Supporting information

Calix[8]arene-Constructed Stable Polyoxo-Titanium Cluster for Efficient CO₂ Photoreduction

Ning Li,^{a†} Jing-Jing Liu,^{b†} Jia-Wei Sun,^b Bao-Xia Dong,^{a*} Long-Zhang Dong,^b Su-Juan Yao,^b Zhifeng Xin,^c Shun-Li Li^b and Ya-Qian Lan^{b*}

^aSchool of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002 (P. R. China). E-mail: <u>bxdong@yzu.edu.cn</u>.
^bJiangsu Collaborative Innovation Centre of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University No.1, Wenyuan Road, NanJing 210023 (China). E-mail: <u>yqlan@njnu.edu.cn</u>.
^cInstitute of Molecular Engineering and Applied Chemistry, Anhui University of Technology, Ma'anshan, Anhui, 243002, PR China
[†]These authors contributed equally to this work.

Materials and General Methods

Photocatalytic Reaction

Photocatalytic reduction of CO₂ was performed in a 100 mL guartz reactor with as-prepared crystal. Photocatalyst (5mg) was added into the solution which contained deionized H₂O (24 mL) and triethanolamine (TEOA, 6 mL) as an electron donor. After degassing with CO_2 to remove dissolved O_2 for 20 min, the UV light-driven photocatalytic reaction was performed under the irradiation of a 300 W Xe lamp with UV and IR-cut to keep the wavelengths in the range from 200 to 400 nm. For visible light-driven photocatalytic reaction, a 300 W xenon arclamp (light intensity: 200 mW cm⁻²) with a cut filter (to ensure effective wavelengths are in the range of 420 to 800 nm) was used as light source. The reaction temperature was controlled at 303 K by using the cooling water circulation. In order to detect the content of carbon monoxide produced by the reaction mixture, 500 µL of gas-product was extracted from the reactor with a syringe and injected into the gas chromatograph with a FID detector, using nitrogen as the carrier gas and reference gas. To detect the formation of hydrogen from the reaction mixture, 500 µL from the middle of the reactor was taken out with a syringe and injector into a GC with a TCD detector, using nitrogen as the carrier gas and reference gas. By comparing the integrated area of the gas-phase product with the calibration curve, the volume of carbon monoxide and hydrogen can be calculated. All photocatalytic reactions were repeated five times to ensure the accuracy of the experimental data.

Photoelectrochemical measurements

Photoelectrochemical measurements were carried out on CHI 660e electrochemical workstation in a standard three-electrode electrochemical cell with a working electrode, a platinum plate as counter electrode and a saturated Ag/AgCI electrode as reference electrode. A sodium sulfate solution

(0.2 M) was used as the electrolyte.

Preparation of the working electrode: 2 mg crystals powder was mixed with 0.99 mL ethanol and 10 μ l Nafion D-520 dispersion solutions and sonicated for 30 minutes. The resulting mixture was deposited evenly on the bottom 1 × 2 cm² area of the ITO glass plates and left in the air to dry.

Preparation of working electrode for electrochemical impedance spectroscopy (EIS): The as-synthesized crystals (10 mg) were grinded to powder and then dispersed in 1mL solvent (900 μ L H₂O and 100 μ L 5wt% Nafion) by ultrasonication to form a homogeneous ink. Subsequently, 50 μ L of the ink was covered onto the both side of carbon cloth for EIS test.

