. After 24 hours the reactions were basified (pH 12), extracted with EtOAc (750 μ L), derivatized with triethylamine (10 μ L) and acetic anhydride (10 μ L) and analyzed by GC-FID (see S.1.3).

S.1.6 pH study

The acetophenone assay described in S.1.2 was employed utilizing phosphate (100 mM, pH 7-8), HEPES (100 mM, pH 7-8) or Tris buffer (100 mM, pH 9-10), depending on the pH being analysed.

Figure S3. Measurement of the specific activity of purified extract of putrescine ATAs at different pH, utilizing the acetophenone assay.

S.2 Colony based solid-phase ATA assay

Colonies of transformed *E. coli* or *C. glutamicum* were grown at 30 °C overnight on LB agar, supplemented with appropriate antibiotic. Under sterile conditions, colonies were transferred onto a cellulose membrane, placed on top of filter papers soaked with IPTG (1 mM) for induction, and incubated at 30 °C for 24 h. Subsequently, the membrane was transferred onto filter papers soaked in a solution of *o*-xylylenediamine (10 mM) and pyruvate (10 mM) and incubated at room temperature. ATA activity was identified by the emergence of colored colonies, after 0.5, 8 and 24 h.

S.3 Expression of recombinant genes in C. glutamicum

Minimal media mCGXII^[3] was used for the main cultures containing per liter distilled water: 20 g (NH₄)₂SO₄, 5 g Urea, 1 g KH₂PO₄, 1 g K₂HPO₄, 13.25 mg CaCl₂·2H₂O, 0.25 g MgSO₄·7H₂O, 10 mg FeSO₄·7H₂O, 10 mg MnSO₄·H₂O, 0.02 mg NiCl₂·6H₂O, 0.313 mg CuSO₄·5H₂O, 1 mg ZnSO₄·7H₂O, 0.2 mg biotin, 42 g 3-(*N*-morpholino)-propane-sulphonic acid (MOPS) and 4% (w/v) glucose.

Multiple colonies of transformed *C. glutamicum* were used to inoculate 25 mL Brain Heart Infusion media enriched with sorbitol (5% w/v) (BHIS), supplemented with spectinomycin (100 μ g mL⁻¹) and/or kanamycin (50 μ g mL⁻¹) and grown at 30 °C overnight. Pellets were harvested *via* centrifugation (4000 rpm, 7 mins), washed with minimal medium mCGXII^[3] (3 x 20 mL) and used to inoculate a 50 mL main culture, with starting OD₆₀₀ of 0.5 (for NA6 or GRLys1) or 1.0 (for Cada1). The cultures were instantly induced with IPTG (1 mM), unless otherwise specified, and incubated at 30 °C shaking at 200 rpm. After 24 h, cells (or media) were either used directly or were harvested *via* centrifugation (4000 rpm, 7 mins).

S.3.1 Analytical-scale whole-cell biotransformations of diketone **1**. Evaluation of conversions achieved with various cell densities and results from reusability studies.

Transformants of *C. glutamicum* were grown as described above. After 24 h, the cells were either used directly or harvested *via* centrifugation (4000 rpm, 7 mins), when different cell densities were being evaluated. Harvested cells were resuspended in either media or HEPES buffer in different concentrations (50, 100, 150 and 200 mg mL⁻¹). To this, 1-phenyl-1,4-pentanedione (5 mM from 500 mM stock in DMSO) was added and the reaction mixture

was incubated at 30 °C shaking at 200 rpm. After 24 hours, the reaction was pelleted *via* centrifugation and the cells were reused, where specified (reusability studies). The supernatant was basified (pH 12), extracted with EtOAc (750 μ L), derivatized with triethylamine (10 μ L) and acetic anhydride (10 μ L) and analyzed by GC-FID (see S.1.3).

