# **ELECTRONIC SUPPLEMENTARY INFORMATION**

# Pseudopeptidic Macrocycles as Cooperative Minimalistic Synzyme Systems for the Remarkable Activation and Conversion of CO<sub>2</sub> in the Presence of Chloride Anion

Ferran Esteve,<sup>a</sup> Belen Altava,<sup>a</sup>\* Michael Bolte,<sup>b</sup> M. Isabel Burguete,<sup>a</sup> Eduardo García-Verdugo,<sup>a</sup> Santiago V. Luis<sup>a</sup>\*

<sup>a</sup> Departamento de Química Inorgánica y Orgánica, Universitat Jaume I, Av. Sos Baynat s/n, 12071, Castellón, Spain Corresponding Authors: \* E-mail: luiss@uji.es. \* E-mail: cepeda@uji.es.

<sup>b</sup> Institut fur Anorganische Chemie, J. W. Goethe-Universitat Frankfurt, 60438, Frankfurt/Main, Germany

## **Table of contents**

| Scheme S1. Synthesis of macrocycles and analogues                                                     | <u>S</u> 1  |
|-------------------------------------------------------------------------------------------------------|-------------|
| Table S1. Comparison of metal-free catalytic systems                                                  | <u>S</u> 2  |
| Table S2. Comparison of metal-based catalytic systems                                                 | <u>S</u> 3  |
| Table S3. Effect of the nature of the alkyl group                                                     | <u>S</u> 4  |
| Table S4. Effect of the solvent                                                                       | <u>S</u> 4  |
| Figure S1. Partial <sup>1</sup> H NMR spectra for the titration of <b>3a</b> with Bu <sub>4</sub> NCl | <u>S</u> 5  |
| Figure S2. <sup>1</sup> H NMR signals for the isoindolinic protons of <b>3a-e</b>                     | <u>S</u> 5  |
| Figure S3. CD spectra in the presence and absence of BU <sub>4</sub> NX                               | <u>S</u> 6  |
| Figure S4. Comparison of the conformations found for <b>3a</b> and [ <b>3a</b> + Cl <sup>-</sup> ]    | <u>S</u> 6  |
| Table S5. NH <sub>amide</sub> signal shifts in the presence of Bu <sub>4</sub> NX                     | <u>S</u> 7  |
| Figure S5. Partial FT-ATR-IR spectra used to obtain the kinetic profiles                              | <u>S</u> 7  |
| Figure S6. <sup>1</sup> H NMR spectra of <b>3a</b> and [ <b>3a</b> · <b>2HCI</b> ]                    | <u>S</u> 8  |
| Figure S7. Conformations found in the crystal structure of [3a·2HCI]                                  | <u>S</u> 9  |
| Figure S8. <sup>1</sup> H NMR spectra comparison for the catalytic species and mixtures               | <u>S</u> 10 |
| Figure S9. Lowest energy conformer calculated for the $[3a_CO_2 + Cl^2 + 6]_{a_content}$              | <u> </u>    |
| Figure S10. Representation of the <b>3a</b> catalyst recycling                                        | <u> </u>    |
| Figure S11. Representation of experimental set-up                                                     | <u> </u>    |
| X-Ray diffraction                                                                                     |             |
| Figure S12. Thermal ellipsoid plot for [3a·2HCl]                                                      | <u>S</u> 13 |
| Table S6. Crystallographic and structural refinement data for compound [3a·2HCl]                      | <u>S</u> 14 |
| Characterisation                                                                                      |             |
| Figure S13. NMR-MS of <b>5</b>                                                                        | <u>S</u> 15 |
| Molecular modelling                                                                                   |             |
| Computational data                                                                                    | <u>S</u> 16 |



**Scheme S1.** Synthesis of macrocyclic systems and related analogues. i) CH<sub>3</sub>CN, 2-3 h, 90 °C. ii) CH<sub>3</sub>CN, 5 h, 90 °C. iii) CH<sub>3</sub>OH, 1 h, 25 °C.

**Table S1.** Comparation of the results in this work with some selected organocatalytic/supramolecular examples for the reaction between styrene oxide (6) and  $CO_2$  to afford 7.



| Entry | Ref. | Catalyst                                                                                 | T<br>(°C) | P (bar) | % cat                                        | Time<br>(h) | Conv.<br>(%) | TON  | TOF  |
|-------|------|------------------------------------------------------------------------------------------|-----------|---------|----------------------------------------------|-------------|--------------|------|------|
| 1     | 1    | Polycrown ether 18C6 (1) - KI                                                            | 100       | 10      | 2                                            | 3           | 89           | 44.5 | 14.8 |
| 2     | 2    | curcurbit[6]uril (2) - KI                                                                | 120       | 40      | 1.5 KI 0.1 g CB[6]                           | 5           | 95           | 63.3 | 12.7 |
| 3     | 3    | calix[4]pyrrole (R= CH3- X= H) (4) -<br>Bu4NI                                            | 100       | 17      | 1                                            | 15          | 98           | 98   | 6.5  |
| 4     | 4    | IL+crown ether [18-C-6-K][Im] (5)                                                        | 100       | 10      | 1                                            | 6           | 93           | 93.5 | 15.6 |
|       |      | Tetraphosphonate Cavitand (R =<br>C3H7) ( <b>6</b> ) - Bu₄NCl                            |           |         |                                              |             | 85           | 85   | 3.5  |
| 5     | 5    | Tetraphosphonate Cavitand (R =<br>C3H7) (6) - Me <sub>4</sub> NCl 100 1 1 (6) - 1 co-cat | 24        | 25      | 25                                           | 1           |              |      |      |
|       |      | Tetraphosphonate Cavitand (R =<br>C3H7) <b>(6)</b> - Me₄NBr                              |           |         |                                              |             | 58           | 58   | 2.4  |
|       |      | Tetraphosphonate Cavitand (R =<br>C3H7) ( <b>6</b> ) - Me <sub>4</sub> NI                |           |         |                                              |             | 92           | 92   | 3.8  |
| 6     | 6    | β-CD ( <b>7</b> ) - KI                                                                   | 120       | 60      | 2.5 KI                                       | 12          | 94           | 37.6 | 3.1  |
| 7     | 7    | Cavitand-Based Polyphenols ( <b>8</b> ) -<br>Bu₄NI                                       | 50        | 10      | 1.5 ( <b>8)</b> - 5 Bu <sub>4</sub> NI (MEK) | 18          | 93           | 62   | 3.4  |
|       |      | 1,2-Epoxyhexane instead of <b>6</b><br>(solventless)                                     | 80        | 10      | 0.01 <b>(8)</b> - 1.6 Bu <sub>4</sub> NI     | 18          | 74           | 7400 | 411  |
| 0     | This | Macroavela 3a Bu NC                                                                      | 100       | 10      | 0.01 of <b>3a</b> - 0.1 Cl                   | 5           | 76           | 7600 | 1525 |
| 0     | work | Macrocycle 3a- Buditer                                                                   | 80        | 1       | 0.01 of <b>3a</b> - 1 Cl (ACN)               | 3           | 39           | 3900 | 1300 |
| 9     | 8    | Hemisquaramide (9) - Bu <sub>4</sub> NI                                                  | 30        | 1       | 2 (9) - 5 Bu <sub>4</sub> NI                 | 24          | 92           | 18.4 | 0.8  |
| 10    | 9    | Ascorbic acid (10) - Bu <sub>4</sub> NI                                                  | 60        | 1       | 2 (10) - 4 Bu <sub>4</sub> NI                | 23          | 96           | 48   | 2.1  |
| 11    | 10   | Salophens (11)                                                                           | 120       | 10      | 10                                           | 24          | 100          | 10   | 0.4  |
| 12    | 11   | DU 6 (13)                                                                                | 110       | 60      | 5 (2-MeTHF)                                  | 24          | 90           | 18   | 0.8  |
| 12    | 12   | PILS (12)                                                                                | 110       | 50      | U.520                                        | 10          | /9           | 11.4 | 21.5 |
| 13    | 12   | Z-Pyridinemethanoi (13)                                                                  | 25        | 1       | 6 (13) + 8 BU4NI                             | 18          | 91           | 11.4 | U.b  |
| 14    | 13   | Propylene oxide instead of <b>6</b>                                                      | 100       | 1       | 0.025 (14) + 0.1 PPNCI                       | 24          | 31           | 1240 | 52   |
|       |      | Glycidyl chloride instead of 6                                                           | 100       | 20      | 0.025 (14) + 0.1 PPNCI                       | 3           | 76           | 3040 | 1013 |
| 15    | 14   | Phosphonium salts (15)                                                                   | 60        | 1       | 1                                            | 24          | 92           | 92   | 3.8  |
| 16    | 15   | Organic pincers (16)                                                                     | 25        | 1       | 4                                            | 24          | 62           | 15.5 | 0.65 |

