Supplementary Material for

Catalytic strategy for conversion of fructose to organic dyes, polymers, and liquid fuels

Hochan Chang^a, Ishan Bajaj^a, George W. Huber^a, Christos T. Maravelias^{a,b}, and James A. Dumesic^{*a,b}

^a Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA.

^b DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, 1552 University Ave, Madison, WI 53726, USA .

* Corresponding author: James A. Dumesic (jdumesic@wisc.edu)

Tables and Figures

Table S1. Analysis of major products (HMF, HA, formic acid) from fructose dehydration after distillation of dehydrated and decolorized solution (Dehydration conditions: 9.1 wt% fructose in acetone/water (75/25, v/v) solvent with 124 mM HCl at 393 K, 40 min; Decolorization conditions: 4.1 wt% activated carbon addition at 298 K, 30 min; Distillation conditions: 50 mbar, 298 K)

	Collected chemical fraction in top product (%)	Collected chemical fraction in bottom product (%)	Chemical formation (+) & degradation (-) after distillation (%)
HMF	0.4	90	-9.6
HA	0	87	-13
Formic acid	9	105	+14

Table S2. Mass and energy balances (basis: 10000 kg·h⁻¹ of fructose feedstock) based on process block-flow diagram in Fig. 6.

Process section	Stream number	Mass flow (tonne/h)	Pressure (bar)	Temp (° C)	Energy requirement (MW)
	1	10	1	25	
	2	1.1	1	25	Electricity: 0.04
HMF production	3	0.3	1	25	Heating: 10.37
	4	5.8	1	25	Cooling water: 0.07
	5	103.7	10	120	
	6	86.5	0.035	20	

Solvent recovery	7 8 9	0.9 21.6 37.9	1 1 0.035	51.3 25 20	Electricity: 4.53 × 10 ^{- 3} Heating: 11.11 Refrigeration: 21.84
HAH production	10 11 12 13	33.4 0.3 0.9 72.5	1 1 1 1	25 25 25 35	Electricity: 1.16×10^{-3} Heating: 0.94 Cooling water: 2.38
HAH purification	14 15 16 17	284.2 216.4 0.6 5.3	1 1 1 1	27.4 25 25 27.4	Heating: 1.38

Table S3. Energy requirements before and after heat integration.

Energy required (MW)	Before	After
Heating	30	23.8
Cooling	30.5	24.3

Table S4. Summary	of estimated	capital costs	of the pro	posed approach.
	0. 000	00.01.000.00	0. e. e p. e	

Process section	Capital cost (MM\$)	Equipment	Installed equipment cost (\$)	Reference
HMF production	1.1	R-1	630,782	(2)
	1.1	Miscellaneous	425,198	Aspen Plus
		S-1	184,490	Aspen Plus
	4.4	S-2	580,006	(2)
		S-3	499,059	Aspen Plus
Solvent recovery		E-1	175,563	Aspen Plus
		E-2	2,793,495	Aspen Plus
		Miscellaneous	150,695	Aspen Plus
HAH production	0.4	R-2	338,300	(2)
nAn production	0.4	Miscellaneous	104,360	Aspen Plus
HAH purification	3.8	S-4	2,927,143	(2)
nAn punneation	5.0	S-5	829,628	(2)
OSBL*	3.9	-	-	-

Total installed cost	13.6	-	-	-
Total capital	30.3	-	-	-
investment				

*OSBL (outside battery limits of the plant) consists of infrastructure costs for on-site storage, utilities, and on-site storage. It is taken to be 40% of the inside battery limits (ISBL) equipment costs.

Table S5. Summary of operating costs.

Raw material	Total cost (MM\$/year)
Fructose	56.46
Acetone	12.23
HCI	3.25
Water	0.98
NaOH	6.48
Steam	1.28
Cooling water	0.01
Refrigerant	1.7
Electricity	0.02
Wastewater treatment	1.55
Total variable operating costs	84.27
Total fixed operating costs	1.79

Table S6. Economic parameters and assumptions.

