Supporting information

Hydrolysis of Eucalyptus Lignocellulose using ECG-48 catalyst Pretreatment process of eucalyptus lignocellulose

ECG-48 (0.5 g) and eucalyptus Lignocellulose (8.0 g) were milled together in a ceramic pot (1.5 L, with 0.5 Kg of alumina balls (Φ = 1.5 cm)) at 500 rpm for 1 h. Then, the milled powder was mixed with an aqueous solution of HCl (40 mL, 120 ppm) or H₂O (40 mL) under ultrasonic treatment (frequency of 20 kHz and 200 W power) for 20 min. The same pretreatment process was used for ECG-24, ECG-36, and ECG-72 catalysts.

Hydrolysis process eucalyptus lignocellulose using ECG-48 catalyst

After sonication, the obtained mixture was charged in the reactor (Hastelloy C-22 high-pressure reactor equipped with an agitator operating at 500 rpm and thermocouple) followed by heating to 180 °C (10° C min⁻¹) and promptly cooled down to the room temperature. Then, the reaction mixture was separated into solid and liquid by centrifugation and decantation. The aqueous phase was analyzed using high-performance liquid chromatography ((HPLC, Agilent 1260 series, USA) with an HPX-87H column (300×7.8mm, Bio-Rad, USA). The percentage (%) of glucose or xylose yield is calculated using the following equation Glucose (Xylose) yield (%) = [(A/B) x 100] Equation 1

Where A is the moles of glucose produced by hydrolysis, and B is the glucose in pure cellulose. The selectivity of glucose (xylose) (Si) was estimated using the following equation

Equation 2

Si= [TC_{i,output}/TC_{input}] X 100

where $TC_{i,output}$, and TC_{input} are the total carbon in the products and input.

The selectivity of total sugars (S_{TS}) was calculated using the following equation along with consideration carbon balance taking into account all the degradation products (C_{dp})

S_{TS}=[TC_{input}-C_{dp}/TC_{input}] X 100

Equation 3

All the conversion yields of eucalyptus lignocellulose were calculated based on the carbon balance. The same hydrolysis process was used for ECG-24, ECG-36, and ECG-72 catalysts.

Hydrolysis Process using $\rm H_2O$ or HCl

Pretreatment process

ECG-48 (0.5 g) was milled in a ceramic pot (1.5 L, with 0.5 Kg of alumina balls (Φ = 1.5 cm)) at 500 rpm for 1 h and then 0.5 g of the milled powder was dispersed in an aqueous solution of HCl (40 mL, 120 ppm) or H₂O (40 mL) under ultrasonic (frequency of 20 kHz and 200 W power) treatment for 20 min. Then the hydrolysis process for cellulose and eucalyptus lignocellulose was carried out by the same method mentioned in the above.

Adsorption of glucose

ECG -48 (75 mg) was added to an aqueous solution of glucose (10 mL, 0.5 mg/mL) under vigorous stirring at room temperature for 6 h. Then the obtained mixture was filtered through a polyvinylidene difluoride (PVDF) 0.20 mm mesh membrane, and the concertation of glucose in the solution was analyzed using HPLC (Shimadzu LC-20AD with a refractive index (RI) detector) with a Phenomenex Rezex RPM-Monosaccharide Pb²⁺ column (ø7.8_300 mm, mobile phase: water at 0.6 mL/min, 343 k. The adsorbed glucose concentration on ECG-48 catalyst was calculated via material balance from the measured decrease in liquid-phase compared to original concertation before adsorption using the following equation

$Y = [C_0 - C_1 / C_0] \times 100$

Where Y is the adsorption ratio of carbon-based solid acids, Co and C_1 are the glucose concertation before and after adsorption, respectively.

Durability Test for recovery of ECG-48 catalyst

After each hydrolysis cycle, the reaction mixture was separated into solid and liquid by centrifugation and decantation to recover the ECG-48 catalyst. The aqueous phase was analyzed by high-performance liquid chromatography, while the solid powder was rinsed 5 times in a hot water solution (200 mL, 60 °C) for 20 min under vigorous shaking at 500 rpm, followed by centrifugation at 6000 rpm and washing with hot water solution (60 °C) until pH reached 4. The obtained powder was dried at 70°C for 4 h under air before being used again.¹ The reaction conditions and reactants concentrations remain constant in each run. To this end, the additive amount of fresh cellulose (300 mg), eucalyptus lignocellulose (300 mg), ECG-48 h (75.0 mg), HCl (10 ml of 120 ppm), double deionized water (10 mL, resistivity ~18 M Ω cm), and heating from 25 °C to 180 °C (12°/ min) for 20 min and then quickly cooled down to 25°C).