Table S4. Conversion of diketone **1** using GRLys1, NA6 and Cada1 strains transformed with Pc, Pf or PpATA in pEKEx3 at 30 °C or 37 °C, 200 rpm for 24h.

Strain	Transaminase	Conversion (%)		ee (%)
		30 °C	37 °C	
GRLys1	<i>Pc</i> ATA	nd	nd	nd
	<i>Pc</i> ATA	9	5	99
NA6	<i>Pf</i> ATA	3	3	99
	ΡρΑΤΑ	2	0	99
	<i>Pc</i> ATA	12	7	99
Cada1	<i>Pf</i> ATA	8	6	99
	ΡρΑΤΑ	9	5	99

Table S5. Conversion of ketone **1** using NA6, NA2b and GRLys1 strains transformed with Pc, Pf or PpATA in either pEKEx3 or pVWEx1, or PcATAx2 in pEKEx3, at 30 °C, 200 rpm for up to 48h.

Strain ^a Vector(s) ^a		Biocatalysts	Conversion (%)		ee (%)
			1d	2d	
		speC, PcATA	9	12	99
NA6	pVWEx1	speC, PcATAx2	22	32	99
	(for speC),	speC, <i>Pf</i> ATA	3	4	99
	pEKEx3 (for ATA)	speC, <i>Pp</i> ATA	2	3	99
		speC, <i>Pc</i> ATA	nd	7	99
NA2b	pVWEx1	speC, <i>Pf</i> ATA	nd	5	99
(† a	(for speC and ATA)	speC, <i>Pp</i> ATA	nd	5	99
		ldcC, <i>Pc</i> ATA	12	17	99
	pVWEx1	ldcC, PcATAx2	14	20	99
CDI va1	(for ldcC),	ldcC, <i>Pf</i> ATA	8	8	99
ATA)	ATA)	ldcC, <i>Pp</i> ATA	9	9	99
	ldcC <i>, Pc</i> ATA	36	41	99	
	pVWEx1	ldcC, <i>Pf</i> ATA	32	35	99
(for speC and ATA)	ldcC, <i>Pp</i> ATA	26	33	99	

a: for exact genotypes see table S9Table S6. Conversion of ketone **1** using different cell densities of GRLys1-pVWEx1-ldcC-PcATA in different media. N/A: not available

Cell density	Conversion (%)			
	Media HEPES HEPES buffer + 0.1			
	culture	buffer	PLP	
50 mg mL ⁻¹	46	51	N/A	
100 mg mL ⁻¹	64	73	N/A	
150 mg mL ⁻¹	74	75	N/A	
200 mg mL ⁻¹	77	77	76	

Table S7. Conversion of **1** utilizing wet cell pellets (100 mg mL⁻¹) of C. glutamicum GRLys1-pVWEx1-IdcC-PcATA in three consecutive cycles.

Cycle	Conversion (%)	ee (%)
1	77	99
2	66	99
3	22	99

S.3.2 Preparative scale biotransformations of diketone ${\bf 1}$

Multiple pre-cultures of *C. glutamicum* GRLys1 (50 mL) with the pVWEx1-*ldcC-Pc*ATA, in BHIS media were prepared. Two 400 mL cultures of mCGXII, supplemented with kanamycin

(50 µg mL⁻¹) and starting OD₆₀₀ of 1.0 were prepared. Cultures were immediately induced with IPTG (1 mM) and incubated at 30 °C shaking at 200 rpm. After 24 h, the cells were pelleted *via* centrifugation (4000 rpm, 7 mins), washed with mCGXII (3 x 20 mL) and resuspended in HEPES buffer (140 mL, 100 mM, pH 8.0) at a final concentration of 150 mg mL⁻¹ wet cell pellet. To this, 1-phenyl-1,4-pentanedione **1** (130 µL, 5 mM in 10 mL DMSO) was added and the reaction mixture was incubated at 30 °C shaking at 200 rpm. After 24 h, an aliquot was extracted and analyzed by GC-FID (see S.1.3). The reaction mixture was centrifuged (4000 rpm, 15 mins) and the supernatant was clarified *via* filtration (0.45 µm filter), basified with NaOH (pH 12.0) and extracted with EtOAc (4 x 50 mL). The combined organic extracts were dried over MgSO₄ and the volatiles were removed under reduced pressure. The mixture was purified in silica gel utilizing petrol:dichloromethane (10:90), affording **4** as a light yellow oil (50 mg, 42% yield, > 99% *ee*).