#### References

1: T. Werner and coworkers, *ChemSuschem*, 2015, **8**, 3815-3822; **2**: B. Han and coworkers, *Pure Appl. Chem.*, 2013, **85**, 1633-1641; **3**: T. Ema and coworkers, *Cat. Sci. Technol.*, 2018, **8**, 4193-4198; **4**: H. Jing and coworkers, *Org. Chem Front.*, 2018, **5**, 741-748; **5**: J.-P. Dutasta, V. Dufaud and coworkers, *ACS Catal.*, 2015, **5**, 11, 6748-6752; **6**: B. Han and coworkers, *Green Chem.*, 2008, **10**, 1337–1341, **7**: A. W. Kleij and coworkers, *ChemSusChem*, 2016, **9**, 749-755; **8**: T. Ema and coworkers, *Org. Lett.*, 2019, **21**, 1397-1401; **9**: V. D'Elia and coworkers, *ACS Sustainable Chem. Eng.*, 2017, **5**, 6392-6397; **10**: M. North and coworkers, *ACS Catal.*, 2019, **9**, 1895-1906; **11**: B. Han and coworkers, *Angew. Chem. Int. Ed.*, 2007, **46**, 7255-7258; **12**: T. Hirose and coworkers, *Green Chem.*, 2016, **18**, 4611-4615; **15**: N. Liu and coworkers, *ACS Catal.*, 2018, **8**, 9945-9957.

Table S2. Selected metal-based catalytic systems for the reaction between styrene oxide (6) and CO<sub>2</sub> to afford 7.





23

22

| Entry | Ref.                               | Catalyst                                                                                  | т (°С)     | P (bar)                                           | % cat                                            | Time (h) | Conv.<br>(%) | TON        | TOF      |
|-------|------------------------------------|-------------------------------------------------------------------------------------------|------------|---------------------------------------------------|--------------------------------------------------|----------|--------------|------------|----------|
| 1     | 16                                 | Multinuclear complexes<br>17 (Zn)<br>18 (Ni)                                              | 120<br>120 | 150<br>150                                        | 0.1<br>0.1                                       | 24<br>24 | 70<br>97     | 700<br>970 | 29<br>40 |
|       |                                    | Trimor Dornhurin                                                                          |            |                                                   |                                                  |          |              |            |          |
| 2     | 17                                 | Platforms ( <b>19</b> )<br>(Zn, R = O(CH <sub>2</sub> ) <sub>6</sub> NBu <sub>3</sub> Br) | 120        | 250                                               | 0.002                                            | 9        | 96           | 48000      | 5333     |
| 2     | 10                                 | Cr(salophen) 20 - Bu4NBr                                                                  | 25         |                                                   | 2.5 (16) - 5 Bu <sub>4</sub> NBr                 | 6        | 65           | 25.8       | 4.3      |
| 3     | 18                                 | 21 (X = Br) - Bu <sub>4</sub> NBr                                                         | 25         |                                                   | 2.5 (17) - 5 Bu <sub>4</sub> NBr                 | 6        | 71           | 28.2       | 4.7      |
| 4     | 19                                 | Zn <sub>3</sub> [Co(CN) <sub>6</sub> ] <sub>2</sub> - Bu <sub>4</sub> NCl                 | 100        | 3.4                                               | 0.1 (Zn) - 1 Bu <sub>4</sub> NCl                 | 6        | 43           | 430        | 71.7     |
| 5     | 20                                 | heterometallic helicate                                                                   | 120        | 10                                                | 0.025 ( <b>18</b> ) – 0.75<br>Bu₄NBr             | 1        | 96           | 3840       | 3840     |
| 5 20  | complex (22) - Bu <sub>4</sub> NBr |                                                                                           |            | 0.0025 ( <b>18</b> ) – 0.5<br>Bu <sub>4</sub> NBr | 1                                                | 67       | 26800        | 26800      |          |
|       |                                    | Al-complex ( <b>23</b> ) – Bu <sub>4</sub> NI<br>(4-Fluorostyrene oxide)                  |            |                                                   | 0.05 ( <b>19</b> ) - 0.25<br>Bu₄NI               | 18       | 93           | 1860       | 103      |
| 6     | 6 21                               | 1,2-epoxyhexane instead                                                                   | 70         | 10                                                | 0.0005 ( <b>19</b> ) - 0.5<br>Bu <sub>4</sub> NI | 2        | 24           | 48000      | 24000    |
|       |                                    | of <b>6</b>                                                                               |            |                                                   | 0.0005 ( <b>19</b> ) - 0.5<br>Bu <sub>4</sub> NI | 18       | 56           | 112000     | 6222     |

#### References

16: T. Ema and coworkers, Angew. Chem. Int. Ed., 2019, 58, 9984-9988; 17: T. Ema and coworkers, Angew. Chem. Int. Ed., 2015, 54, 134-138; 18: M. North and coworkers, ACS Catal., 2016, 6, 5012-5025; 19: D.-W. Park and coworkers, Green Chem., 2009, 11, 1754-1757; 20: W. Liu and coworkers, Chem. Commun., 2018, 54, 2212-2215; 21: A. W. Kleij and coworkers, J. Am. Chem. Soc., 2013, 135, 1228-1231.

| Entry | R4NCl (mol%) | <b>3a</b> (mol%) | Conversion <sup>b</sup> (%) | TON ( <b>3</b> a) |
|-------|--------------|------------------|-----------------------------|-------------------|
| 1     | X = Bu, (1)  | -                | 65                          | -                 |
| 2     | X = Et, (1)  | -                | 54                          | -                 |
| 3     | X = Me, (1)  | -                | 0                           | -                 |
| 4     | X = Bu, (1)  | 0.1              | 93                          | 930               |
| 5     | X = Et, (1)  | 0.1              | 80                          | 800               |
| 6     | X = Me, (1)  | 0.1              | 0                           | 0                 |