Fructose price (\$/ton) ^a	650
Acetone price (\$/ton) ^b	950
33% HCL price (\$/ton) ^b	150
NaOH price (\$/ton) ^b	850
Water (\$/ton) ^c	0.4
Low pressure steam (\$/kJ) ^d	1.89e-06
Activated carbon (\$/kg) ^e	1.48
Cooling water (\$/kJ) ^d	2.12e-07
-25°C Refrigerant (\$/kJ) ^d	2.73e-06
Electricity price (\$/kWh) ^f	0.0693
Wastewater treatment cost (\$/ton) ^g	0.57
Ash disposal (\$/ton)	37.93
Plant operating hours per year ^c	7880

	30
	10
	7
10-year loan at	at 8% APR
	3
	8
	60
	32
	21
	40
	6
	50
	75
	100

^b Taken from ICIS news (4–6).

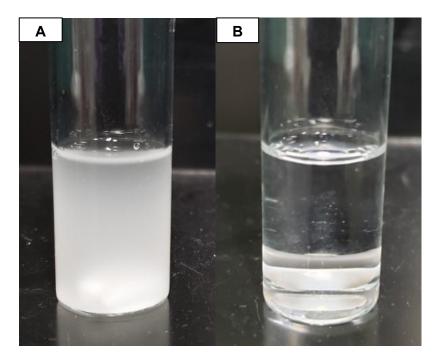
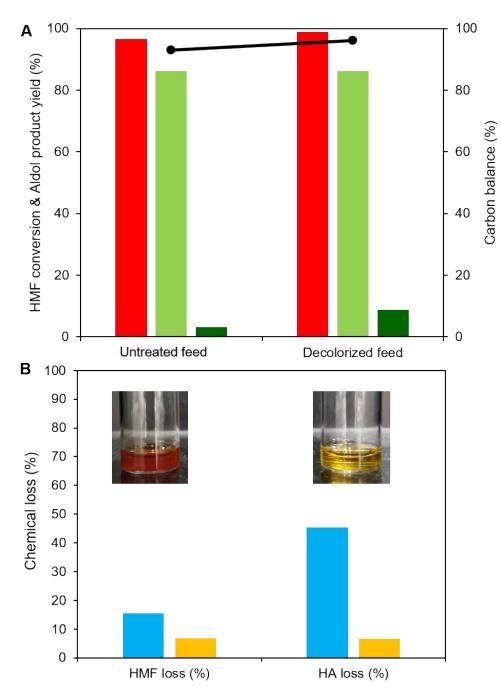
^c Taken from Davis et al. (2).

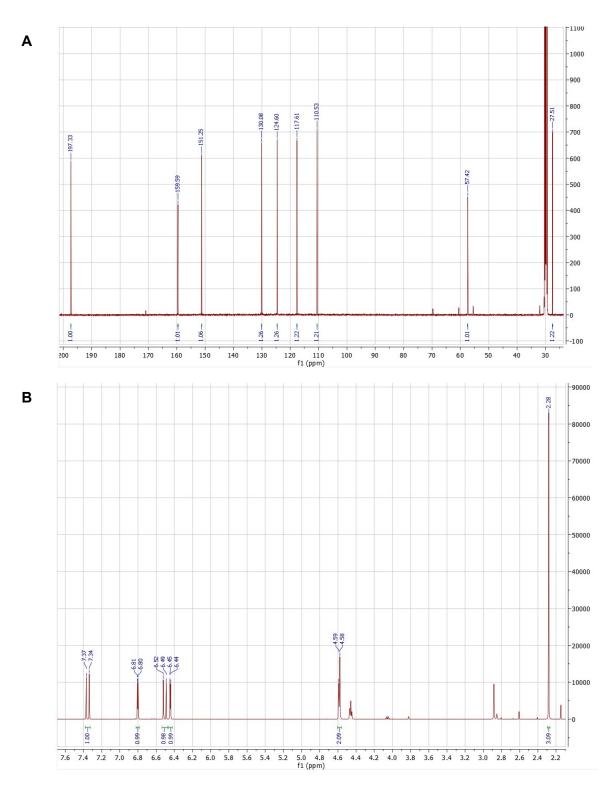
^d Estimated based on Aspen Process Economic Analyzer (V10 Aspen Technology).