Figure S1. The EDX of ECG. The table and SEM image are shown as insets. The EDX was carried out on the marked area in the SEM image.

Catalsyst	Milling time (h)	C (%)	H (%)	S (%)	N (%)	O (%)
Grpahite	0	99.62	BDL ^a	BDL	BDL	0.15
ECG-24	24	97.65	0.31	1.51	BDL	2.00
ECG-36	36	91.82	0.76	1.04	BDL	4.03
ECG-48	48	72.03	1.02	0.01	BDL	26.45
ECG-60	60	72.65	1.03	BDL	BDL	26.31
ECG-72	72	71.61	1.09	BDL	BDL	26.65

Table S1 CHNOS	elemental	analysis	of ECG	catal	yst
----------------	-----------	----------	--------	-------	-----

BDL = Below detection limit.

Table S2 The COOH content as a function of milling time determined using the conduct metric titration approach. The adsorption of cellulose as a function of COOH content.

Catalyst	Milling time (h)	ECG (Wt %)	COOH (mmol/g)	Glucose adsorption capacity (mg/g)
Graphite	0	2	0	40
ECG-24	24	2	1.58	120
ECG-36	36	2	2	210
ECG-48	48	2	2.9	380
ECG-60	60	2	3.1	200
ECG-72	72	2	3.	190

Figure S2. (a) XPS survey of ECG prepared under different milling times and (b and c) their high-resolution spectra of C 1s and O 1s, respectively. ECG-24, ECG-36, ECG-60, and ECG-72 catalysts prepared under milling times of 24, 36, 60, 72 h, respectively.

Figure S3. (a) N_2 isotherms physisorption spectra (b) Raman spectra of ECG compared to pure graphite.

Catalyst	Milling time (h)	C (%)	0 (%)
ECG-24	24	95.5	4.5
ECG-36	36	90.8	9.2
ECG-48	48	77.3	22.7
ECG-60	60	79.4	20.6
ECG-72	72	74.6	254

Table S3 The surface composition of ECG, prepared under different milling times determined by the XPS.

Figure S4 HPCL chromatogram of glucose, cellobiose, 5-hydroxymethylfurfural (HMF), and Levulinic acid (LA) produced on ECG-48 under typical conditions. Reaction conditions: cellulose (8 g), ECG-48 h (0.5 g), HCl (40 ml of 120 ppm), using ballmilling combined with sonication pretreatment. The reaction temperature was raised from 25 °C to 180 °C (10°/ min) for 20 min, then quickly cooled down to 25°C.

Figure S5. The durability testes for hydrolysis of cellulose and glucose yield measured at 180 °C on ECG-48 for 5 cycles under typical reaction conditions.

Figure S6. (a) PXRD, (b) Raman spectra, and (c) TEM image of ECG after the stability tests. Fresh prepared ECG-48 and ECG-48 after durability, showed the same (002) and (100) facet (a), same Raman modes (D, G, 2D, 2D+G, and G`) (b), and 2D nanosheets with defective edges (c).

Type of Catalyst	Materials	Glucose yield (%)	Time	Temperature (°C)	References
ECG-48+HCI	Cellulose	87	20 min	180 °C	Current work
$H_{3}PW_{12}O_{40}$	Cellulose	50	2h	180	3
Ru/CMK-3	Cellulose	31.2	15 min	230	4
20% formic acid	Wheat straw pulp	40	7 min	220	5
Activated carbon (AC-SO ₃ H)	Cellulose	40.5	24 h	150 °C	6
10 wt% Ru/CMK-3	Cellulose	34.2	24 h	230	7
	Cellulose	34.9	2 h	180	8

Table S4 The glucose production on ECG-48 catalyst compared to previously reported carbon-based catalysts

10 wt% Sn doped MgF ₂					
10 wt % Sn doped hydroxylated MgF ₂	Cellulose	34.9	2 h	180	8
Oxygenated E-carbon catalyst	Eucalyptus	77	1 h	215	9
Sulfonated CMK-3	Cellulose	74.5	24	150	10
Carbonated Graphen oxide bearing COOH and SO ₃ H (10-SGOC)	Cellulose	17.76	5 h	160	11
Amberlyst-15	Cellulose	67.2	2 h	170	12
Sulfonated RGO/Gas- Liquid Interfacial Plasma	Cellulose	96.6	18 h	200	13
Sulfonated RGO/Hydrothermal	Cellulose	39.8	18 h	200	14
SO₃H/RGO	Cellulose	95	2 h	130	15
silver mesoporous zeolite	Cellulose	77	90 min	180	16
SO ₄ ^{2—} TiO ₂	Cellulose	21.8	30 min	450	17
Sulfonated carbonaceous solid acid	Cellulose	30.9	12 h	170	19
Pretreated rice straw	Cellulose	52.1	60 min	200	18
bamboo-derived sulfonated catalyst	Cellulose	61.1	74 min	175	20
N-doped carbon materials	Cellulose	61.1	60 min	220	21