Crystallographic information

Compound	Ti₄-C8A	Ti ₇ -C8A
Empirical formula	C ₇₁ H ₇₆ O ₁₅ Ti ₄	C ₆₈ H ₇₆ O ₂₄ Ti ₇
<i>M</i> _r (g mol ⁻¹)	1360.92	1612.38
Crystal system	Monoclinic	Orthorhombic
Space group	<i>P</i> 2 ₁ /n	Cmc2 ₁
a (Å)	18.731(8)	24.63(3)
b	16.579(7)	19.10(3)
С	21.872(10)	14.90(2)
α (°)	90	90
β (°)	100.786(6)	90
γ (°)	90	90
V (Å ³)	6672(5)	7010(17)
Z	4	4
D _{calcd} (g cm⁻³)	1.354	1.528
R (int)	0.0714	0.0841
μ	0.527	0.835
F (000)	2836.0	3320.0
$R_1 [l > 2\sigma(l)]^a$	0.0677	0.0827
$wR_2 [I > 2\sigma(I)]^b$	0.1447	0.1572
R ₁ (all data)	0.1416	0.1604
wR ₂ (all date)	0.1766	0.1938
GOF on F ²	1.028	1.120

Table S1a. Crystal data and structure refinement for Ti_4 -C8A and Ti_7 -C8A.

 ${}^{a}R_{1} = \sum ||F_{o}| - |F_{c}||/|F_{o}|$. ${}^{b}wR_{2} = [\sum w (F_{o}^{2} - F_{c}^{2})^{2}/\sum w(F_{o}^{2})^{2}]^{1/2}$.

Ti₄-C8A						
Ti1-01	1.828(3)	01-Ti1-O2	79.96(14)			
Ti1-O2	2.160(3)	O1-Ti1-O9	136.65(15)			
Ti1-08	1.828(3)	08 ⁻ Ti1 -O2	158.74(15)			
Ti1-O9	1.934(3)	O2 -Ti2 -O9	74.78(12)			
Ti - 1 O11	1.745(4)	$\begin{array}{c} O & \overline{} \\ O & \overline{} \\ 3 & \overline{} \\ 2 & 2 \end{array}$	92.89(14)			
Ti - 2 O2	1.958(3)	O Ti O1 3 2 0	95.80(14)			
Ti2-O3	1.805(3)	O3-Ti2-O9	150.06(15)			
Ti2-O9	2.029(3)	07-Ti3-O6	93.45(14)			
Ti2-O10	1.914(3)	07 - Ti3 - O9	93.80(14)			
Ti2-O12	1.753(4)	O T O 7 Ti O1 7 3 0	150.75(15)			
Ti3-O6	1.967(3)	O9-Ti3-Ti4	108.90(10)			
Ti3-07	1.787(3)	O4 -Ti4 -O5	95.78(14)			
Ti3-O9	1.945(3)	O4 - Ti4 - O6	172.29(15)			
Ti3-O10	1.985(3)	O4 - Ti4 - O10	106.29(13)			
Ti4-04	1.838(3)	O4 - Ti4 - O15	86.42(17)			
Ti4-O5	1.845(3)	O Ti O 5 4 6	82.58(12)			
Ti4-06	2.185(3)	O5-Ti4-O10	150.17(13)			
Ti4-O10	1.974(3)	06 - Ti4 - Ti3	36.95(7)			
Ti - 4 O14	1.813(3)	O1 Ti O 4 6	72.85(11)			
Ti -	2.313(4)	014-Ti4-04	97.80(15)			
4 O15						
Ti ₇ -C8A						
Ti1-07	2.037(9)	07-Ti2-O12	78.4(5)			
Ti1-O5	1.992(8)	O6-Ti2-Ti2	137.5(3)			

Table S1b. Selected bond lengths (Å) and angles (°) for Ti_4 -C8A and Ti_7 -C8A.