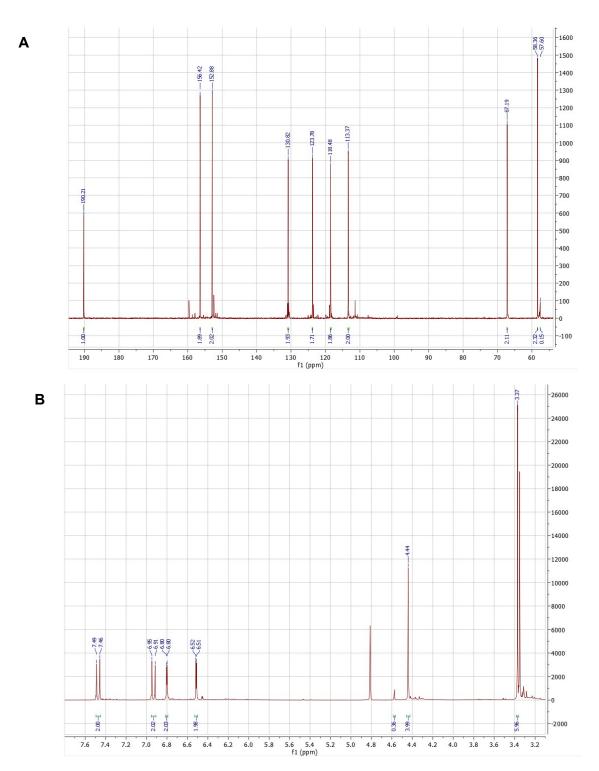
^e Taken from a report by USGS (7).

^f Taken from EIA (8).

^g Taken from a report by IWW (9).


Fig. S1. (A) 8.5 wt% fructose (emulsion phase), (B) 8.3 wt% fructose (homogeneous phase) in acetone/water (80/20, v/v) solvent at 298 K.

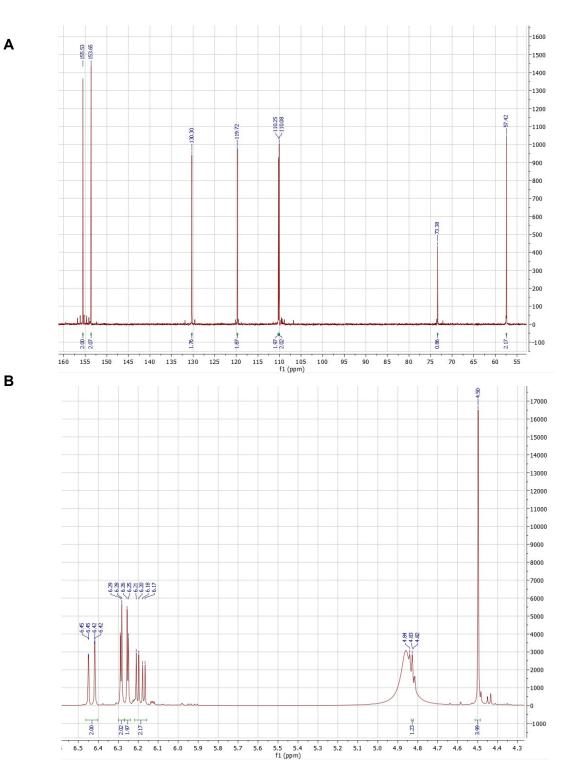
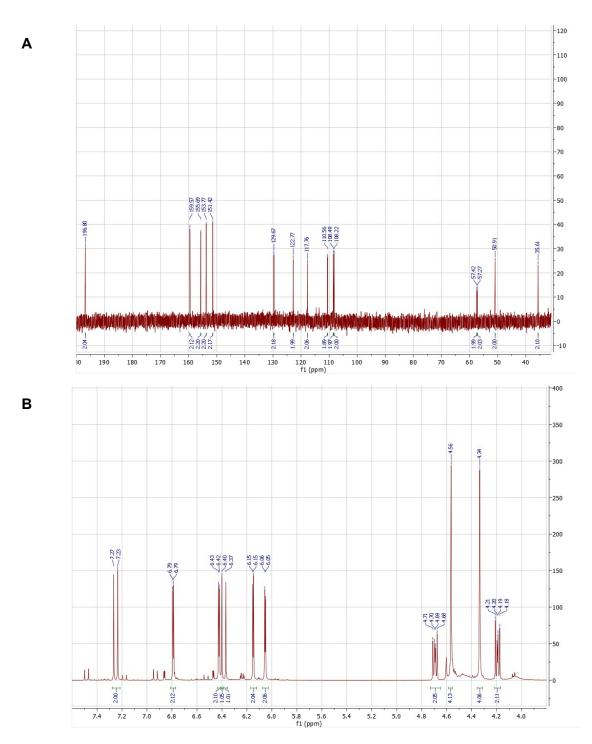

