Electronic Supporting Information

Unlocking biomass energy: continuous high-yield production of 5-

hydroxymethylfurfural in water

Puxiang Yan, Ming Xia, Shanshuai Chen, Wanying Han, Hongliang Wang, Wanbin Zhu

Figure S1. Process flow diagram generated by using Aspen Plus Process Simulator for HMF production with fructose or glucose as feedstock.

Figure S2. Aqueous and organic phases of H_2O/EAC system after reaction. (A) without addition of NaCl in the aqueous phase; (B) with saturated NaCl solution in the aqueous phase.

Figure S3. Techno-economic analysis for the production of HMF from glucose. The flow rate of MIBK was 10 mL/min. The black font represents the costs of the components, unit is \$/ton. The purple font represents relative contribution of the components of the HMF's MSP. ROI, return on investment.

Table SL. Process operating data (data of reedstock denydration at high temperature per pas	ation at high temperature per pass).
---	--------------------------------------

	Fructose feedstock	Glucose feedstock	
Parameters			
Conversion (mol%)	40.0	32.6	
Selectivity (mol%)	87.5	40.2	
Organic phase	2-MeTHF	MIBK	
The flow rate of organic phase (mL/min)	10	20	
Temperature (°C)	150	140	

Table S2. Energy requirements for the HMF production (with the use of heat exchanger).

Fructose feedstock	Heating, kW	Refrigerating, kW	Electricity, kW
Fructose to HMF reactor unit	446	/	/
The circulated aqueous phase system	1445	/	30.6
The circulated organic phase system	12104	-13115	4.7
Total, fructose to HMF	13995	-13115	36
Glucose feedstock			
Glucose to HMF reactor unit	568	/	/
The circulated aqueous phase system	7061	/	39.5
The circulated organic phase system	21911	-23612	9.2
Total, glucose to HMF	29540	-23612	49

 Table S3. Project investment and operating costs.

	Fructose feedstock	Glucose feedstock
Process section	Units (MM\$)	
HMF Production system	5.910	7.520
OSBL ^a	2.370	3.010
Total project investment ^b	8.280	10.530
Raw material		
Feedstock	7.240	0.703
Refrigeration	2.980	5.362
Solvent makeup	0.680	0.286
Steam	1.110	2.294
Catalyst	~0	~0
Cooling water	~0	~0
Electricity	0.061	0.023
Wastewater disposal	0.003	0.006
Total variable operating costs	12.074	8.674
HMF production		
Production (ton/yr)	10128	10560
Purity (wt%) & recovery (%)	98.6 & >99.9	98.0 & >99.9

^a OSBL (outside battery limits of the plant) includes infrastructure costs for waste disposal, on-site storage, and utilities.

^b the total project investment including the total installed cost.

The minimum selling price of HMF is obtained as follows^{51, 52}:

HMF sales = Total variable operating costs + Total project investment/20 + Average income tax + Average ROI (1)

Fructose feeding HMF sales (\$/ton HMF) = 12074000/10128 + 8280000/10128/20 + (1192 + 41) × 0.21 / (1 - 0.21) + (1192 + 41 + 328) × 0.10

= 1192 + 41 + 328 + 156 = 1716

Glucose feeding HMF sales (\$/ton HMF) = 8674000/10560 + 10530000/10560/20 + (822 + 50) × 0.21/ (1 - 0.21) + (822 + 50 + 232) × 0.10

= 822 + 50 + 232 + 111 = 1215

Table S4 . List of economic parameters and	d assumptions for the HMF p	production (with the use of	heat exchanger).
---	-----------------------------	-----------------------------	------------------