Ti1-O1	1.841(9)	O6-Ti2-Ti4	138.0(4)
Ti1-O10	2.051(10)	O6-Ti2-Ti3	186.3(3)
Ti1-O8	1.958(11)	O6-Ti2-Ti3	86.3(3)
Ti1-O2	1.789(10)	06-Ti2-07	97.0(4)
Ti2-07	2.014(9)	O6-Ti2-O12	75.4(4)
Ti2-O6	2.003(9)	O4-Ti2-Ti21	92.6(3)
Ti2-O4	1.817(9)	O4-Ti2-Ti4	128.6(4)
Ti2-O12	2.021(10)	O4-Ti2-Ti3a	132.2(4)
Ti2-O3	1.829(10)	O4-Ti2-Ti3	132.2(4)
Ti2-O9	1.968(11)	04-Ti2-07	167.6(4)
Ti3-07	2.062(10)	O4-Ti2-O6	92.2(5)
Ti3-O7a	2.061(10)	04-Ti2-012	96.0(5)
Ti3-O11	1.829(11)	O4-Ti2-O3	97.4(4)
Ti3-O11a	1.829(11)	O4-Ti2-O9	91.0(4)
Ti3-O12	1.945(14)	012-Ti2-Ti2	138.1(4)
Ti3-O10	1.972(14)	O12-Ti2-Ti4	88.9(4)
Ti4-07	2.109(10)	O12-Ti2-Ti3	37.6(4)
Ti4-O11a	2.062(12)	012-Ti2-Ti3	137.6(4)
Ti4-O14	1.786(11)	O3-Ti2-Ti2a	129.7(3)
Ti4-O13	1.742(11)	O3-Ti2-Ti4	91.5(3)
Ti4-08	1.998(10)	O3-Ti2-Ti3	130.4(3)
Ti4-O9	2.008(10)	O3-Ti2-Ti3a	130.4(3)

Symmetry transformations used to generate equivalent atoms:

Ti₇-C8A: a (1-X,+Y,+Z)

Figure S1. Within the metal-oxo core of Ti_7 -C8A, Ti3 atom is located at the intersection of symmetric elements of glide and mirror planes.

Figure S2. Three-dimensional supramolecular stacking of Ti_4 -C8A clusters.

Figure S3. Three-dimensional supramolecular stacking of Ti_7 -C8A clusters.

Figure S4. PXRD patterns of the as-synthesized and simulated Ti_4 -C8A. The chemistry stability of Ti_4 -C8A was confirmed by the obtained well-matched PXRD patterns (compared with the simulated PXRD pattern) after immersing crystals into aqueous solutions with different pH values and reaction solution for one week.

Figure S5. PXRD patterns of the as-synthesized and simulated Ti_7 -C8A. The chemistry stability of Ti_7 -C8A was confirmed by the obtained well-matched PXRD patterns (compared with the simulated PXRD pattern) after immersing crystals into aqueous solutions with different pH values and reaction solution for one week.

Figure S6. Thermal gravimetrical analysis of Ti_4 -C8A (black) and Ti_7 -C8A (red).

Figure S7. Mott-Schottky plots of Ti_4 -C8A and Ti_7 -C8A with inset of energy diagram of the LUMO and HOMO levels.

To further confirm the HOMO and LUMO levels of Ti_4 -C8A and Ti_7 -C8A, the Mott–Schottky measurements were conducted. As shown in Figure S7, we can see that the LUMO positions of Ti_4 -C8A and Ti_7 -C8A were evaluated to be -0.69 (*vs.* NHE, pH = 7) and -1.01 V(*vs.* NHE, pH = 7), respectively, while the HOMO levels were evaluated to be 1.17 V (Ti_4 -C8A, *vs.* NHE, pH = 7) and 0.63 V (Ti_7 -C8A, *vs.* NHE, pH = 7). It is obvious that the calculated HOMO and LUMO values from Mott–Schottky measurements are very close

to the results extracted from UPS, and the difference is inevitable because of different characterization methods. Thus, the LUMO potentials of Ti_4 -C8A and Ti_7 -C8A should be in the range of -0.69 to -0.74 V (*vs.* NHE, pH = 7) and -0.98 to -1.01 V (*vs.* NHE, pH = 7), respectively, while their HOMO potentials are in the range of 1.12 to 1.17 V and 0.63 to 0.66 V. Based on the above results, we can find that the determined LUMO potentials of Ti_4 -C8A and Ti_7 -C8A are all more negative than the standard reduction potential of CO₂/HCOOH (-0.61 V *vs.* NHE, pH = 7). Therefore, both of Ti_4 -C8A and Ti_7 -C8A can catalyze the reduction of CO₂ to HCOO⁻.