**Table S3.** Effect of the nature of the alkyl group in the **3a** :  $R_4NCl$  catalytic system for the reaction between styrene oxide (6) and  $CO_2$  to afford **7**.<sup>a</sup>

<sup>a</sup> Reaction conditions: 1 mL epoxide **6** (8.7 mmol),  $p(CO_2)=1$  bar (CO<sub>2</sub> balloon), 5 h, 100 °C. <sup>b</sup> Conversions determined by <sup>1</sup>H NMR; selectivity for **7** was >99.9 %.

| Entry | Bu₄NCI (mol%) | <b>3a</b> (mol%) | Solvent | Time (h) | Conversion <sup>b</sup><br>(%) | TON (Bu₄NCI) | TON ( <b>3a</b> ) |
|-------|---------------|------------------|---------|----------|--------------------------------|--------------|-------------------|
| 1     | 1             | -                | MeTHF   | 1        | 3                              | 3            | -                 |
| 2     | 1             | 0.1              | MeTHF   | 1        | 3                              | 3            | 30                |
| 3     | 1             | -                | ACN     | 1        | 9                              | 9            | -                 |
| 4     | 1             | 0.1              | ACN     | 1        | 25                             | 25           | 250               |
| 5     | 1             | -                | ACN     | 3        | 18                             | 18           | -                 |
| 6     | 1             | 0.1              | ACN     | 3        | 59                             | 59           | 590               |
| 7     | 1             | 0.01             | ACN     | 3        | 39                             | 39           | 3900              |

Table S4. Effect of the solvent for the reaction between styrene oxide (6) and CO<sub>2</sub> to afford 7.<sup>a</sup>

<sup>a</sup> Reaction conditions: 80 °C, 2.4 M of **6** in the solvent, *p*(CO<sub>2</sub>)=1 bar. <sup>b</sup> Conversions determined by <sup>1</sup>H NMR; selectivity

for 7 was >99.9 %.



**Figure S1.** Partial <sup>1</sup>H NMR spectra for the titration of **3a** with  $Bu_4NCI$ . The downfield shift highlighted in red corresponds to the  $NH_{amide}$  signal. Solvent: benzene- $d_6$  (0.5 mM).



**Figure S2.** Partial <sup>1</sup>H NMR (400 MHz) spectra (signals for the isoindolinic protons) of the macrocyclic pseudopeptides **3a-e**, 6 mM in CD<sub>3</sub>OD.  $\Delta\delta_1$  and  $\Delta\delta_2$  correspond to the difference in chemical shifts between Ha and Hb and/or Hc and Hd.



**Figure S3.** a) CD spectra of **3a** in the presence of 10 eq. of Bu<sub>4</sub>NX; b)-d) CD spectra of **3a**, **3d** and **3e** in the absence and presence of 10 eq. of chloride anion.



**Figure S4.** a) Structure of **3a** found in the crystal structure (*syn*-disposition of the amide groups). b) Lowest energy conformation for [**3a** + CI<sup>-</sup>] calculated using Spartan08 at the MMFF (Merck Molecular Force Field) level of theory. The lines display the distances between each C=O group and the closest hydrogen atom of the isoindolinic ring.

Table S5. Shifts observed for the  $NH_{amide}$  signals in the presence of 10 equivalent of  $Bu_4NX$ .<sup>a</sup>

| <br>Entry | Bu₄NX: 1                 | Cl   | Br   | I    |
|-----------|--------------------------|------|------|------|
| <br>1     | $\Delta \delta$ (NH) ppm | 2.74 | 1.43 | 0.19 |

<sup>a</sup> Solvent: benzene- $d_6$  (0.5mM).



**Figure S5**. Partial FT-ATR-IR spectra used to obtain the kinetic profiles for the reaction between styrene oxide (**6**) and  $CO_2$  to afford **7**. Reaction conditions: solventless, 100 °C, 5 h,  $CO_2$  balloon.



**Figure S6.** <sup>1</sup>H NMR (400 MHz, 30 °C) spectra of **3a** and [**3a**·**2HCI**] using DMSO-d<sub>6</sub> as the solvent (9 mM). The downfield shift observed for the NH<sub>amide</sub> has been highlighted in green.



**Figure S7.** a) Unit cell for the crystal structure of the [**3a-2HCI**] salt displaying the two conformations present (*syn*and *anti*-disposition of the amide groups). Ellipsoids at 50% of probability. Chloride anions are highlighted in green. One of the chloride anions can adopt two slightly different positions; only one is shown for clarity. b) Representation of the structure for the conformer with the *syn*-disposition of the amide groups highlighting the position of the chloride anion (CPK representation) interacting with the amide groups. The second chloride anion has been deleted for clarity.



**Figure S8.** Partial <sup>1</sup>H NMR (500 MHz) spectra for  $Bu_4NCl$ , **6** and the mixtures [ $Bu_4NCl$  + **6**], [**3a** +  $Bu_4NCl$ ] and [**3a** +  $Bu_4NCl$  + **6**] in  $C_6D_6$ . [**6**] = 240 mM; [ $Bu_4NCl$ ] = 20 mM; [**3a**] = 2 mM (samples in 1 mL of  $C_6D_6$ ).



**Figure S9.** Lowest energy conformer calculated for the  $[3a + Cl^- + 6]$  species in the presence of CO<sub>2</sub> activated by the tertiary amino group. MMFF level of theory. Non-essential hydrogen atoms are omitted for clarity.



Figure S10. Schematic representation of the protocol for catalyst 3a recycling.





Figure S11. Reactor set-up used to perform the cycloaddition reaction under  $CO_2$  pressure.

#### X-ray diffraction for [3a·2HCl]

Crystals of this salt suitable for X-Ray diffraction were obtained upon slow evaporation of a methanolic solution. The asymmetric unit contained two molecules displaying rather different conformations. In one of them, each chloride anion is strongly interacting with one of the  $R_3N^+H$  groups ( $d_{Cl,H}$  = 2.051 and 2.316 Å), triggering an *anti*-disposition of the amide fragments with an intramolecular C=O···HN<sub>amide</sub> hydrogen bond. The chloride displaying a larger  $d_{Cl,H}$  value is also involved in an intermolecular Cl<sup>-</sup>···HN<sub>amide</sub> hydrogen bond. In the second conformer, one chloride anion keeps the same disposition (two possible locations of this chloride are possible,  $d_{Cl,H}$  = 2.172 and 2.233 Å) while the other is strongly hydrogen bonded to one of the amide groups in a *syn*-disposition (Cl<sup>-</sup>···HN<sub>amide</sub> distances 2.393 and 4.151 Å) displaying an overall arrangement very similar to the one calculated for the [**3a** + Cl<sup>-</sup> + **6**] species. Molecules in *syn*-disposition are connected through an array of hydrogen bonds involving the molecule of water present in the cell unit, which is connected to one chloride, one C=O<sub>amide</sub> group and one <sup>+</sup>HNR<sub>3</sub> fragment of three different molecules.



