Supplementary Information

Synthesis and characterization of a new energetic metal-organic framework for use in potentially propellant composition

Shuo Wu** ${ }^{\text {a }}$, Min Li Ψ^{a}, Zhengyi Yang ${ }^{\text {a }}$, Zhengqiang Xia ${ }^{\text {a }}$, Bin Liu ${ }^{\text {a }}$, Qi Yang*a, Qing Weia ${ }^{\text {a }}$, Gang Xie ${ }^{\text {a }}$, Sanping Chen*a ${ }^{*}$, Shengli Gao, Jack Y. Lu*a, b

Table of Contents

The concept of oxygen balance
Fitted equations of magnetism
Table S1. Some representative azoles and azines compounds and their chemical structures.

Table S2. The detailed characterization of H_{3} TATT and $[\mathrm{Co}(\mathrm{HTATT})]_{\mathrm{n}}$.
Table S3. Crystal data and structure refinement details for [Co(HTATT) $]_{\mathrm{n}}$.
Table S4. Selected bond lengths (\AA) for $[\mathrm{Co}(\mathrm{HTATT})]_{\mathrm{n}}$.
Table S5. Selected bond angles $\left({ }^{\circ}\right)$ for $[\mathrm{Co}(\mathrm{HTATT})]_{\mathrm{n}}$.
Table S6. Hydrogen bond lengths (\AA) and angles $\left({ }^{\circ}\right)$ for $[\mathrm{Co}(\mathrm{HTATT})]_{\mathrm{n}}$.
Table S7. The thermokinetics parameters of the exothermic process of $[\mathrm{Co}(\mathrm{HTATT})]_{\mathrm{n}}$ at four different heating rates.

Table S8. Calculated parameters used in the detonation reaction for $[\mathrm{Co}(\mathrm{HTATT})]_{\mathrm{n}}$.
Figure S1. DSC curves of $[\mathrm{Co}(\mathrm{HTATT})]_{\mathrm{n}}$ at four different heating rates of $2,5,8$, and $10{ }^{\circ} \mathrm{C} \mathrm{min}^{-1}$.

Figure S2. The fits of the data accounting to the spin-orbit coupling λ for the ${ }^{4} T_{1 g}$ state of $\mathrm{Co}(\mathrm{II})$ ion.

Figure S3. The fits of the data using the simple phenomenological equation.

The concept of oxygen balance

The oxygen balance (OB or $\mathrm{OB} \%$) is one of the important property of energetic materials. It can be defined as the amount of oxygen remaining after the oxidation of hydrogen, carbon and metal to produce water, carbon dioxide and metal oxide. If excess of oxygen remains after the oxidation reaction, explosive is said to have a positive OB On the other hand, if the oxygen is completely consumed and excess fuel remains, explosive is said to have a negative OB. Thus, OB values can be positive or negative. However, if an explosive molecule contains just enough oxygen to convert all its carbon to carbon dioxide, all its hydrogen to water and all its metal to metal oxide with no excess, the explosive is said to have a zero OB , but explosives are rarely perfectly balanced. In other words, OB is an expression that is used to indicate the degree to which an explosive can be oxidized. ${ }^{1}$

High nitrogen content in the organic linkers has been a target for the synthesis of EMOFs, and this can increase the oxygen balance relative to conventional carbon-rich linkers. In addition, in order to synthesize more powerful EMOFs with high nitrogen/oxygen contents, different functional groups can be attached to the molecule's backbone. The most interesting functional groups with respect to increasing the oxygen content are nitro, nitrato and nitramine groups, etc. ${ }^{2}$

The oxygen balance of some common energetic materials are as follows: ${ }^{1}$
$>$ 2,4,6-Trinitrotoluene (TNT): -74.00%
$>$ 1,3,5,7-tetranitro-1,3,5,7-tetraazacyclooctane (HMX): -21.68\%
> 1,3,5-trinitro-1,3,5-triazinane (RDX): -21.60\%
$>$ Ammonium nitrate (AN): $+20.00 \%$
$>$ Ammonium dinitramide(ADN): $+25.80 \%$
> Ammonium perchlorate (AP): $+34.04 \%$