Figure S8. Analysis of the liquid reaction products generated in photocatalytic system by ion chromatography.

Figure S9. The signals in gas chromatography during the UV light-driven photocatalytic reaction. Trace amount of competitive H_2 and CO were observed for (a,b) **Ti₄-C8A**, whereas only trace amount of CO was observed for (c,d) **Ti₇-C8A**.

Figure S10. Transient photocurrent response (UV light) of Ti₄-C8A.

Figure S11. Transient photocurrent response (visible light) of Ti₄-C8A.

Figure S12. Transient photocurrent response (UV light) of Ti₇-C8A.

Figure S13. Transient photocurrent response (visible light) of Ti₇-C8A.

To investigate the electrochemical properties of the as-obtained catalyst, electrochemical impedance spectroscopy (EIS) was performed on an electrochemical workstation (Bio-Logic) with a standard three-electrode system in a frequency range from 1000 kHz to 100 mHz at ambient environment. The carbon cloth (CC, 1 cm×1 cm) modified with catalyst samples, platinum wire and Ag/AgCl (saturated) were used as working electrode, counter electrode and reference electrode, respectively and 0.5 M KHCO₃ aqueous solution was used as the supporting electrolyte. As shown in Figure S14, the size of the Nyquist plot of Ti₇-C8A is smaller than that of Ti₄-C8A, which represents the interfacial charge transfer process of Ti₇-C8A is faster compared to Ti₄-C8A.

Figure S14. Nyquist plots of catalysts over the frequency ranging from 1000 kHz to 100 mHz.

Calculation

To further validate the exciton separation (or charge separation) efficiency of Ti₄-C8A and Ti₇-C8A, we calculated the electron-hole Coulomb attraction energies (E_c) in the first excited state. In general, the small E_c leads to high exciton separation efficiency. The density functional theory (DFT) and timedependent (TD-DFT) were employed in this work. Structure optimizations were performed without constraints using PBE0 functional and Def2SVP basis set. The solvent effect was considered using SMD model, water as the solvent. All DFT and TD-DFT calculations were carried out using Gaussian 16 A.^[1] The electron-hole analysis was performed using Multiwfn3.7.^[2] Calculated E_c values are 3.42 and 2.16 eV for Ti₄-C8A and Ti₇-C8A, respectively (Figure S15). This result also suggested that Ti₇-C8A has higher exciton separation efficiency than Ti₄-C8A, which is consistent with our experimental data.

Figure S15. Calculations of electron-hole Coulomb attraction energies (E_c) in the first excited state for Ti₄-C8A and Ti₇-C8A.

Turnover number (TON) Calculation

From structurally, we assume that the potentially active sites (Ti1, Ti2, Ti3, Ti4 atoms) in Ti_4 -C8A is twice that (two Ti4 atoms) of Ti_7 -C8A. Therefore, we have compared the catalytic activity of active sites in Ti_4 -C8A and Ti_7 -C8A by turnover number (TON).

Turnover number (TON) = mol (HCOO⁻ yield) / mol (catalyst)

Turnover number (TON_{Ti}) = mol (HCOO⁻ yield) / mol (Ti⁴⁺ active sites)

mol (Ti⁴⁺ active sites) = g (Ti₄-C8A catalyst, mass) / g·mol⁻¹ (Ti₄-C8A catalyst, M_r) × 4

mol (Ti⁴⁺ active sites) = g (Ti₇-C8A catalyst, mass) / g·mol⁻¹ (Ti₇-C8A catalyst, M_r) × 2

Table S2. The catalytic activity comparison of potential active sites in Ti_4 -C8A and Ti_7 -C8A.