Figure S12. Thermal ellipsoid plot for the crystal structure of [3a·2HCl]. Ellipsoids at 50% of probability.

| Empirical formula                              | C22 H34 N4 O2, 2(Cl), 0.5(H2 O)        |
|------------------------------------------------|----------------------------------------|
| Formula weight                                 | 466.44                                 |
| Temperature/K                                  | 200(2)                                 |
| Crystal system                                 | tetragonal                             |
| Space group                                    | P 43 21 2                              |
| a/Å                                            | 11.20540(10)                           |
| b/Å                                            | 11.20540(10)                           |
| c/Å                                            | 83.0175(9)                             |
| α/°                                            | 90                                     |
| β/°                                            | 90                                     |
| γ/°                                            | 90                                     |
| Volume/Å <sup>3</sup>                          | 10423.8(2)                             |
| Z                                              | 16                                     |
| pcalcg/cm <sup>3</sup>                         | 1.189                                  |
| F(000)                                         | 3984                                   |
| Crystal size/mm <sup>3</sup>                   | 0.213 x 0.170 x 0.098                  |
| Radiation                                      | CuKα (λ = 1.54184)                     |
| 20 range for data                              | 7.962 to 144.448                       |
|                                                | -13 < h < 10, -10 < k < 13, -100 < l < |
| Index ranges                                   | 102                                    |
| Reflections collected                          | 48906                                  |
| Independent reflections                        | 10188                                  |
| Data/restraints/parameters                     | 10188/2/571                            |
| Goodness-of-fit on F <sup>2</sup>              | 1.108                                  |
| Final R indexes [I>=2σ (I)]                    | R1 = 0.0700, wR2 = 0.1758              |
| Final R indexes [all data]                     | R1 = 0.0748, wR2 = 0.1783              |
| Largest diff. peak/hole / e<br>Å <sup>-3</sup> | 1.33/-0.45                             |
| Flack parameter                                | 0.030(6)                               |

Table S6. Crystallographic and structural refinement data for compound [3a·2HCl].



Figure S13. a) <sup>1</sup>H NMR (400 MHz, CD<sub>3</sub>CN); b) <sup>13</sup>C{<sup>1</sup>H} NMR (100 MHz, CD<sub>3</sub>CN) and c) HRMS (ESI/Q-TOF, CH<sub>3</sub>OH) for pseudopeptide 5.

## Molecular modelling

- Lowest energy conformation for [3a + Cl<sup>-</sup>].



| Cartesian coordinates (61 atoms), E (298 K) = 325.70 kJ/mol |   |             |             |             |  |  |  |
|-------------------------------------------------------------|---|-------------|-------------|-------------|--|--|--|
| 1                                                           | Н | -0.31635111 | 1.22634113  | 2.69699281  |  |  |  |
| 2                                                           | С | -0.66495149 | 1.38446012  | 1.68197073  |  |  |  |
| 3                                                           | С | -1.51063301 | 1.71300516  | -1.04144796 |  |  |  |
| 4                                                           | С | -1.78602392 | 0.75552177  | 1.18244188  |  |  |  |
| 5                                                           | С | 0.05877193  | 2.13087793  | 0.77412589  |  |  |  |
| 6                                                           | С | -0.34894053 | 2.29568000  | -0.55787712 |  |  |  |
| 7                                                           | С | -2.20939468 | 0.91727425  | -0.14724249 |  |  |  |
| 8                                                           | н | -1.81140076 | 1.81122221  | -2.07675524 |  |  |  |
| 9                                                           | С | 1.37015879  | 2.80763800  | 0.98338232  |  |  |  |
| 10                                                          | н | 1.20021826  | 3.74569663  | 1.52490804  |  |  |  |
| 11                                                          | н | 2.05050388  | 2.20074977  | 1.58003341  |  |  |  |
| 12                                                          | С | 0.68265722  | 3.11439276  | -1.26899486 |  |  |  |
| 13                                                          | н | 0.30918637  | 4.14055083  | -1.36783274 |  |  |  |
| 14                                                          | С | -2.66356676 | -0.23579349 | 1.86467645  |  |  |  |
| 15                                                          | Н | -2.09191775 | -0.92782821 | 2.49167060  |  |  |  |
| 16                                                          | Н | -3.37424698 | 0.29602183  | 2.50790554  |  |  |  |
| 17                                                          | С | -3.41565725 | 0.05584019  | -0.36289143 |  |  |  |
| 18                                                          | н | -3.44349561 | -0.41572071 | -1.34862658 |  |  |  |
| 19                                                          | н | -4.31021869 | 0.68519208  | -0.27985896 |  |  |  |
| 20                                                          | Ν | -3.41567556 | -0.90941221 | 0.77390433  |  |  |  |
| 21                                                          | С | -2.83340639 | -2.25100915 | 0.44415440  |  |  |  |
| 22                                                          | н | -2.36367401 | -2.68581686 | 1.33699474  |  |  |  |
| 23                                                          | С | -1.75362088 | -2.21718776 | -0.67801115 |  |  |  |
| 24                                                          | Ν | -0.47007502 | -1.89786516 | -0.27921897 |  |  |  |
| 25                                                          | С | 0.56512833  | -1.74297039 | -1.28959048 |  |  |  |
| 26                                                          | н | 0.57348017  | -2.66982105 | -1.87575794 |  |  |  |
| 27                                                          | н | 0.26057268  | -0.93401566 | -1.96222567 |  |  |  |
| 28                                                          | С | 1.96600908  | -1.51104789 | -0.71572226 |  |  |  |
| 29                                                          | н | 2.70809335  | -1.79012615 | -1.47321099 |  |  |  |
| 30                                                          | н | 2.13795303  | -2.13999920 | 0.16270642  |  |  |  |
| 31                                                          | Ν | 2.23502399  | -0.13184879 | -0.34572118 |  |  |  |
| 32                                                          | С | 2.48526644  | 0.82057011  | -1.30368617 |  |  |  |
| 33                                                          | С | 2.96535423  | 2.22820464  | -0.85263300 |  |  |  |
| 34                                                          | н | 3.31014110  | 2.70039774  | -1.78621135 |  |  |  |
| 35                                                          | Ν | 1.87562448  | 3.13311192  | -0.37280959 |  |  |  |
| 36                                                          | н | 0.89598895  | 2.74068039  | -2.27506104 |  |  |  |
| 37                                                          | С | 4.23213745  | 2.16778729  | 0.05250383  |  |  |  |
| 38                                                          | Н | 4.01255832  | 1.63282331  | 0.98228031  |  |  |  |
| 39                                                          | С | 5.37235979  | 1.40393881  | -0.63867690 |  |  |  |
| 40                                                          | Н | 6.26791529  | 1.39086073  | -0.00778081 |  |  |  |
| 41                                                          | Н | 5.09932674  | 0.36213270  | -0.83212464 |  |  |  |
| 42                                                          | н | 5.64015267  | 1.86928801  | -1.59340518 |  |  |  |