Figure S7 HPCL chromatogram of hydrolysis products of eucalyptus lignocellulose using ECG-48 under typical conditions. Reaction conditions: eucalyptus (8 g), ECG-48 h (0.5 g), HCl (40 ml of 120 ppm), using ball-milling combined with sonication

pretreatment. The reaction temperature was raised from 25 °C to 180 °C (10° / min) for 20 min, then quickly cooled down to 25°C.

References

- 1. P. Dornath, S. Ruzycky, S. Pang, L. He, P. Dauenhauer and W. Fan, *Green Chem.*, 2016, 18, 6637-6647.
- 2. X. Liu, P. Fatehi and Y. Ni, *Ind. Eng. Chem. Res.*, 2011, **50**, 11706-11711.
- 3. J. Tian, J. Wang, S. Zhao, C. Jiang, X. Zhang and X. Wang, *Cellul.*, 2010, 17, 587-594.
- 4. T. Komanoya, H. Kobayashi, K. Hara, W.-J. Chun and A. Fukuoka, *Appl. Catal., A*, 2011, **407**, 188-194.
- 5. L. Kupiainen, J. Ahola and J. Tanskanen, *Bioresour Technol.*, 2012, **116**, 29-35.
- 6. A. Onda, T. Ochi and K. Yanagisawa, Green Chem., 2008, 10, 1033-1037.
- 7. H. Kobayashi, T. Komanoya, K. Hara and A. Fukuoka, *ChemSusChem*, 2010, **3**, 440-443.
- S. Wuttke, A. Negoi, N. Gheorghe, V. Kuncser, E. Kemnitz, V. Parvulescu and S. M. Coman, *ChemSusChem*, 2012, 5, 1708-1711.
- 9. H. Kobayashi, H. Kaiki, A. Shrotri, K. Techikawara and A. Fukuoka, *Chem. Sci.*, 2016, 7, 692-696.
- 10. J. Pang, A. Wang, M. Zheng and T. Zhang, *Chem. Commun.*, 2010, **46**, 6935-6937.
- 11. M. Zhang, M. Wu, Q. Liu, X. Wang, T. Lv and L. Jia, *Appl. Catal., A*, 2017, **543**, 218-224.
- 12. S. Jin, J. Gong, C. Yang, Y. Cheng, J. Lu, Q. Yang and H. Wang, *Biomass Bioenergy*, 2020, **138**, 105611.
- 13. H. Xin, X. Hu, C. Cai, H. Wang, C. Zhu, S. Li, Z. Xiu, X. Zhang, Q. Liu and L. Ma, Frontiers in chemistry, 2020, 8, 333.
- 14. L. Qin, T. Ishizaki, N. Takeuchi, K. Takahashi, K. H. Kim and O. L. Li, *ACS Sustainable Chem. Eng.*, 2020, **8**, 5837-5846.
- 15. S. Carlier and S. Hermans, *Front. Chem.*, 2020, **8**, 347.
- 16. S. G. Aspromonte, A. Romero, A. V. Boix and E. Alonso, *Cellul.*, 2019, **26**, 2471-2485.
- 17. X. Zhang, H. Lu, K. Wu, Y. Liu, C. Liu, Y. Zhu and B. Liang, *Chinese J. Chem. Eng.*, 2020, 28, 136-142.
- 18. X. Qi, L. Yan, F. Shen and M. Qiu, *Bioresour Technol.*, 2019, **273**, 687-691.
- 19. G. Chen, X. Wang, Y. Jiang, X. Mu and H. Liu, *Catal. Today*, 2019, **319**, 25-30.
- 20. E. B. Sangib, B. T. Meshesha, B. A. Demessie and F. Medina, *Biomass Convers. Biorefin.*, 2020, DOI: 10.1007/s13399-020-00720-2.
- 21. Y. Wang, Y. Zhang, J. Wang, M. Wang, H. Cui, W. Yi, F. Song, P. Zhao, X. Sun and Y. Xie, *Catal. Lett.*, 2020, DOI: 10.1007/s10562-020-03215-x.