Entry	(HCOO ⁻ yield) (<i>UV</i> light)	то	TON _{Ti}	(HCOO ⁻ yield) (<i>Visible light</i>)	то	TON_{Ti}
		N			N	
Ti ₄ -	41.51 <i>µ</i> mol	11.3	2.8	8.25 <i>µ</i> mol	2.3	0.6
C8A						
Ti ₇ -	21.58 µmol	7.0	3.5	6.19 <i>µ</i> mol	2.0	1.0
C8A						

From the calculated catalytic activity data, each potential Ti^{4+} catalytic site (TON_{Ti}) in **Ti₇-C8A** is more active than that of **Ti₄-C8A** under UV or visible light irradiation, whereas the **Ti₄-C8A** cluster has a higher overall TON. Therefore, the higher photocatalytic activity of **Ti₄-C8A** compared with **Ti₇-C8A** is mainly attributed to its more potential active Ti⁴⁺ sites.

Table S3. Comparison of the photocatalytic performance of Ti_4 -C8A, Ti_7 -C8A, and reported heterogeneous nanostructured and crystalline photocatalysts for CO₂-to-HCOOH conversion.

Photocatalyst	Solvent	Light source	PS/PM	HCOOH (μmol/g/h) (selec.%)	Quantum efficiency (QE) for HCOOH	Reference
Coordination molecular complexes photocatalysts (This work)						
Ti₄-C8A	H ₂ O	300 W Xe-lamp, UV light (200-400 nm)	No	488.35 (96.0%)	0.016% (365 nm)	this work
Ti₄-C8A	H ₂ O	300 W Xe-lamp, Visible light (420-800 nm)	No	97.06 (100%)	0.013% (420 nm) 0.011% (450 nm)	this work
Ti ₇ -C8A	H ₂ O	300 W Xe-lamp, UV light (200-400 nm)	No	253.88 (99.7%)	0.008% (365 nm)	this work
Ti ₇ -C8A	H ₂ O	300 W Xe-lamp, Visible light (420-800 nm)	No	72.82 (100%)	0.003% (420 nm) 0.002% (450 nm) 0.001% (500 nm)	this work
		Nanostructu	red se	miconductor	photocatalysts	
TiO2/Cu(II) phthalocyanine	H ₂ O	halogen lamp	No	26.05 (100%)		[3]
3.0 wt % Cu- doped anatase TiO2	H ₂ O	125 W Hg-lamp (λ = 365 nm)	No	25.6 (ca. 10.9%)		[4]
Bi2S3	MeOH	250 W Hg-lamp (λ = 365 nm)	No	175		[5]
CdIn2S4	MeOH	250 W Hg-lamp (λ = 365 nm)	No	1428.5		[6]
ZnIn2S4	МеОН	250 W Hg-lamp (λ = 365 nm)	No	190.5		[7]
SiC	NaOH solution	300 W Xe-lamp	No	12 (90.7%)		[8]
N-Doped Ta ₂ O ₅	MeCN	A 400 W high-pressure Hg lamp (> 400 nm)	Yes	70 (<100%)		[9]
$g-C_3N_4-$ Re(bbpa) (CO) ₂ Cl ₂]·(PF ₆) ₂	DMA	A 400 W high-pressure Hg lamp (> 400 nm)	Yes	1100 (100%)	5.7% (400 nm)	[10]
ZnS	lsopropa nol/H2O	150 W XBO arc lamp (> 320 nm)	Yes	100 (<100%)	0.50% (375 nm)	[11]
	Metal-organic frameworks (MOFs)-based photocatalysts					
AD-MOF-1	MeCN	300 W Xe-lamp, Visible light (420-800	No	179.0 (100%)		[12]