| 43 | С  | 4.73704888  | 3.56920144  | 0.42068291  |
|----|----|-------------|-------------|-------------|
| 44 | н  | 4.95852385  | 4.15870346  | -0.47555073 |
| 45 | н  | 4.00170622  | 4.11776135  | 1.01697263  |
| 46 | н  | 5.65361181  | 3.50691191  | 1.01751339  |
| 47 | С  | -3.99934726 | -3.21398503 | 0.05052572  |
| 48 | н  | -4.42676463 | -2.89866497 | -0.91054692 |
| 49 | С  | -3.49762830 | -4.65849066 | -0.10743452 |
| 50 | н  | -2.74412703 | -4.74733185 | -0.89486646 |
| 51 | н  | -3.05614095 | -5.02673276 | 0.82508918  |
| 52 | н  | -4.32303647 | -5.32728445 | -0.37528555 |
| 53 | С  | -5.13172899 | -3.21569422 | 1.08942421  |
| 54 | н  | -5.62954516 | -2.24249851 | 1.14469976  |
| 55 | н  | -5.89941109 | -3.95174916 | 0.82627290  |
| 56 | н  | -4.75317937 | -3.46476207 | 2.08668917  |
| 57 | 0  | -2.02436635 | -2.47136248 | -1.85449566 |
| 58 | 0  | 2.36442708  | 0.57002211  | -2.50892833 |
| 59 | н  | -0.34488746 | -1.37234906 | 0.58201681  |
| 60 | н  | 2.31839841  | 0.06555778  | 0.65670236  |
| 61 | CI | 2.30511464  | -0.66705047 | 3.10324215  |

- Lowest energy conformation for [**3a** + I<sup>-</sup>].



#### Cartesian coordinates (61 atoms), E (298 K) = 443,73 kJ/mol

| 1  | Н | -3.04356638 | 0.25652898  | 0.57555539  |
|----|---|-------------|-------------|-------------|
| 2  | С | -2.27250284 | -0.49265320 | 0.44792256  |
| 3  | С | -0.17988070 | -2.43813085 | 0.09713954  |
| 4  | С | -1.49661574 | -0.94108023 | 1.50167034  |
| 5  | С | -1.93059994 | -0.98470754 | -0.79683880 |
| 6  | С | -0.91718841 | -1.94629020 | -0.96530410 |
| 7  | С | -0.46522273 | -1.88268259 | 1.32971618  |
| 8  | н | 0.62461556  | -3.15030625 | -0.03749844 |
| 9  | С | -2.44780177 | -0.58241961 | -2.14264096 |
| 10 | н | -3.40478980 | -1.08596349 | -2.32201603 |
| 11 | н | -2.61285742 | 0.49646524  | -2.21996022 |
| 12 | С | -0.75952637 | -2.22220674 | -2.42348302 |
| 13 | н | -1.27744005 | -3.15720857 | -2.66736848 |
| 14 | С | -1.50580104 | -0.49708474 | 2.92630240  |
| 15 | н | -1.68325383 | 0.57837835  | 3.02753290  |
| 16 | н | -2.30746678 | -1.02214453 | 3.45872548  |
| 17 | С | 0.24524878  | -2.06827735 | 2.63413912  |
| 18 | н | 1.33119597  | -2.12619022 | 2.51367272  |
| 19 | н | -0.09483243 | -3.00287929 | 3.09511775  |
| 20 | Ν | -0.19962117 | -0.92749694 | 3.47785755  |
| 21 | С | 0.80041186  | 0.17858025  | 3.56890648  |
| 22 | н | 0.28592132  | 1.08351700  | 3.92206974  |
| 23 | С | 1.48628627  | 0.54486477  | 2.20854354  |
| 24 | Ν | 0.72472865  | 1.30640249  | 1.34801374  |
| 25 | С | 1.28277506  | 2.04006783  | 0.22379694  |
| 26 | н | 0.48479715  | 2.68223131  | -0.15789467 |
| 27 | н | 2.05243697  | 2.69986883  | 0.64235224  |
| 28 | С | 1.92406784  | 1.21936055  | -0.90625562 |
| 29 | н | 2.69821082  | 0.55192251  | -0.51732243 |
| 30 | н | 2.41634649  | 1.91608689  | -1.59543013 |
| 31 | Ν | 1.04376777  | 0.39902973  | -1.72255268 |
| 32 | С | 0.04244942  | 0.91513473  | -2.51751508 |
| 33 | С | -0.50599502 | -0.05514638 | -3.61942960 |
| 34 | н | 0.36394879  | -0.55872148 | -4.06440354 |
| 35 | Ν | -1.44368127 | -1.10077770 | -3.10945395 |
| 36 | н | 0.28875400  | -2.33287638 | -2.71845734 |
| 37 | С | -1.18268583 | 0.74657551  | -4.77762269 |
| 38 | н | -1.96497734 | 1.39827312  | -4.36765016 |
| 39 | С | -0.16226329 | 1.63925535  | -5.50267238 |
| 40 | н | 0.28959720  | 2.37522160  | -4.83217766 |
| 41 | н | 0.64492336  | 1.04102033  | -5.93938147 |
| 42 | н | -0.64390935 | 2.19603412  | -6.31407234 |
| 43 | С | -1.83627816 | -0.17154082 | -5.82182136 |

| 44 | н | -1.11341529 | -0.88799097 | -6.22680973 |  |
|----|---|-------------|-------------|-------------|--|
| 45 | Н | -2.67422565 | -0.73247923 | -5.39615858 |  |
| 46 | Н | -2.23613600 | 0.41326147  | -6.65757653 |  |
| 47 | С | 1.87082496  | -0.16388421 | 4.65479896  |  |
| 48 | Н | 2.52537118  | -0.96500786 | 4.28791721  |  |
| 49 | С | 2.75301207  | 1.05608891  | 4.96671789  |  |
| 50 | Н | 3.29857371  | 1.40492578  | 4.08578234  |  |
| 51 | Н | 2.15222398  | 1.89113879  | 5.34341609  |  |
| 52 | Н | 3.49893473  | 0.80832866  | 5.72998184  |  |
| 53 | С | 1.23828249  | -0.64069026 | 5.97131322  |  |
| 54 | Н | 0.71258615  | -1.59220495 | 5.84376522  |  |
| 55 | Н | 2.00644598  | -0.80112434 | 6.73587562  |  |
| 56 | Н | 0.52616027  | 0.09630059  | 6.35806631  |  |
| 57 | 0 | 2.64010184  | 0.21715281  | 1.93364789  |  |
| 58 | 0 | -0.35642733 | 2.07183834  | -2.38873800 |  |
| 59 | Н | -0.23790216 | 1.49641974  | 1.58317952  |  |
| 60 | Н | 1.31116572  | -0.56604402 | -1.84467832 |  |
| 61 | I | -2.60730223 | 3.37593632  | 0.07968760  |  |

- Lowest energy conformation for [3a + 6 + Cl<sup>-</sup>].