Fructose price (\$/ton)	450 ^a
Glucose price (\$/ton)	300 ª
HCl price (\$/ton)	17 ^b
AlCl₃·6H₂O price (\$/ton)	186 ^a
MIBK price (\$/ton)	1000 °
2-MeTHF price (\$/ton)	5000 °
Wastewater treatment cost (\$/ton)	0.570 ^c
Low pressure steam cost (\$/ton)	6.737 ^c
-29°C refrigerant (\$/ton)	1.300 °
Electricity price (\$/kWh)	0.0572 °
Cooling water (\$/ton)	9.85×10 ^{-3 c}
Operating mode	Continuous
Plant life (years)	20 ^d
Plant operating hours per year (hours)	8000 ^d
Discount rate (%)	10 ^d
General plant recovery period (years)	7 ^d
Corporate income rate (%)	21 ^d
Equity financing (%)	40 ^d
Loan terms	10-years loan at 8% APR ^d
Working capital	5% of fixed capital investment ^d
Length of start-up period (weeks)	20 ^d
Revenues during start-up (%)	50 ^d
Fixed costs during start-up (%)	100 ^d

^a The price standards used refer to China's chemical market price level in 2018.

^b Taken from refence prices by *P. Desir et al.*^{S3}

^c Taken from refence prices by A. H. Motagamwala et al. ^{S4}

 $^{\rm d}$ Data were taken from a study by NREL. $^{\rm S5}$

Table S5. Results of HMF extraction ratio in biphasic system. Conditions: 0.5 g HMF; aqueous phase: 4 g H₂O, 1 gDMSO, 5mg HCl; 5 ml MIBK; T = 25°C; t = 1 h, triplicate.

Entry	HMF _{aq} (g/ml)	HMF _{org} (g/ml)	R	Average of R
1	0.052	0.048	0.90	
2	0.049	0.051	1.04	0.97
3	0.050	0.049	0.98	

Table S6. Space-time yields for different extraction models. Reaction condition: 5 wt% fructose, 28 mM HCl, 150°C, t = 210 min, 60 g aqueous phase ($H_2O/DMSO = 8/2$, w/w) and 80 g MIBK were added to the extraction device, the rates of aqueous and cyclic continuous flow of organic phase were set at a flow rate of 7 and 10 mL/min, respectively.

	Fructose	HMF	HMF	Space-time
Extraction models	conversion (mol	selectivity (mol	yield (mol	yield
	%)	%)	%)	[g/g(cat)/min]
Static extraction	91.5	42.8	39.1	6.5×10 ⁻²
Intermittent replacement extraction	95.8	65.3	62.5	1.0×10 ⁻¹
Cyclic continuous extraction	90.7	83.4	75.6	1.3×10 ⁻¹

Table S7. Results of dehydration of fructose in $H_2O/MIBK$ circulating system. Reaction condition: 5 wt% fructose catalyzed by different kinds of acids; T = 150°C; the flow rate of aqueous phase and organic phase were 7 and 20 mL/min, respectively.

Entry	Catalyst	Conversion (mol%)	Selectivity (mol%)	Yield (mol%)	t (min)
1	28 mM HCl	99.3	87.9	87.3	360
2	$28 \text{ mM H}_2\text{SO}_4$	64.5	56.7	36.6	300
3	28 mM H ₃ PO ₄	47.2	77.8	36.7	300

Table S8. Rate constants (k) of acid-catalyzed dehydration of fructose in H₂O/MIBK circulating system were calculated by Berkeley Madonna software.

Parameters		<i>k</i> (min ⁻¹)
HCl dosage (mM)	0	0.00090
	14	0.00417
	28	0.01211
	42	0.01737
Temperature (°C)	140	0.00771
	150	0.01311
	160	0.03701
	170	0.11125

Table S9. Results of acid-catalyzed dehydration of fructose in H_2O/EAC circulating system. Reaction condition: 5 wt% fructose; 28 mM HCl; T = 150°C; the flow rate of aqueous phase and organic phase were 7 and 20 mL/min, respectively.

t (min)	Conversion (mol%)	Selectivity (mol%)	Yield (mol%)
60	62.4	84.9	53.0
120	87.8	92.9	81.6