Fig.S2. (A) HMF conversion (Red bar) and aldol product yield (HAH: Light green bar, HA: Dark green bar), and carbon balance (Black dot) of 'Untreated feed' and 'Decolorized feed' for aldol condensation of *HMF*

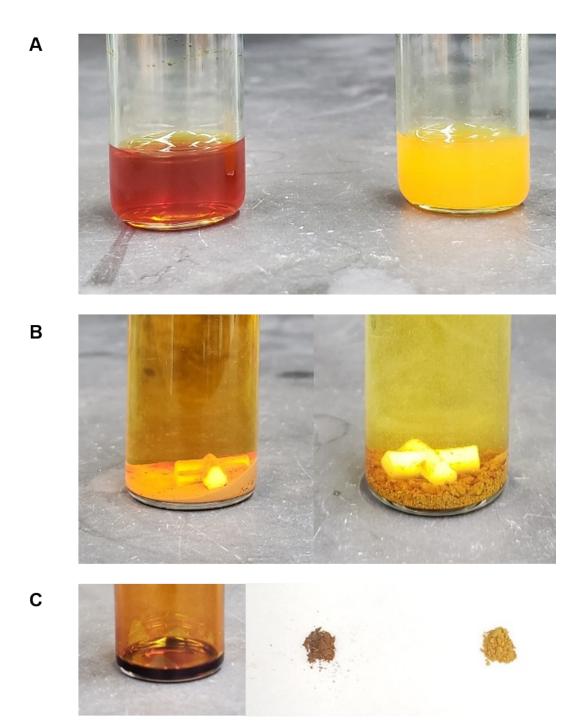
fructose-derived HMF and acetone (Reaction conditions: Acetone + HA (mol) = 2.6, 0.17 M NaOH, at HMF

308K, 50 min for decolorized feed; Acetone + HA (mol) = 2.5, 0.21 M NaOH, at 308 K, 60 min for pure feed), (**B**) Chemical loss after distillation with decolorization (Light blue bar) and after distillation without decolorization (Yellow bar). Inset images represent the color of HMF solution before (left) and after (right) the decolorization.

Fig.S3. (**A**) ¹³C quantitative NMR spectrum of HA (126 MHz, Acetone) δ : 197.33 (1C), 159.59 (1C), 151.25 (1C), 130.08 (1C), 124.60 (1C), 117.61 (1C), 110.53 (1C), 57.42 (1C), 27.51 (1C) ppm. (**B**) ¹H standard NMR spectrum of HA (500 MHz, Acetone) δ : 7.37-7.34 (1H), 6.81-6.80 (1H), 6.52-6.49 (1H), 6.45-6.44 (1H), 4.59-4.58 (2H), 2.28 (3H) ppm.

Fig.S4. (A) ¹³C quantitative NMR spectrum of etherified HAH (126 MHz, MeOD) δ : 190.21 (1C), 156.42 (2C), 152.88 (2C), 130.82 (2C), 123.78 (2C), 118.48 (2C), 113.37 (2C), 67.19 (2C), 58.36 (2C) ppm. (B) ¹H standard NMR spectrum of etherified HAH (500 MHz, MeOD) δ : 7.49-7.46 (m,2H), 6.95-6.91 (m,2H), 6.80 (d,2H), 6.52 (d,2H), 4.44 (s,4H), 3.37 (s,6H) ppm. C₁₇H₁₈O₅ [M+H]⁺ calculated: 303.1227, measured: 303.1224 (Error: 1.0 ppm).


Fig.S5. (A) ¹³C quantitative NMR spectrum of selectively reduced HAH (126 MHz, MeOD) δ: 155.53 (2C), 153.65 (2C), 130.30 (2C), 119.72 (2C), 110.25 (2C), 110.08 (2C), 73.38 (1C), 57.42 (2C) ppm. (B) ¹H standard NMR spectrum of selectively reduced HAH (500 MHz, MeOD) δ: 6.45 (d,1H), 6.42 (d,1H), 6.29 (d,2H), 6.26

(d,2H), 6.21 (d,1H), 6.18 (d,1H), 4.83 (t,1H), 4.50 (s,4H) ppm. C₁₅H₁₆O₅ [M+Na]⁺ calculated: 299.0890, measured: 299.0889 (Error: 0.3 ppm).