		nm)				
AD-MOF-2	H ₂ O	300 W Xe-lamp, Visible light (420-800 nm)	No	443.2 (100%)		[12]
PCN-222	MeCN	300 W Xe-lamp, Visible light (420-800 nm)	No	60 (100%)		[13]
NH₂-MIL- 125(Ti)	MeCN	Four 4W UV lamps with a wavelength centered at 365 nm	No	16.28 (100%)		[14]
NH₂-MIL- 101(Fe)	MeCN	300 W Xe-lamp, Visible light (420-800 nm)	No	445 (100%)		[15]
NH ₂ -MIL- 53(Fe)	MeCN	300 W Xe-lamp, Visible light (420-800 nm)	No	116.25 (100%)		[15]
NH ₂ -MIL- 88B(Fe)	MeCN	300 W Xe-lamp, Visible light (420-800 nm)	No	75.0 (100%)		[15]
UiO-66(Zr/Ti)- NH ₂	MeCN	300 W Xe arc lamp, Visible light (420-800 nm)	No	-/(100%)		[16]
UiO-66-(Zr/Ti)- NH ₂	MeCN	300 W Xe-lamp, Visible light (420-800 nm)	No	5.8 mmol mol ⁻¹ (100%)		[17]
H ₂ N-UIO-66(Zr)	MeCN	300 W Xe-lamp, Visible light (420-800 nm)	No	26.4 (100%)		[18]
NNU-28	MeCN	300 W Xe-lamp, Visible light (> 420 nm)	No	52.8 (100%)		[19]
MOF-253, Ru(bpy) (CO) ₂ Cl ₂	MeCN	300 W Xe-lamp, Visible light (420-800 nm)	Yes	16.75 (25.5%)		[20]
Ru-MOF	MeCN	Xe-lamp, Visible light (420-800 nm)	Yes	71.66/77.18 (100%)	0.67% (475 nm)	[21]

PS: photosensitizer; PM: precious metal.

The QE measurement:

The apparent quantum efficiency (QE) for HCOOH evolution was measured using monochromatic visible light (365 / 420 / 450 / 500 nm). Depending on the amounts of HCOOH produced by the photocatalytic reaction in an average of one hour, and the QE was calculated as follow:

 $QE = \frac{(2 \times the number of HCOOH) molecules produced}{the number of incident photons} \times 100\%$

$$QE = \frac{2 \times M \times N_A \times h \times c}{S \times P \times T \times \lambda} \times 100\%$$

M = yield of HCOOH (mol);

Monochromatic light (λ)	365 nm	420 nm	450 nm	500 nm
Ti ₄ -C8A (HCOO ⁻ , μmol)	5.93	5.51	5.53	
Ti ₇ -C8A (HCOO ⁻ , μmol)	2.94	1.45	1.16	0.54

 N_A (Avogadro constant) = 6.02×10^{23} mol⁻¹;

h (Planck constant) = 6.626×10^{-34} J·s;

c (Speed of light) = 3×10^8 m/s;

S = Irradiation area (cm²) = 7.06 cm²;

P = the intensity of irradiation light (W / cm²) = 55.2 mW / cm² (365 nm) or 55.4 mW / cm² (420 nm) or 59.7 mW / cm² (450 nm) or 60.8 mW / cm² (500 nm);

T = the photoreaction time (s) = $17 \times 3600 = 61200$ s;

 λ = the wavelength of the monochromatic light (nm) = 365 \times 10⁻⁹ m / 420 \times 10⁻⁹ m / 450 \times 10⁻⁹ m / 500 \times 10⁻⁹ m.

Quantum Efficiency (QE) for Ti₄-C8A:

$$QE (365 nm) = \frac{2 \times 5.93 \times 10^{-6} \times 6.02 \times 10^{23} \times 6.626 \times 10^{-34} \times 3 \times 10^{8}}{7.06 \times 55.2 \times 10^{-3} \times 61200 \times 365 \times 10^{-9}} \times 100\% = 0.016\%$$

$$QE (420 nm) = \frac{2 \times 5.51 \times 10^{-6} \times 6.02 \times 10^{23} \times 6.626 \times 10^{-34} \times 3 \times 10^{8}}{7.06 \times 55.4 \times 10^{-3} \times 61200 \times 420 \times 10^{-9}} \times 100\% = 0.013\%$$

$$QE (450 nm) = \frac{2 \times 5.53 \times 10^{-6} \times 6.02 \times 10^{23} \times 6.626 \times 10^{-34} \times 3 \times 10^{8}}{7.06 \times 59.7 \times 10^{-3} \times 61200 \times 450 \times 10^{-9}} \times 100\% = 0.011\%$$