## Cartesian coordinates (78 atoms), E (298 K) = 393.23 kJ/mol

| 4  |   | 2 06200252  | 2 07000240   | 0 20225040             |
|----|---|-------------|--------------|------------------------|
| 1  | н | -3.06299253 | 2.87899218   | 0.20235019             |
| 2  | C | 2.12446076  | -2.6/01850/  | -0.29518583            |
| 3  | C | -0.35566245 | -2.02832703  | -1.5918/004            |
| 4  | С | 2.07191920  | -2.27290502  | -1.62136007            |
| 5  | C | 0.91539758  | -2.68566112  | 0.38179057             |
| 6  | C | -0.29603939 | -2.37604156  | -0.25796119            |
| 7  | С | 0.85793319  | -1.95165484  | -2.24712182            |
| 8  | Н | -1.28299228 | -1.73874550  | -2.07443512            |
| 9  | C | 0.63539299  | -2.92384787  | 1.83265240             |
| 10 | Н | 0.60599498  | -4.00573172  | 2.00973117             |
| 11 | н | 1.40562572  | -2.50593599  | 2.48629464             |
| 12 | С | -1.39979308 | -2.39468928  | 0.74304711             |
| 13 | Н | -1.95599996 | -3.33428824  | 0.64532569             |
| 14 | С | 3.18221711  | -2.05267616  | -2.60002991            |
| 15 | н | 4.06267524  | -1.59085365  | -2.14301233            |
| 16 | Н | 3.49027205  | -3.02392175  | -3.00521100            |
| 17 | С | 1.12546582  | -1.47417896  | -3.63431001            |
| 18 | Н | 0.52640538  | -0.59982134  | -3.88619127            |
| 19 | Н | 0.86204050  | -2.27207103  | -4.33859676            |
| 20 | Ν | 2.59053251  | -1.24773528  | -3.70724711            |
| 21 | С | 2.99428620  | 0.19114730   | -3.64160545            |
| 22 | н | 4.07394417  | 0.17289260   | -3.85967046            |
| 23 | С | 2.91462331  | 0.82066796   | -2.22218277            |
| 24 | Ν | 1.69256983  | 1.23244413   | -1.74866529            |
| 25 | С | 1.59059674  | 2.00710766   | -0.52382956            |
| 26 | Н | 2.36744249  | 2.77980927   | -0.56495222            |
| 27 | Н | 0.62073669  | 2.51364224   | -0.52361218            |
| 28 | С | 1.77562321  | 1.18863949   | 0.75821645             |
| 29 | н | 2.02175354  | 1.87219690   | 1.57933045             |
| 30 | н | 2.59753029  | 0.47043809   | 0.67147524             |
| 31 | N | 0.58669510  | 0.45214285   | 1.15374831             |
| 32 | С | 0.51147296  | -0.12557466  | 2.40682373             |
| 33 | С | -0.74500697 | -1.00228257  | 2.67678835             |
| 34 | н | -1.58194517 | -0.42590705  | 2.25833243             |
| 35 | Ν | -0.72920098 | -2.37146625  | 2.06943958             |
| 36 | н | -2.10341708 | -1.57050510  | 0.59334987             |
| 37 | С | -1.05091509 | -1.10084258  | 4.20436011             |
| 38 | н | -0.92120116 | -0.10052855  | 4.63857635             |
| 39 | C | -2.51168307 | -1.50949517  | 4.44200381             |
| 40 | н | -2.75149026 | -1.48035049  | 5.51041392             |
| 41 | н | -3.19791975 | -0.82674625  | 3,93097118             |
| 42 | н | -2 71154375 | -2 52391145  | 4 08127105             |
| 43 | Ċ | -0 13572279 | -2.052091140 | 4 98601/02             |
| 45 | C | -0.133/22/3 | -2.03203032  | <del>4</del> .58001402 |

| 44 | Н  | 0.92029140  | -1.80140053 | 4.85759160  |
|----|----|-------------|-------------|-------------|
| 45 | н  | -0.35440502 | -1.99135174 | 6.05815906  |
| 46 | н  | -0.27858153 | -3.09490920 | 4.68449071  |
| 47 | С  | 2.38428154  | 1.10889612  | -4.74251227 |
| 48 | н  | 1.31444847  | 1.25859680  | -4.56583721 |
| 49 | С  | 3.03429737  | 2.50113382  | -4.72807807 |
| 50 | н  | 2.85422744  | 3.01932616  | -3.78130395 |
| 51 | Н  | 4.11699516  | 2.43519873  | -4.88033271 |
| 52 | н  | 2.62025193  | 3.13009910  | -5.52380962 |
| 53 | С  | 2.55217527  | 0.50659146  | -6.14377460 |
| 54 | Н  | 2.00903895  | -0.43806092 | -6.24307403 |
| 55 | Н  | 2.15874884  | 1.18609849  | -6.90775008 |
| 56 | Н  | 3.60727891  | 0.31962206  | -6.37092060 |
| 57 | 0  | 3.94560383  | 0.96481514  | -1.55420751 |
| 58 | 0  | 1.38061057  | 0.06786610  | 3.25917839  |
| 59 | Н  | 0.83398084  | 1.12713076  | -2.29925052 |
| 60 | н  | 0.01298754  | 0.07644147  | 0.40488930  |
| 61 | Cl | -1.63777419 | 1.51549255  | -2.73505371 |
| 62 | С  | -3.78552069 | 2.26335993  | 1.65567042  |
| 63 | С  | -2.02310955 | 2.76712903  | 3.80677667  |
| 64 | С  | -2.44266976 | 2.60831978  | 1.43301809  |
| 65 | С  | -4.21944837 | 2.18349781  | 2.98948767  |
| 66 | С  | -3.34992356 | 2.42916707  | 4.05591696  |
| 67 | С  | -1.56980897 | 2.85976289  | 2.49454403  |
| 68 | н  | -2.06961982 | 2.67465778  | 0.41011350  |
| 69 | н  | -5.25405375 | 1.91656887  | 3.19478141  |
| 70 | н  | -3.71000036 | 2.35076828  | 5.07748708  |
| 71 | Н  | -0.53315043 | 3.11420336  | 2.28961214  |
| 72 | Н  | -1.33902503 | 2.95045642  | 4.63052143  |
| 73 | С  | -4.71851615 | 2.01350922  | 0.50074861  |
| 74 | Н  | -5.03971278 | 2.89263177  | -0.05053423 |
| 75 | С  | -4.61078127 | 0.73732676  | -0.29412520 |
| 76 | Н  | -3.83750371 | 0.02729834  | -0.03245077 |
| 77 | Н  | -4.82514643 | 0.78818104  | -1.35506212 |
| 78 | 0  | -5.68253350 | 0.94841742  | 0.62983387  |