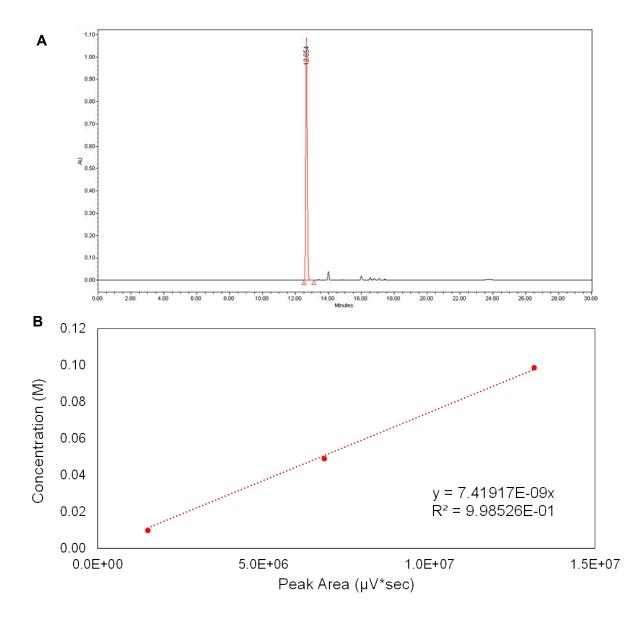


Fig.S6. (**A**) ¹³C quantitative NMR spectrum of selectively reduced HAH (126 MHz, Acetone-d₆) δ: 196.80 (2C), 159.57 (2C), 155.69 (2C), 153.77 (2C), 151.42 (2C), 129.67 (2C), 122.77 (2C), 117.76 (2C), 110.56 (2C), 108.49 (2C), 108.22 (2C), 57.42 (2C), 57.27 (2C), 50.91 (2C), 35.61 (2C) ppm. (**B**) ¹H standard NMR spectrum

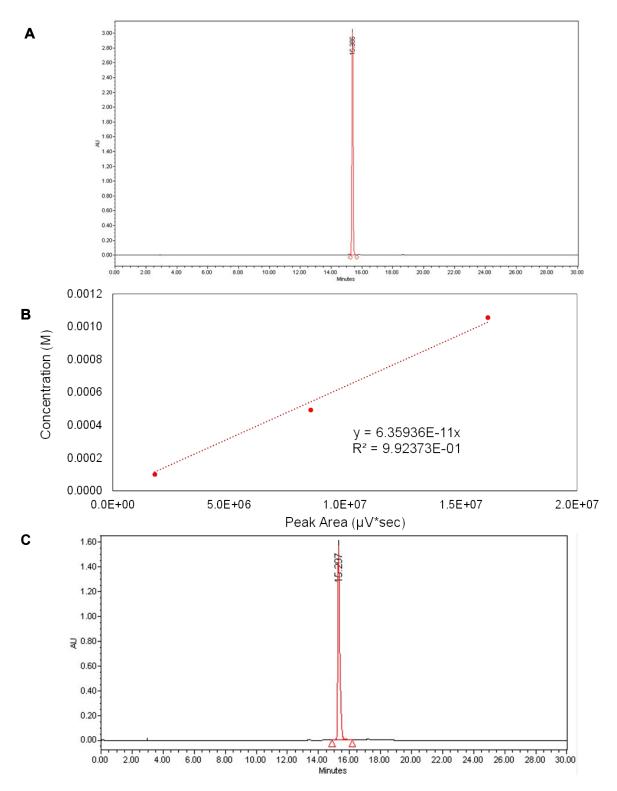

of selectively reduced HAH (500 MHz, Acetone-d₆) δ : 7.27-7.23 (2H), 6.79 (d, 2H), 6.43 (d, 2H), 6.40 (s,1H), 6.37 (s,1H), 6.15 (d,2H), 6.05 (d,2H), 4.70 (dd,2H), 4.56 (s,4H), 4.34 (s,4H), 4.20 (dd,2H) ppm. C₃₀H₂₈O₁₀ [M+Na]⁺ calculated: 571.1575, measured: 571.1567 (Error: 1.4 ppm).