Quantum Efficiency (QE) for Ti₇-C8A: $QE (365 nm) = \frac{2 \times 2.94 \times 10^{-6} \times 6.02 \times 10^{23} \times 6.626 \times 10^{-34} \times 3 \times 10^{8}}{7.06 \times 55.2 \times 10^{-3} \times 61200 \times 365 \times 10^{-9}} \times 100\% = 0.008\%$

Figure S16. Absorption spectra of filtrate derived from Ti_4 -C8A reactive solution after photocatalytic reaction. There is no obvious absorption signal appeared, ruling out the influence of the decomposed active component on the photocatalytic reaction.

Figure S17. Absorption spectra of filtrate derived from Ti_7 -C8A reactive solution after photocatalytic reaction. There is no obvious absorption signal appeared, ruling out the influence of the decomposed active component on the photocatalytic reaction.

Figure S18. IR spectra of Ti_4 -C8A were performed before and after the photocatalytic reaction.

Figure S19. IR spectra of Ti7-C8A were performed before and after the

Figure S20. PXRD pattern of Ti_4 -C8A were performed before and after the photocatalytic reaction.

Figure S21. PXRD pattern of Ti₇-C8A were performed before and after the

photocatalytic reaction.

Entry 1	^[b] HCOOH (µmol)	^[c] CO (µmol)	^[d] H ₂ (µmol)
Ti ₄ -C8A	41.51	0.68	1.07
1 ^[e]	n.d. ^[1]	n.d. ^[1]	n.d. ^[f]
2 ^[g]	n.d.	n.d.	n.d.
3 ^[h]	n.d.	n.d.	n.d.
40	n.d.	n.d.	Trace amount
Entry 2	^[b] HCOOH (µmol)	^[c] CO (µmol)	^[d] H ₂ (µmol)
Ti ₇ -C8A	21.58	0.07	n.d.
1 ^[e]	n.d. ^[1]	n.d. ^[f]	n.d. ^[f]
2 ^[g]	n.d.	n.d.	n.d.
3 ^[h]	n.d.	n.d.	n.d.
40	n.d.	n.d.	n.d.

Table S4. The study of photocatalytic reaction conditions^[a].

[a] Reaction conditions: catalyst (entry 1 is Ti_4 -C8A, entry 2 is Ti_7 -C8A), H₂O (24mL), TEOA (6 mL), CO₂ (1 atm), λ = 200-400 nm (UV light), 30 °C, 17 h. [b] The HCOOH production. [c] The CO production. [d] The H₂ production. [e] In the dark. [f] Not detectable. [g] Without photocatalyst. [h] Without TEOA. [i] Using N₂ to replace CO₂.

Figure S22. The ¹³C NMR spectrum (**Ti**₄-**C8A**) for the product obtained from the reaction charging with ¹³CO₂. The peak at 163.9 ppm can be assigned to HCOO⁻.

Figure S23. The ¹³C NMR spectrum (**Ti**₇-**C8A**) for the product obtained from the reaction charging with ¹³CO₂. The peak at 163.9 ppm can be assigned to HCOO⁻.

Figure S24. The ¹³C NMR spectrum for the product obtained from the reaction charging with ${}^{12}CO_2$. No peak can be assigned to HCOO⁻.

3350 3400 3450 3500 3550 3600 3650 3700 3350 3400 3450 3500 3550 3600 3650 3700 Magnetic Field (G) Magnetic Field (G)

Figure S25. ESR spectra of Ti_4 -C8A and Ti_7 -C8A clusters before and after light irradiation. X-band Electron spin resonance (ESR) spectra were obtained on a Bruker EMX-10/12 at 298 K.

Reference

[1]. M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J.