(S)-5-methyl-2-phenyl-1-pyrroline (4)^[4]

Light yellow oil (50 mg, 42%, >99% *ee*). ¹H NMR (400 MHz, Chloroform-d) δ 7.84 (dd, *J* = 7.5, 2.1, 2H), 7.44 – 7.35 (m, 3H), 4.35 – 4.25 (m, 1H), 3.06 (dddd, *J* = 16.9, 9.9, 4.8, 2.1, 1H), 2.89 (dddd, *J* = 16.9, 9.6, 7.7, 1.8, 1H), 2.25 (dddd, *J* = 12.5, 9.8, 7.7, 4.8 Hz, 1H), 1.59

-1.52 (m, 1H), 1.37 (d, *J* = 6.8, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 172.0, 134.5, 130.4, 128.4, 127.7, 68.3, 35.2, 30.6, 22.1. MS (EI) m/z: calculated C₁₁H₁₄N [M+H]⁺ 160.1121; found: 160.1137. $[a]_D^{25} = -108.4$ (c 2.0, CHCl₃ lit: -110.5). Data consistent with the literature.^[4]

S.3.4 References

[1] E. Gasteiger, A. Gattiker, C. Hoogland, I. Ivanyi, R. D. Appel, A. Bairoch, *Nucleic Acids Res.* **2003**, *31*, 3784–3788.

- [2] S. Schätzle, M. Höhne, E. Redestad, K. Robins, U. T. Bornscheuer, *Anal. Chem.* 2009, *81*, 8244–8248.
- [3] S. Unthan, A. Grünberger, J. van Ooyen, J. Gätgens, J. Heinrich, N. Paczia, W.
 Wiechert, D. Kohlheyer, S. Noack, *Biotechnol. Bioeng.* 2014, 111, 359–371.
- [4] E. O'Reilly, C. Iglesias, D. Ghislieri, J. Hopwood, J. L. Galman, R. C. Lloyd, N. J. Turner, Angew. Chemie - Int. Ed. 2014, 53, 2447–2450.