Lowest energy conformation for [3a-CO<sub>2</sub> + 6 + Cl<sup>-</sup>] -



|    | Cartesia | n coordinates (81 ator | ns), E (298 K) = -653.7 | '1 kJ/mol   |
|----|----------|------------------------|-------------------------|-------------|
| 1  | н        | 2.32875536             | -0.33181615             | 3.70059757  |
| 2  | С        | 2.09976560             | -0.90406229             | 2.80958913  |
| 3  | С        | 1.49017423             | -2.36117391             | 0.41005867  |
| 4  | С        | 3.06788106             | -1.20035537             | 1.86145460  |
| 5  | С        | 0.80924573             | -1.30976520             | 2.50848816  |
| 6  | С        | 0.51521541             | -2.00992717             | 1.32195003  |
| 7  | С        | 2.76579264             | -1.91909553             | 0.69485475  |
| 8  | н        | 1.25181540             | -2.87679779             | -0.51449128 |
| 9  | С        | -0.47364591            | -1.08227217             | 3.26156164  |
| 10 | н        | -0.54515058            | -1.88580828             | 4.00591545  |
| 11 | н        | -0.54077921            | -0.11063842             | 3.75346288  |
| 12 | С        | -0.95956517            | -2.22756063             | 1.22018178  |
| 13 | н        | -1.17099954            | -3.25409152             | 1.55139625  |
| 14 | С        | 4.51838475             | -0.83289401             | 1.83232574  |
| 15 | н        | 4.68833888             | 0.20246815              | 2.14374826  |
| 16 | н        | 5.06384352             | -1.48695313             | 2.52246828  |
| 17 | С        | 3.99039564             | -2.05191843             | -0.14304649 |
| 18 | н        | 3.77223401             | -1.87311343             | -1.19795481 |
| 19 | н        | 4.37373517             | -3.07478740             | -0.05029970 |
| 20 | Ν        | 4.97853622             | -1.12218968             | 0.44402284  |
| 21 | С        | 5.23932755             | 0.11474563              | -0.34462673 |
| 22 | н        | 6.09298615             | 0.58908238              | 0.16420172  |
| 23 | С        | 4.11127036             | 1.18135855              | -0.27404214 |
| 24 | Ν        | 2.97301185             | 0.96840381              | -1.01560576 |
| 25 | С        | 1.94881083             | 1.99234643              | -1.13350476 |
| 26 | Н        | 2.46435300             | 2.94521482              | -1.30420122 |
| 27 | Н        | 1.36351699             | 1.77889892              | -2.03096000 |
| 28 | С        | 1.05271133             | 2.14265164              | 0.09815752  |
| 29 | Н        | 0.50669804             | 3.09065784              | 0.01893596  |
| 30 | Н        | 1.65362044             | 2.19175509              | 1.01328304  |
| 31 | Ν        | 0.04171280             | 1.10991949              | 0.26913932  |
| 32 | С        | -0.73796611            | 1.12146719              | 1.40641620  |
| 33 | С        | -1.93268268            | 0.11229321              | 1.48664922  |
| 34 | Н        | -2.19172101            | -0.16971876             | 0.45890520  |
| 35 | Ν        | -1.56978177            | -1.22992742             | 2.21433089  |
| 36 | Н        | -1.36587871            | -2.06142721             | 0.22104025  |
| 37 | С        | -3.20118228            | 0.84481827              | 2.06077701  |
| 38 | н        | -4.04762905            | 0.14995072              | 2.01807041  |
| 39 | С        | -3.11600680            | 1.35702732              | 3.50319709  |
| 40 | н        | -2.49613140            | 2.25384343              | 3.59010833  |
| 41 | н        | -4.11621219            | 1.63519789              | 3.85584186  |
| 42 | н        | -2.72791929            | 0.61237701              | 4.19786758  |
| 43 | С        | -3.60324594            | 2.01747620              | 1.14809422  |
| 44 | н        | -3.67939425            | 1.69662909              | 0.10534988  |
| 45 | Н        | -4.57937298            | 2.41673659              | 1.44486102  |

| 46 | н  | -2.88105242 | 2.83888813  | 1.19619672  |
|----|----|-------------|-------------|-------------|
| 47 | С  | 5.71916769  | -0.12765713 | -1.80806409 |
| 48 | н  | 4.89606245  | -0.51746113 | -2.41800445 |
| 49 | С  | 6.17702803  | 1.18337233  | -2.46651945 |
| 50 | н  | 5.35658460  | 1.90342845  | -2.54258875 |
| 51 | Н  | 6.98892361  | 1.65012243  | -1.89840429 |
| 52 | Н  | 6.54016114  | 0.99980818  | -3.48370443 |
| 53 | С  | 6.87659907  | -1.13320106 | -1.87099175 |
| 54 | Н  | 6.56980410  | -2.12306543 | -1.52010782 |
| 55 | н  | 7.23119720  | -1.25268695 | -2.90063943 |
| 56 | н  | 7.72299514  | -0.80138364 | -1.25998039 |
| 57 | 0  | 4.27788957  | 2.21556191  | 0.37952431  |
| 58 | 0  | -0.46633046 | 1.87765557  | 2.34445800  |
| 59 | н  | 2.71158444  | 0.03729867  | -1.31785081 |
| 60 | н  | -0.21298697 | 0.53306698  | -0.54710880 |
| 61 | Cl | -0.43522401 | -0.74374727 | -2.45612075 |
| 62 | С  | -4.94605248 | 0.43087639  | -2.55164599 |
| 63 | С  | -6.70107583 | -0.22332365 | -0.43626294 |
| 64 | С  | -6.13248038 | 1.15229747  | -2.33831140 |
| 65 | С  | -4.66659632 | -0.62838658 | -1.67273691 |
| 66 | С  | -5.53274911 | -0.95482364 | -0.62681905 |
| 67 | С  | -7.00357864 | 0.83081286  | -1.29349370 |
| 68 | н  | -6.37548153 | 1.97935318  | -3.00187597 |
| 69 | н  | -3.74928027 | -1.20346391 | -1.79809164 |
| 70 | н  | -5.28158419 | -1.77361281 | 0.04558489  |
| 71 | н  | -7.91331090 | 1.40586078  | -1.14958031 |
| 72 | Н  | -7.36716637 | -0.47621152 | 0.38361729  |
| 73 | С  | -3.98944694 | 0.79488571  | -3.65503104 |
| 74 | н  | -3.13480983 | 1.39972783  | -3.36376075 |
| 75 | С  | -3.76635179 | -0.15223840 | -4.80676610 |
| 76 | н  | -4.28864282 | -1.10011369 | -4.80971743 |
| 77 | Н  | -2.77215182 | -0.18454625 | -5.23614540 |
| 78 | 0  | -4.53780819 | 1.04243450  | -4.96609204 |
| 79 | С  | -2.70822449 | -1.84446236 | 2.71784783  |
| 80 | 0  | -2.82843921 | -1.86171253 | 3.96703486  |
| 81 | 0  | -3.48404020 | -2.32237920 | 1.85358214  |

- Lowest energy conformation for [3e + 6 + Cl<sup>-</sup>].