References

1. G. Singh. Recent advances on energetic material. Nova Science Publishers, New York. 2015
2. K. A. McDonald, S. Seth and A. J. Matzger, Crystal Growth \& Design, 2015, 15. 5963-5972.
(1) The ${ }^{4} T_{1 \mathrm{~g}}$ state of Co^{2+}, the best fits above 30 K was fitted based on the following equation:

$$
\begin{aligned}
& x=\lambda / k T \\
& \quad \begin{array}{l}
\frac{7(3-A)^{2} x}{5}+\frac{12(A+2)^{2}}{25 A}+\left\{\frac{2(11-2 A)^{2} x}{45}+\frac{176(A+2)^{2}}{675 A}\right\} \exp (-5 A x / 2) \\
\chi_{C_{o}}=\frac{N \beta^{2}}{k(T-\theta) x}+\left\{\frac{\left.\frac{(A+5)^{2} x}{9}-\frac{20(A+2)^{2}}{27 A}\right\} x \exp (-4 A x)}{3+2 \exp (-5 A x / 2)+\exp (-4 A x)}\right.
\end{array} .
\end{aligned}
$$

where A is a crystal field parameter $(A=1.5$ and 1 in the weak and strong crystal-field limits), k represents electron delocalization ($k=1.0$ is minimal), λ is the spin-orbit coupling constant ($\lambda=-176 \mathrm{~cm}^{-1}$ is the free-ion value).
(2) The data were fitted using the simple phenomenological equation:

$$
\chi T=A \exp \left(-E_{1} / k T\right)+B \exp \left(-E_{2} / k T\right)
$$

where the sum of A and B parameters equals the Curie constant, while E_{1} and E_{2} stand for the "activation energies" of spin-orbit coupling (or site distortion) and antiferromagnetic exchange interactions, respectively.

References

1. J. W. Raebiger, J. L. Manson, R. D. Sommer, U. Geiser, A. L. Rheingold and J. S. Miller, Inorg. Chem., 2001, 40, 2578-2581.
2. J. M. Rueff, N. Masciocchi, P. Rabu, A. Sironi and A. Skoulios, Eur. J. Inorg. Chem., 2001, 2843-2848.
3. P. Rabu, J. M. Rueff, Z. L. Huang, S. Angelov, J. Souletie and M. Drillon, Polyhedron, 2001, 20, 1677-1685.

Table S1. Some representative azoles and azines compounds and their chemical structures
Name

Table S2. The detailed characterization of H_{3} TATT and $[\mathrm{Co}(\mathrm{HTATT})]_{\mathrm{n}}$

	H_{3} TATT	$[\mathrm{Co}(\mathrm{HTATT})]_{\mathrm{n}}$
Formula weight	330.23	386.19
Color	White	Orange
State	Powder	Block crystal
Decomposition temperature	$296.6^{\circ} \mathrm{C}$	$342.7^{\circ} \mathrm{C}$
Solubility	Soluble in DMF and DMSO	Soluble in THF

Table S3. Crystal data and structure refinement details for $[\mathrm{Co}(\mathrm{HTATT})]_{\mathrm{n}}{ }^{*}$.

Crystal	$[\mathrm{Co}(\mathrm{HTATT})]_{\mathrm{n}}$
Empirical formula	$\mathrm{CoC}_{6} \mathrm{H}_{3} \mathrm{~N}_{18}$
CCDC number	1864071
Formula weight	386.19
Crystal system	Monoclinic
Space group	$P 21 / c$
a/ \AA	8.616(4)
b/ \AA	8.888(4)
c/ Å	17.715(8)
$\alpha /{ }^{\circ}$	90
$\beta /{ }^{\circ}$	96.499(9)
$\gamma /{ }^{\text {o }}$	90
V / \AA^{3}	1347.9(10)
Z	4
$\rho_{\text {calc. }} / \mathrm{g} \cdot \mathrm{cm}^{-3}$	1.903
μ / mm^{-1}	1.316
$F(000)$	1131.0
GOOF on F^{2}	0.999
$R_{1} / w R_{2}[I>2 \sigma(I)]$	0.0530/0.1249
$R_{1} / w R_{2}$ [all data]	0.1007/0.1496

Table S4. Bond lengths for $[\mathrm{Co}(\mathrm{HTATT})]_{\mathrm{n}}$.

$[\mathrm{Co}(\mathrm{HTATT})]_{\mathrm{n}}$	Atom	Atom	Length/Å	Atom	Atom	Length/Å
	Col	N8	2.016(4)	Col	N10	2.042(4)
	Col	N6\#1	$2.160(5)$	Col	N13\#2	2.187(5)
	Col	N18\#3	2.268(4)	Col	N1	2.288(4)
	N6	Col\#4	$2.160(5)$	N13	Col\#5	2.187(5)
	N18	Co1\#6	2.268(4)			
	$\begin{gathered} \# 1-\mathrm{X}, 1 / 2+\mathrm{Y}, 1 / 2-\mathrm{Z} ; \# 21-\mathrm{X},-1 / 2+\mathrm{Y}, 1 / 2-\mathrm{Z} ; \# 3+\mathrm{X}, 3 / 2-\mathrm{Y},-1 / 2+\mathrm{Z} ; \# 4-\mathrm{X},-1 / 2+\mathrm{Y}, 1 / 2-\mathrm{Z} ; \# 5 \\ 1-\mathrm{X}, 1 / 2+\mathrm{Y}, 1 / 2-\mathrm{Z} ; \# 6+\mathrm{X}, 3 / 2-\mathrm{Y}, 1 / 2+\mathrm{Z} \end{gathered}$					

Table S5. Bond lengths for $[\mathrm{Co}(\mathrm{HTATT})]_{\mathrm{n}}$.