S.4 Strains, plasmids and oligonucleotides used

Strain or	Relevant characteristic	reference
plasmid		or source
<i>E. coli</i> DH5α	F ⁻ endA1 glnV44 thi-1 recA1 relA1 gyrA96 deoR nupG	New
	<i>purB20</i> ϕ 80d <i>lacZ</i> ΔM15 Δ(<i>lacZYA-argF</i>)U169, hsdR17(r_{κ}^{-}	England
	m_{κ^+}), λ^-	Biolabs
E. coli	F^- ompT gal dcm lon hsdS _B ($r_B^-m_B^-$) λ (DE3 [lacl lacUV5-	New
BL21(DE3)	T7p07 ind1 sam7 nin5]) [malB ⁺] _{K-12} (λ^{s})	England
		Biolabs
C. giutamicum	strains	
ATCC 13032	Wild type strain naturally overproducing glutamate	American
		Type
		Collection
CPLvc1	C alutamicum ATCC12022 with the following	[1]
GREYST	modifications: Anck nuc ^{P4585} hom ^{V59A} 2 conjes of lus(T ³¹¹	[1]
	2 conjes of asd 2 conjes of dand 2 conjes of dang 2	
	conies of ddh 2 conies of lysA 2 conies of lysF in-frame	
	deletion of prophages CGP1 (cg1507-cg1524). CGP2	
	(cg1746-cg1752) and CGP3 (cg1890-cg2071)	
Cada1	GRLys1 carrying the pVWEx1- <i>ldcC</i> plasmid	this study
NA2	putrescine overproducing, L-arginine prototrophic strain	[2]
	derived from C. glutamicum ATCC13032 carrying in frame	
	deletions of argR and argF, replacement of start codon	
	GTG to TTG for chromosomal odhA, replacement of	
	threonine codon 15 of chromosomal odhI by an alanine	
	codon, carrying plasmid pVWEx1-speC-argF ₂₁	
NA2b	L-arginine auxotrophic, putrescine overproducing strain	This study
	derived from NA2 carrying plasmid pVWEx1- <i>speC</i> instead	
	of pVWEx1-speC-argF ₂₁	[2]
NA6	putrescine overproducing, L-arginine prototrophic strain	[2]
	derived from NA2 carrying in frame deletion of sndA, and	
	instead of pV/WEx1-speC-gupA-pyc-urgB ⁻¹¹ -urgF ₂₁	
Plasmids		
nFT-22h	Amp-r: E. colivector (PT7 lact nBB322-Ori)	lah stock
nFT-226	derived from nET-22b for regulated expression of 3HMU	[2]
3HMU	from S. pomerovi	[3]
pET-22b-315T	derived from pET-22b. for regulated expression of 315T	[3]
	from <i>R. sphaeroides</i> KD131	[-]
pET-22b-	derived from pET-22b, for regulated expression of ChrVio	[4]
ChrVio	from C. violaceum	
pET-22b-	derived from pET-22b, for regulated expression of Vibflu	[5]
Vibflu	from V. fluvialis	

Table S9. Strains and vectors used in this study

pET-22b- <i>Pc</i> ATA	derived from pET-22b, for regulated expression of	[6]
	PcATA from P. chlororaphis subsp. aureofaciens	
pET-22b- <i>Pp</i> ATA	derived from pET-22b, for regulated expression of	[7]
	PpATA from P. putida	
pET-22b-AspFum	derived from pET-22b, for regulated expression of	[3]
	AspFum from A. fumigatus	[0]
pE1-22b-NeoFis	derived from pE1-22b, for regulated expression of	[3]
	NeoFIS from N. Jischeri	1 - 1-
pe1-280	Km-r; E. coll vector (PT7 laci, pBR322-Ori)	
DET JOH DEATA	derived from nET 28h for regulated expression of	
pei-280-PJATA	DfATA from <i>D</i> , fluorascans	[0]
nRSFT B	Amp-r: E. colivector (PT7/acl. nBR322-Ori)	[7]
	derived from pHES DUC for regulated expression	[7]
рпемі	of HEWT from H. alongata	[/]
nGASTON	Amptr: E. colivector (Prba, pBP322-Ori)	[0]
	Amp-1, 2. convector (Fina, pBR322-Off)	[0]
pGASTON-Mycvan	of MycVan from <i>M</i> vanhaalenii	[8]
nGASTON-AsnORv	derived from nGASTON for regulated expression	[9]
periorent isperity	of AspOrv from A. orvzae	[3]
pEKEx3	Spec-r; <i>C. glutamicum/E. coli</i> (Ptac <i>lacl^q</i> , pBL1 ori)	[10]
pEKEx3-3HMU	derived from pEKEx3, for regulated expressions of	this
	3HMU from <i>S. pomeroyi</i>	study
pEKEx3- <i>Pc</i> ATA	derived from pEKEx3, for regulated expression of	this
	PcATA from P. chlororaphis subsp. aureofaciens	study
pEKEx3- <i>Pc</i> ATAx2	derived from pEKEx3, for regulated expression of	this
	double insert of <i>Pc</i> ATA from <i>P. chlororaphis subsp.</i>	study
	aureofaciens	
pEKEx3- <i>Pf</i> ATA	derived from pEKEx3, for regulated expression of	this
	<i>Pf</i> ATA from <i>P. fluorescens</i>	study
pEKEx3- <i>Pp</i> ATA	derived from pEKEx3, for regulated expression of	this
	PpATA from P. putida	study
pVWEx1	Km-r; C. glutamicum/E. coli shuttle vector (Ptac	[11]
pVWEx1-IdcC	derived from pVWEx1, for regulated expression of	this
	lack from E. coll MG1655	study
pvwex1-spec	derived from pv wEx1, for regulated expression of	this
	spec 110111 E. COII 11101055	
pvvvEXI-Spec-yupA-	of ara R ^{A49V/M54V} pyc and gand from C alutamicum	[2]
araE	or urgent and pyc and yup a from C. yulumicum,	
	araF	