### Cartesian coordinates (102 atoms), E (298 K) = 313.34 kJ/mol

| 1  | Н | 1.65760774  | -3.20913941 | 1.37187359  |
|----|---|-------------|-------------|-------------|
| 2  | С | 1.57741642  | -2.17749356 | 1.05425351  |
| 3  | С | 1.32963342  | 0.54671165  | 0.18948384  |
| 4  | С | 1.20740210  | -1.16404144 | 1.92584534  |
| 5  | С | 1.81669507  | -1.80119293 | -0.25927541 |
| 6  | С | 1.68913150  | -0.46657107 | -0.68133296 |
| 7  | С | 1.09245994  | 0.17329171  | 1.49977017  |
| 8  | н | 1.22023449  | 1.56980505  | -0.14480971 |
| 9  | С | 2.16728812  | -2.65320219 | -1.44506121 |
| 10 | н | 3.00312747  | -3.32002692 | -1.21314304 |
| 11 | н | 1.28160510  | -3.24204660 | -1.69915914 |
| 12 | С | 1.93428730  | -0.38674165 | -2.15752766 |
| 13 | Н | 2.61512527  | 0.43439759  | -2.40111899 |
| 14 | С | 0.86817800  | -1.24217469 | 3.38332882  |
| 15 | н | 0.15216988  | -2.04802453 | 3.57227935  |
| 16 | н | 1.78125207  | -1.41973384 | 3.95612106  |
| 17 | С | 0.69394732  | 1.03466629  | 2.65598424  |
| 18 | н | -0.11872668 | 1.71206185  | 2.37986269  |
| 19 | н | 1.56289511  | 1.61624483  | 2.97733655  |
| 20 | Ν | 0.25140559  | 0.05723647  | 3.66092300  |
| 21 | С | 0.10515393  | 0.50330316  | 5.04980514  |
| 22 | н | -0.12606959 | -0.37484861 | 5.66959074  |
| 23 | С | -1.20447871 | 1.36511383  | 5.06401889  |
| 24 | Ν | -2.26937837 | 0.70638504  | 4.46584567  |
| 25 | С | -3.50518441 | 1.38588673  | 4.14348941  |
| 26 | н | -4.29413075 | 0.62944234  | 4.10956022  |
| 27 | С | -1.35104032 | -2.28221155 | -4.64208352 |
| 28 | Н | -1.90832619 | -1.41432518 | -5.00972956 |
| 29 | Ν | 0.00944465  | -1.85832786 | -4.40097778 |
| 30 | С | 1.03313586  | -2.74800478 | -4.16400655 |
| 31 | С | 2.42029526  | -2.09985429 | -3.89529719 |
| 32 | Н | 2.52121487  | -1.21676298 | -4.53804478 |
| 33 | Ν | 2.55761362  | -1.68235597 | -2.48194438 |
| 34 | Н | 0.97104472  | -0.23354370 | -2.64701014 |
| 35 | С | 3.57043226  | -3.07590037 | -4.28511485 |
| 36 | Н | 3.45264751  | -4.02287991 | -3.74212776 |
| 37 | С | 3.53850204  | -3.39203304 | -5.78826969 |
| 38 | н | 3.64634238  | -2.48036986 | -6.38603030 |
| 39 | н | 4.35546364  | -4.07006589 | -6.05849239 |
| 40 | н | 2.60424856  | -3.87948120 | -6.08157091 |
| 41 | С | 4.95409486  | -2.50491272 | -3.94170803 |
| 42 | н | 5.08085778  | -2.37874952 | -2.86192998 |
| 43 | н | 5.74763090  | -3.17973252 | -4.28101007 |

| 44  | н      | 5.11062663  | -1.53224745 | -4.42056643 |
|-----|--------|-------------|-------------|-------------|
| 45  | С      | 1.29376082  | 1.26587584  | 5.70727184  |
| 46  | н      | 1.36391001  | 2.27135045  | 5.27251748  |
| 47  | С      | 1.06579354  | 1.43131340  | 7.22136996  |
| 48  | н      | 1.89420828  | 1.98389934  | 7.67860852  |
| 49  | н      | 0.15077449  | 1.98402073  | 7.44718391  |
| 50  | н      | 0.99912206  | 0.45672992  | 7.71761765  |
| 51  | С      | 2.65215522  | 0.57878316  | 5.52670966  |
| 52  | н      | 3.43790713  | 1.13125131  | 6.05444852  |
| 53  | н      | 2.63746140  | -0.44007423 | 5.92794738  |
| 54  | н      | 2.95283063  | 0.53598788  | 4.47684679  |
| 55  | 0      | -1.29572629 | 2.49081556  | 5.54293196  |
| 56  | 0      | 0.85004051  | -3.96645573 | -4.10570151 |
| 57  | н      | -1.97532079 | -0.05366357 | 3.85701658  |
| 58  | н      | 0.25819266  | -0.90224816 | -4.69867958 |
| 59  | н      | -3.74716753 | 2.07818947  | 4,95759853  |
| 60  | н      | -1 33486480 | -3 03639080 | -5 43671428 |
| 61  | C      | -2 03118289 | -2 86065402 | -3 39786721 |
| 62  | н      | -1 46614002 | -3 72316639 | -3 02677375 |
| 63  | C II   | -3 42315732 | 2 16368146  | 2 82723205  |
| 64  | ч      | -2 62938791 | 2.10300140  | 2.02725205  |
| 65  | н      | -3.02550151 | -3 23365729 | -3 68266493 |
| 66  | и<br>Ц | -1 26210048 | 2 71068018  | 2 68027150  |
| 67  | C II   | 2 10026007  | 1 0000010   | 2.08027130  |
| 67  | L<br>L | -2.19050007 | -1.05200251 | -2.2/500/10 |
| 60  | п<br>Ц | -1.22270451 | 1 02270552  | -2.04177082 |
| 70  |        | -2.85821009 | -1.03370552 | -2.01209827 |
| 70  | U U    | -3.14427465 | 1.30149554  | 1.38850230  |
| 71  | н      | -2.20569361 | 0.75776993  | 1.72255019  |
| 72  | H      | -2.99399599 | 1.9/258866  | 0.73506464  |
| /3  | C      | -2.74428319 | -2.48615784 | -1.00485378 |
| 74  | н      | -2.06802260 | -3.29570208 | -0.70225259 |
| 75  | н      | -3.71631323 | -2.94873003 | -1.21383081 |
| 76  | C      | -4.27547065 | 0.32660032  | 1.25522012  |
| 77  | Н      | -4.45410514 | -0.35695312 | 2.09217848  |
| 78  | Н      | -5.20132090 | 0.89577395  | 1.10688493  |
| 79  | С      | -2.87241959 | -1.51253757 | 0.17061804  |
| 80  | Н      | -3.06301205 | -2.09896681 | 1.07797996  |
| 81  | н      | -1.91704761 | -0.99797527 | 0.32060003  |
| 82  | С      | -4.00535738 | -0.49722095 | -0.01001076 |
| 83  | н      | -3.78608104 | 0.17584525  | -0.84548049 |
| 84  | Н      | -4.92658490 | -1.03390062 | -0.26827940 |
| 85  | Cl     | 0.57053779  | 1.23836890  | -5.58374653 |
| 86  | 0      | -2.70160316 | 2.83210329  | -1.89467020 |
| 87  | С      | -1.82953126 | 1.87732267  | -2.50833221 |
| 88  | н      | -1.26761249 | 1.21172691  | -1.86577888 |
| 89  | н      | -2.12820125 | 1.44082409  | -3.45376884 |
| 90  | С      | -1.49622151 | 3.34716364  | -2.49537680 |
| 91  | н      | -1.61289742 | 3.86977001  | -3.44113675 |
| 92  | С      | -0.40018465 | 3.84734587  | -1.59079814 |
| 93  | С      | 1.68973916  | 4.77321628  | 0.07240681  |
| 94  | С      | -0.65549483 | 4.32487276  | -0.29397936 |
| 95  | С      | 0.93457797  | 3.85305506  | -2.02978682 |
| 96  | С      | 1.97003691  | 4.31095520  | -1.21065680 |
| 97  | С      | 0.37571017  | 4.77991926  | 0.53264570  |
| 98  | н      | -1.67851012 | 4.33290874  | 0.07680639  |
| 99  | н      | 1.16858813  | 3.48157894  | -3.02902370 |
| 100 | н      | 2,99189342  | 4.29508052  | -1.58016433 |
| 101 | н      | 0.14817194  | 5.13722693  | 1.53305434  |
| 102 | н      | 2.49456186  | 5.12485027  | 0.71119674  |
|     |        | 2           | 3.12.03027  | 0.7 11100/4 |