R. Cheeseman, et.al., Gaussian 16 Rev. A.03, Wallingford, CT, 2016.

[2]. T. Lu, F. Chen, Multiwfn: A multifunctional wavefunction analyzer. 2012, 33, 580-592.

[3] Mele, G.; Annese, C.; D'Accolti, L.; De Riccardis, A.; Fusco, C.; Palmisano,

L.; Scarlino, A.; Vasapollo, G. Molecules 2015, 20, 396-415.

[4] Gonell, F.; Puga, A. V.; Julian-Lopez, B.; Garcia, H.; Corma, *A. Appl. Catal.*, *B* **2016**, *180*, 263-270.

[5] Chen, J. S.; Qin, S. Y.; Song, G. X.; Xiang, T. Y.; Xin, F.; Yin, X. H. *Dalton. Trans.* **2013**, *42*, 15133-15138.

[6] Jiang, W. L.; Yin, X. H.; Xin, F.; Bi, Y. D.; Liu, Y.; Li, X. Appl. Surf. Sci.2014, 288, 138-142.

[7] Chen, J. S.; Xin, F.; Yin, X. H.; Xiang, T. Y.; Wang, Y. W. RSC Adv. 2015, 5, 3833-3839.

[8] Yang, T. C.; Chang, F. C.; Peng, C. Y.; Wang, H. P.; Wei, Y. L. *Environ. Technol.* **2015**, *36*, 2987-2990.

[9] F. Yoshitomi, K. Sekizawa, K. Maeda, O. Ishitani, ACS Appl. Mater. Interfaces **2015**, *7*, 13092–13097. [10] Kuriki, R.; Sekizawa, K.; Ishitani, O.; Maeda, K. Angew. Chem., Int. Ed.2015, 54, 2406–2409.

[11] Baran, T.; Wojtyla, S.; Dibenedetto, A.; Aresta, M.; Macyk, W. *Appl. Catal., B.* **2015**, *178*, 170–176.

[12] N. Li, J. Liu, J. J. Liu, L. Z. Dong, Z. F. Xin, Y. L. Teng, Y. Q. Lan, Angew. Chem. Int. Ed. 2019, 58, 5226 – 5231.

[13] H.-Q. Xu, J. Hu, D. Wang, Z. Li, Q. Zhang, Y. Luo, S.-H. Yu, and H.-L. Jiang. J. Am. Chem. Soc. 2015, 137, 13440–13443.

[14] Y. Fu, D. Sun, Y. Chen, R. Huang, Z. Ding, X. Fu, and Z. Li. *Angew. Chem. Int. Ed.* **2012**, *51*, 3364 –3367.

[15] D. Wang, R. Huang, W. Liu, D. Sun, and Z. Li. ACS Catal. 2014, 4, 4254–4260.

[16] Y. Lee, S. Kim, J. K. Kang and S. M. Cohen. Chem. Commun., 2015, 51, 5735—5738.

[17] D. Sun, W. Liu, M. Qiu, Y. Zhang, Z. Li. *Chem. Commun.*, **2015**, *51*, 2056-2059.

[18] D. Sun, Y. Fu, W. Liu, L. Ye, D. Wang, L. Yang, X. Fu, and Z. Li. *Chem. Eur. J.* **2013**, *19*, 14279 – 14285.

[19] D. Chen, H. Xing, C. Wang and Z. Su. J. Mater. Chem. A, 2016, 4, 2657– 2662.

[20] D. R. Sun, Y. H. Gao, J. L. Fu, X. C. Zeng, Z. N. Chen, Z. H. Li, *Chem. Commun.* **2015**, *51*, 2645–2648.

[21] (a) S. Q. Zhang, L. N. Li, S. G. Zhao, Z. H. Sun, J. H. Luo, *Inorg. Chem.* **2015**, *54*, 8375–8379; (b) S. Q. Zhang, L. N. Li, S. E. Zhao, Z. H. Sun, M. C. Hong, J. H. Luo, *J. Mater. Chem. A.* **2015**, *3*, 15764–15768.