Fig.S7. (**A**) The color of the solution before (right) and after (left) the etherification, (**B**) The color of the solution before (right) and after (left) the dimerization, (C) Dried samples of etherified HAH, HAH dimer, and HAH at room temperature (from left to right, etherified HAH, HAH dimer, and HAH, respectively).

Fig.S8. (**A**) Retention time (12.654 min) of 0.05 M purified HA in methanol solvent by HPLC analysis (UV wavelength of detector: 390 nm), (**B**) HPLC calibration curve for HA qualification.

Fig. S9. (**A**) Retention time (15.386 min) of 0.001 M purified HAH in methanol solvent by HPLC analysis (UV wavelength of detector: 390 nm), (**B**) HPLC calibration curve for HAH qualification, (**C**) Purity analysis of 0.001 M fructose-derived HAH in methanol solvent (UV wavelength of detector: 390 nm).

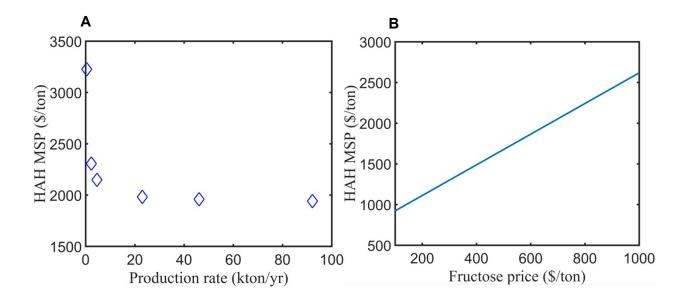



Fig. S10. Overview of the process flow diagram.

Fig. S11. Illustration of variation of HAH minimum selling price (MSP) as a function of (A) production rate of HAH and (B) fructose price. The annual production of high fructose corn syrup is 8.1 million tons (*10*), which suggests that orders of magnitude more fructose is available to meet the production capacity considered in Fig. (A).

References

- 1. H. Chang, A. H. Motagamwala, G. W. Huber, J. A. Dumesic, Synthesis of biomass-derived feedstocks for the polymers and fuels industries from 5-(hydroxymethyl)furfural (HMF) and acetone. *Green Chem.* (2019), doi:10.1039/C9GC01859J.
- R. Davis, N. Grundl, L. Tao, M. J. Biddy, E. C. D. Tan, G. T. Beckham, D. Humbird, D. N. Thompson, M. S. Roni, Process Design and Economics for the Conversion of Lignocellulosic Biomass to Hydrocarbon Fuels and Coproducts: 2018 Biochemical Design Case Update: Biochemical Deconstruction and Conversion of Biomass to Fuels and Products via Integrated Biorefinery Path. *Tech. Rep. NREL/TP-5100-71949* (2018).
- 3. A. H. Motagamwala, W. Won, C. Sener, D. M. Alonso, C. T. Maravelias, J. A. Dumesic, Toward biomass-derived renewable plastics: Production of 2,5-furandicarboxylic acid from fructose. *Sci. Adv.* **4**, eaap9722 (2018).
- 4. ICIS News, US acetone challenges persist on length, but costs fall, https://www.icis.com/explore/resources/news/2018/12/28/10299936/outlook-19-us-acetonechallenges-persist-on-length-but-costs-fall/ (2018).
- 5. ICIS News, US HCI market expects stronger demand, firming prices, https://www.icis.com/explore/resources/news/2019/01/03/10300671/outlook-19-us-hclmarket-expects-stronger-demand-firming-prices/ (2019).
- ICIS News, US caustic soda sales to Australia will lower in 2019, https://www.icis.com/explore/resources/news/2019/01/09/10304504/us-caustic-soda-sales-toaustralia-will-lower-in-2019/ (2019).
- 7. USGS, Mineral Commodity Summaries (2019).
- EIA Electricity Data, https://www.eia.gov/electricity/monthly/epm_table_grapher.php?t=epmt_5_03.
- 9. IWW, Industrial WaterWorld Survey Examines Wastewater Treatment Costs, https://www.waterworld.com/home/article/16210601/survey-examines-wastewater-treatmentcosts (2011).
- 10. USDA ERS, Table 30-U.S. high fructose corn syrup (HFCS) supply and use, by calendar year, https://www.ers.usda.gov/data-products/sugar-and-sweeteners-yearbook-tables.aspx (2019).