Table S10. Comparison with other reaction syste	ms.
---	-----

Туре	Feedstock	Solvent	Catalyst	Т (°С)	Yield (mol%)	Ref.
Biphasic circulating system	5 wt% fructose	H ₂ O/2-MeTHF	28 mM HCl	150	94.3	This work
Stirred tank	30 wt% fructose	H ₂ O/MIBK	250 mM HCl	180	54.6	28 (S6)
Continuous reactor	2 wt% fructose	(4:1 w/w) THF/H ₂ O	500 mg λ -Al ₂ O ₃ -SO ₃ H	90	69.4	27 (S7)
Biphasic continuous flow	10 wt% fructose	H ₂ O/MIBK	250 mM HCl	140	75.0	22 (S8)
Biphasic circulating system	5 wt% glucose	H ₂ O/MIBK	70 mM AlCl $_3$ ·6H $_2$ O and 22 mM HCl	140	69.6	This work
Biphasic slug flow capillary	2 wt% glucose	H ₂ O/MIBK	40 mM AlCl ₃ ·6H ₂ O and 40	160	53.0	36 (S9)
microreactor			mM HCl			

Supplemental references

- Torres, A.I., Daoutidis, P., and Tsapatsis, M. (2010). Continuous production of 5-hydroxymethylfurfural from fructose: a design case study. Energy Environ. Sci. 3, 1560–1572.
- Torres, A.I., Tsapatsis, M., and Daoutidis, P. (2012). Biomass to chemicals: Design of an extractive-reaction process for the production of 5-hydroxymethylfurfural. Comput. Chem. Eng. 42, 130–137.
- Desir, P., Saha, B., and Vlachos, D.G. (2019). Ultrafast flow chemistry for the acid-catalyzed conversion of fructose. Energy Environ. Sci. 12, 2463–2475.
- Motagamwala, A.H., Huang, K.F., Maravelias C.T., and Dumesic, J.A. (2019). Solvent system for effective nearterm production of hydroxymethylfurfural (HMF) with potential for long-term process improvement. Energy Environ. Sci. 12, 2212–2222.
- S5. Davis, R., Tao, L., Tan, E.C.D., Biddy, M. J., Beckham, G. T., Scarlata, C., Jacobson, J., Cafferty, K., Ross, J., Lukas, J., and et al. (2013). Process design and economics for the conversion of lignocellulosic biomass to hydrocarbons: dilute-acid and enzymatic deconstruction of biomass to sugars and biological conversion of sugars to hydrocarbons. NREL/TP-5100-60223.
- Román-Leshkov, Y., Chheda, J.N., and Dumesic, J.A. (2006). Phase modifiers promote efficient production of hydroxymethylfurfural from fructose. Science 312, 1933–1937.
- Morales-Leal, F.J., de la Rosa J.R., Lucio-Ortiz, C.J., De Haro-Del Rio, D.A., Maldonado, C.S., Wi, S., Casabianca, L.B., Garcia, C.D. (2019). Dehydration of fructose over thiol– and sulfonic– modified alumina in a continuous reactor for 5–HMF production: Study of catalyst stability by NMR. Appl. Catal., B. 244, 250–261.
- S8. Brasholz, M., von Kanel, K., Hornung, C.H., Saubern, S., Tsanaktsidis, J. (2011). Highly efficient dehydration of carbohydrates to 5-(chloromethyl)furfural (CMF), 5-(hydroxymethyl)furfural (HMF) and levulinic acid by biphasic continuous flow processing. Green Chem. 5, 1114–1117.
- Guo W.Z., Heeres H.J., and Yue J. (2020). Continuous synthesis of 5-hydroxymethylfurfural from glucose using a combination of AlCl3 and HCl as catalyst in a biphasic slug flow capillary microreactor. Chem. Eng. J. DOI: 10.1016/j.cej.2019.122754.