$[\mathrm{Co}(\text { HTATT })]_{\mathrm{n}}$	Atom	Atom	Atom	Angle/ ${ }^{\circ}$	Atom	Atom	Atom	Angle/ ${ }^{\circ}$
	N8	Col	N10	174.49(17)	N8	Col	N6\#1	90.73(18)
	N10	Col	N6\#1	90.26(18)	N8	Col	N13\#2	86.73(17)
	N10	Col	N13\#2	91.76(18)	N6\#1	Col	N13\#2	173.98(15)
	N8	Col	N18\#3	95.90(16)	N10	Col	N18\#3	89.38(16)
	N6\#1	Col	N18\#3	96.27(17)	N13\#2	Col	N18\#3	89.42(16)
	N8	Col	N1	87.88(16)	N10	Col	N1	86.96(16)
	N6\#1	Col	N1	80.01(16)	N13\#2	Col	N1	94.44(16)
	N18\#3	Col	N1	174.76(15)	C1	N1	Col	123.9(4)
	C2	N1	Col	121.9(3)	N7	N6	Col\#4	126.7(3)
	N5	N6	Col\#4	121.7(3)	C4	N8	Col	125.9(4)
	N7	N8	Col	128.2(3)	C5	N10	Col	127.3(3)
	N11	N10	Col	127.4(3)	C5	N13	Col\#5	135.1(4)
	N12	N13	Col\#5	118.2(3)	C6	N18	Co1\#6	133.0(4)

Table S6. Hydrogen bond lengths (\AA) and angles $\left({ }^{\circ}\right)$ for $[\operatorname{Co}(H T A T T)]_{\mathrm{n}}$.

$[\mathrm{Co}(\mathrm{HTATT})]_{\mathrm{n}}$	$\mathrm{D}-\mathrm{H} \cdots \mathrm{A}$	$\mathrm{d}(\mathrm{D}-\mathrm{H}) / \AA$	$\mathrm{d}(\mathrm{H}-\mathrm{A}) / \AA$	$\mathrm{d}(\mathrm{D}-\mathrm{A}) / \AA$	$\mathrm{D}-\mathrm{H}-\mathrm{A} /{ }^{\circ}$
$\mathrm{N}(4)-\mathrm{H}(4) \cdots \mathrm{N}(3)$	0.86	2.55	$3.311(7)$	149	
	$\mathrm{~N}(9)-\mathrm{H}(9) \cdots \mathrm{N}(11)$	0.86	2.08	$2.932(7)$	172
	$\mathrm{~N}(14)-\mathrm{H}(14) \cdots \mathrm{N}(5)$	0.86	1.82	$2.681(8)$	176

Table S7. The thermokinetics parameters of the exothermic process of $[\mathrm{Co}(\mathrm{HTATT})]_{\mathrm{n}}$ at four different heating rates.

Heating rate $\beta\left({ }^{\circ} \mathrm{C} \mathrm{min}{ }^{-1}\right)$	Peaks temperatures $T_{\mathrm{p}}\left({ }^{\circ} \mathrm{C}\right)$
2	353.8
5	363.4
8	370.4
10	374.7
$E_{\mathrm{k}}\left(\mathrm{kJ} \mathrm{mol}^{-1}\right)$	251.402
$\ln A_{\mathrm{k} ~}\left(\mathrm{~s}^{-1}\right)$	42.321
$E_{\mathrm{o}}\left(\mathrm{kJ} \mathrm{mol}^{-1}\right)$	249.142

Table S8. Calculated parameters used in the detonation reaction for $[\mathrm{Co}(\mathrm{HTATT})]_{\mathrm{n}}$.

	EMOF	Co	NH_{3}	C	N_{2}	$\Delta E_{\text {det }}$	$\Delta E_{\text {det }}$	$\Delta H_{\text {det }}$
	(hartree)	(hartree)	(hartree)	(hartree)	(hartree)	(hartree)	$\left(\mathrm{kcalg}^{-1}\right)$	$\left(\mathrm{kcalg}^{-1}\right)$
$[\mathrm{Co}(\text { HTATT })]_{n}$	-1360.5342	-145.008	-56.505	-37.738	-109.448	2.2852	3.7131	4.2307

Figure S1. DSC curves of $[\mathrm{Co}(\mathrm{HTATT})]_{\mathrm{n}}$ at four different heating rates of $2,5,8$, and $10{ }^{\circ} \mathrm{C} \mathrm{min}^{-1}$

Figure S2. The fits of the data accounting to the spin-orbit coupling λ for the ${ }^{4} T_{1 g}$ state of Co (II) ion.

Figure S3. The fits of the data using the simple phenomenological equation.