pVWEx1- <i>ldcC-Pc</i> ATA	derived from pVWEx1, for regulated expression of <i>ldcC</i> from <i>E. coli</i> MG1655 and <i>Pc</i> ATA from <i>P.</i>	this study
	chlororaphis subsp. aureofaciens	
pVWEx1- <i>ldcC-Pf</i> ATA	derived from pVWEx1, for regulated expression of	this
	<i>IdcC</i> from <i>E. coli</i> MG1655 and <i>Pf</i> ATA from <i>P.</i>	study
	fluorescens	
pVWEx1- <i>ldcC-Pp</i> ATA	derived from pVWEx1, for regulated expression of	this
	<i>IdcC</i> from <i>E. coli</i> MG1655 and <i>Pp</i> ATA from <i>P.</i>	study
	putida	
pVWEx1-speC-	derived from pVWEx1, for regulated expression of	this
<i>Pc</i> ATA	speC from E. coli MG1655 and PcATA from P.	study
	chlororaphis subsp. aureofaciens	
pVWEx1-speC-PfATA	derived from pVWEx1, for regulated expression of	this
	speC from E. coli MG1655 and PfATA from P.	study
	fluorescens	
pVWEx1-speC-	derived from pVWEx1, for regulated expression of	this
PpATA	speC from E. coli MG1655 and PpATA from P.	study
	putida	

Table S10. Primers used in this study

Sequence	Restriction	Purpose	
	Site		
GCCIGCA <u>GICGAC</u> CGAAAGGAGG	Sall	Cloning of 3HMU	
ACAACCATGAGCCIGGCGACCAIIACG			
GGTTCTAGAGGAGCTC <u>GAATTC</u> GG	EcoRI	Cloning of 3HMU	
ATCCTTATTAGTGG			
GGT <u>GTCGAC</u> CGAAAGGAGGACAACC	Sall	Cloning PcATA	
ATGATCAGCAACAATCCGCAAACC			
GGTGGT <u>GAATTC</u> GCCGGATCTCAGTG	EcoRI	Cloning PcATA	
GTG			
GGT <u>GTCGAC</u> CGAAAGGAGGACAACC	Sall	Cloning <i>Pf</i> ATA &	
ATG GGCAGCAGCCATCATC		ΡρΑΤΑ	
GGTGGT <u>GAATTC</u> TTAGCCTTGCAACG	EcoRI	Cloning <i>Pf</i> ATA	
CACTGAGC			
GGTGGT <u>GAATTC</u> GCTACCGAATCGCC	EcoRI	Cloning PpATA	
TCAAGG			
CAAGCTTGCATGCCTGCAG <u>GTCGAC</u> C	Sall	HiFi assembly	
GAAAGGAGGACAAC		(pEKEx3, PcATA	
		twice)	
CGAACCACCGGTGGTTCATAGGTGGT	-	HiFi assembly	
GGTGGTG		(pEKEx3, PcATA	
		twice)	
CCACCTATGAACCACCGGTGGTTCGA	-	, HiFi assembly	
CCGAAAGGAGGACAAC		(pEKEx3. PcATA	
		twice)	
CTGTAAAACGACGGCCAGTGTCATAG		, HiFi assembly	
GTGGTGGTGGTG		(pEKEx3. PcATA	
		twice)	
	Sequence GCCTGCA <u>GTCGACCGAAAGGAGG ACAACCATGAGCCTGGCGACCATTACG GGTTCTAGAGGAGGACCACG GGTCTAGAGGAGGACCAACC ATCCTTATTAGTGG GGT<u>GTCGAC</u>CGAAAGGAGGACAACC ATGATCAGCAACAATCCGCAAACC GGTGGT<u>GAC</u>CGAAAGGAGGACAACC GGTGGT<u>GAC</u>CGAAAGGAGGACAACC ATGGGCAGCCGAAAGGAGGACAACC ATGGGCAGCCGACAGCCATCATC GGTGGT<u>GAATTC</u>TTAGCCTTGCAACG CACTGAGC GGTGGT<u>GAATTC</u>GCTACCGAATCGCC TCAAGG CAAGCTTGCATGCCTGCAG<u>GTCGACC</u> GAAACCACCGGTGGTTCATAGGTGGT CGAACCACCGGTGGTTCATAGGTGGT CGAACCACCGGTGGTTCATAGGTGGTTCGA CCACCTATGAACCACCGGCCAGTGTCATAG CTGTAAAACGACGACCAGC CTGTAAAACGACGGCCAGTGTCATAG CTGTAAAACGACGGCCAGTGTCATAG </u>	SequenceRestriction siteGCCTGCAGCCGACCGAAAGGAGGSallACAACCATGAGCCTGGCGACCATTACGGGTTCTAGAGGAGCTCGAATTCGGGGTTCTAGAGGAGGACCACCEcoRlATCCTTATTAGTGGEcoRlGGTGTCGACCGAAAGGAGGACAACCSallATGATCAGCAACAATCCGCAAACCSallATGATCAGCAACAATCCGCAAACCSallGGTGGTGACCGAAAGGAGGACAACCSallGGTGGTGACCGAAAGGAGGACAACCSallATGGGCAGCCGAAAGGAGGACAACCSallATGGGCAGCCGACAGCATCATCGGTGGTGAATTCGCCGAACGACCACCGGTGGTGAATTCGCTACCGAATCGCCEcoRlCACTGAGCCAAGCTTGCATGCCTGCAAGGACCCGGTGGTGAGAGGACAACSallCAAGCTTGCATGCCTGCAGGTCGACCSallCGAACCACCGGTGGTTCATAGGTGGT-CGAACCACCGGTGGTTCATAGGTGGT-CCACCTATGAACCACCGGTGGTTCGA-CCGAAAGGAGGACAAC-CTGTAAAACGACGGCCAGTGTCATAG-CTGTAAAACGACGGCCAGTGTCATAGCTGTAAAACGACGGCCAGTGTCATAG	

SG26_F	CCTGCAG <u>GTCGAC</u> TCTAGAGGATTCC GAAAGGAGGCCCTTCAG ATG AACATC ATTGCCATTATGGG	Sall	HiFi assembly (pVWEx1-ldcC- pATA) - amplify ldcC
SG27_R	CATGGTTGTCCTCCTTTCGTTATCCCG CCATTTTTAGGAC	-	HiFi assembly (pVWEx1-ldcC- pATA) - amplify ldcC
SG28_F	CCTGCAG <u>GTCGAC</u> TCTAGA <i>GAAAGG AGGCCCTTCAGATGAAATCAATGAA TATTGCCGC</i>	Sall	HiFi assembly (pVWEx1-speC- <i>p</i> ATA) - amplify speC
SG30_F	TAAC <i>GAAAGGAGGACAACCATGAT</i> CAG	-	HiFi assembly (pVWEx1- ldcC/speC-pATA) - amplify PcATA
SG31_R	ATTCGAGCTCGGTACCCGGGGATCTCA GCCCTGTAATGCACTCAACGTCAG	-	HiFi assembly (pVWEx1-ldcC- <i>Pc</i> ATA) - amplify <i>Pc</i> ATA
SG32_F	TAACGAAAGGAGGACAACC ATG ACCC GCAATAACCCGCAAAC	-	HiFi assembly (pVWEx1- ldcC/speC-pATA) - amplify <i>Pf</i> ATA
SG33_R	ATTCGAGCTCGGTACCCGGGGATCTT AGCCTTGCAACGCACTGAGC	-	HiFi assembly (pVWEx1-ldcC- <i>Pf</i> ATA) - amplify <i>Pf</i> ATA
SG34_F	TAAC <i>GAAAGGAGGACAACCATGAGCA CCAACAACCCGCAAAC</i>	-	HiFi assembly (pVWEx1- ldcC/speC-pATA) - amplify <i>Pp</i> ATA
SG35_R	ATTCGAGCTCGGTACCCGGGGATCCT ACCGAATCGCCTCAAGGGTC	-	HiFi assembly (pVWEx1-ldcC- <i>p</i> ATA) - amplify <i>Pp</i> ATA

Restriction sites are underlined, start codons are bold and ribosomal binding sides including spacer are italicized

S.4.1 References for strains and plasmids:

- S. Unthan, M. Baumgart, A. Radek, M. Herbst, D. Siebert, N. Brühl, A. Bartsch, M. Bott, W. Wiechert, K. Marin, et al., *Biotechnol. J.* 2015, *10*, 290–301
- [2] A. Q. D. Nguyen, J. Schneider, G. K. Reddy, V. F. Wendisch, *Metabolites* 2015, *5*, 211–231.
- F. Steffen-Munsberg, C. Vickers, A. Thontowi, S. Schätzle, T. Tumlirsch, M.
 SvedendahlHumble, H. Land, P. Berglund, U. T. Bornscheuer, M. Höhne,
 ChemCatChem 2013, 5, 150–153.
- M. S. Humble, K. E. Cassimjee, M. Hãkansson, Y. R. Kimbung, B. Walse, V. Abedi, H. J.
 Federsel, P. Berglund, D. T. Logan, *FEBS J.* 2012, 279, 779–792.
- [5] M. Genz, C. Vickers, T. van den Bergh, H. J. Joosten, M. Dörr, M. Höhne, U. T.
 Bornscheuer, *Int. J. Mol. Sci.* 2015, *16*, 26953–26963.
- [6] M. Genz, C. Vickers, T. van den Bergh, H. J. Joosten, M. Dörr, M. Höhne, U. T.
 Bornscheuer, *Int. J. Mol. Sci.* 2015, *16*, 26953–26963.
- [7] L. Cerioli, M. Planchestainer, J. Cassidy, D. Tessaro, F. Paradisi, *J. Mol. Catal. B Enzym.* 2015, 120, 141–150.
- [8] T. C. Nugent, D. E. Negru, M. El-Shazly, D. Hu, A. Sadiq, A. Bibi, M. N. Umar, Adv. Synth. Catal. 2011, 353, 2085–2092.
- [9] M. Höhne, S. Schätzle, H. Jochens, K. Robins, U. T. Bornscheuer, *Nat. Chem. Biol.* **2010**, *6*, 807–813.
- [10] C. Stansen, D. Uy, S. Delaunay, L. Eggeling, J. L. Goergen, V. F. Wendisch, *Appl. Environ. Microbiol.* 2005, 71, 5920–5928.
- P. G. Peters-Wendisch, B. Schiel, V. F. Wendisch, E. Katsoulidis, B. Möckel, H. Sahm, B. J. Eikmanns, J. Mol. Microbiol. Biotechnol. 2001, 3, 295–300.