Supplementary Information

Highly Efficient Light-Driven Methane Coupling at Ambient Condition Based on Integrated Design of Photocatalytic System

Junyu Lang^a, Yuli Ma^a, Xuechen Wu^a, Yueyue Jiang^a, and Yun Hang Hu^{a,b*}

a School of Environmental Science and Engineering, Shanghai Jiao Tong University,

Shanghai 200240, P. R. China

b Department of Materials Science and Engineering, Michigan Technological University,

Houghton, Michigan 49931, United States

* Corresponding Author: E-mail: <u>yunhangh@mtu.edu</u>

Table of Contents

1. Comparison of different catalysts for photocatalytic NOCM	<u></u> S4
Table S1	
2. Digital photographs of the continuous flow type reactor	S5
Fig. S1	
3. The actual loading of the M in the M-TiO ₂ catalysts	S6
Table S2	
4. Potential drops in M-TiO ₂ interface	S7
Table S3	
5. Photoluminescence emission spectra	S8
Fig. S2	
6. The ratio between H_2 and C_2H_6 produced from the photocatalytic NOCM over Au-TiO ₂	<u></u> S9
Fig. S3	
7. The gas chromatographs for the products	<u></u> S9
Fig. S4	
8. Comparison of surfaces of catalyst substrates for photocatalytic NOCM	S10
Fig. S5	
9. Effect of reactor types for photocatalytic NOCM over Au/TiO ₂	S11
Fig. S6	
10. Photocatalytic NOCM comparison between Au/TiO_2 dispersed on the light-reflection-difference of the second	ffuse-surface
and on the common surface	S11
Fig. S7	
11. Characterization results of catalysts	S12
Fig. S8	
Fig. S9	
Fig. S10	
12. Role of photogenerated holes	<u></u> S14
Fig. S11	
13. Modeling results	S15
Fig. S12	
Fig. S13	
Fig. S14	
<i>Fig. S15</i>	

Fig. S16	
Fig. S17	
Fig. S18	
Fig. S19	
14. Bader charge analysis	S20
Table S4	
15. Comparison of the CH ₃ anion mechanisms with other reported mechanisms	S21
Fig. S20	
Fig. S21	
References	

1. Comparison of different catalysts for photocatalytic NOCM

Catalysts	Light source	Type of reactor	C_2H_6 yield (umol g ⁻¹ h ⁻¹)	Selectivity (%)	reference
TiO ₂ (P25)	Simulated sunlight, 100 mW/cm ²	continuous flow	1.55	95.12	This work
Au/TiO ₂	Simulated sunlight, 100 mW/cm ²	continuous flow	81.74	95.90	This work
Ag/TiO ₂	Simulated sunlight, 100 mW/cm ²	continuous flow	37.92	96.24	This work
Pd/TiO ₂	Simulated sunlight, 100 mW/cm ²	continuous flow	14.42	95.77	This work
Pt/TiO ₂	Simulated sunlight, 100 mW/cm ²	continuous flow	4.05	96.09	This work
Rh/TiO ₂	Simulated sunlight, 100 mW/cm ²	continuous flow	0.77	95.85	This work
Ru/TiO ₂	Simulated sunlight, 100 mW/cm ²	continuous flow	18.34	95.75	This work
Ir/TiO ₂	Simulated sunlight, 100 mW/cm ²	continuous flow	7.51	96.04	This work
Cu polymeric carbon nitride	Xe 500W	slurry	13.9	32.3	1
Pt/TiO ₂ (Pt 0.5 %)	UV 254 nm	slurry	51 (with aid of H ₂ O) 400	60	2
SiO ₂ /Al ₂ O ₃	250W Xe	batch	0.1	78	3
SiO ₂ /Al ₂ O ₃	Simulated sunlight, 100 mW/cm ²	continuous flow	trace	-	This work
HMOR	250W Xe	batch	0.07	91	4
SiO ₂ /Al ₂ O ₃ / TiO ₂	250W Xe	batch	1.33	82	5
MgO/SiO ₂	300W Xe	batch	4.4	97	6
FSM-16	200111 1	batch	0.3	98.2	7
MCM-41	500 W Xe	batch	0.14	90	_ /
β-Ga ₂ O ₃ ^a	300W Xe	batch	1.73	78.2	8
Ce/SiO ₂		batch	0.77	97	
Ce/Al ₂ O ₃	300W Xe	batch	0.98	98	9
Ce/SiO ₂	Simulated sunlight, 100 mW/cm ²	continuous flow	0.31	91	This work
Ce/Al ₂ O ₃	Simulated sunlight, 100 mW/cm ²	continuous flow	n.d.	-	This work
Ga ₂ O ₃ -K	300W Xe	batch	13.3	96	10
(Zn ⁺ ,Zn ²⁺)- ZSM-5	Hg lamp	batch	9.8	99.6	11
Ga-ETS	150 W, Hg lamp	batch	29.8	$(C_2 \text{ to } C_4)$ with a selectivity larger than 70%	12
Au/ZnO	300 W Xe	batch	11.1	Not mentioned	13
Au/ZnO	Simulated sunlight, 100 mW/cm ²	continuous flow	6.48	95.45	This work

Table S1. Results of photocatalytic NOCM over different catalysts.

^a photocatalytic reaction at 200 °C

2. Digital photograph of the test unit for photocatalytic NOCM

Fig. S1. The photograph of the test unit: (a) whole-unit photograph (the distance between light source and catalyst was set to 45 cm); (b) The feature of the light tunnel; (c) The reactor equipped diffuse reflecting glass holder with 5mg Au/TiO₂. A thermocouple was used to monitor the temperature of the catalyst during photocatalytic NOCM.

3. The actual loading of the M in the $M\mbox{-}TiO_2$ catalysts

M/TiO ₂	theoretically calculated M content (%)	Actual M content (%) (determined by ICP-OES)
Au/TiO ₂	0.1	0.022
Au/TiO ₂	0.2	0.049
Au/TiO ₂	0.5	0.19
Au/TiO ₂	1.0	0.50
Au/TiO ₂	1.5	0.78
Ag/TiO ₂	1.0	0.73
Ir/TiO ₂	1.0	0.39
Pt/TiO ₂	1.0	0.52
Rh/TiO ₂	1.0	0.15
Pd/TiO ₂	1.0	0.34
Ru/TiO ₂	1.0	0.43

Table S2. ICP-OES analysis results of all M-TiO₂ samples.*

* M-TiO₂ M=Au, Ag, Ir, Pt, Rh, Pd and Ru.

4. Potential drops in M-TiO₂ interface

Table S3. Potential drop (ΔV_H) in M-TiO₂ interface region*

Catalysts	Potential drop (eV) in M-TiO ₂ interface region
Au/TiO ₂	13.42
Ag/TiO ₂	14.45
Ir/TiO ₂	14.73
Pt/TiO ₂	16.74
Rh/TiO ₂	22.54
Pd/TiO ₂	32.97

* Calculate from Fig.3 ~ Fig.10 in ref. [14]

5. Photoluminescence emission spectra

PL emission spectra were obtained for TiO_2 and Au/TiO_2 with 365 nm excitation. As shown in Fig. S1, the Au/TiO_2 displayed a much weaker peak around 560 nm than the pure TiO_2 , indicating an electron-hole recombination rate in Au/TiO_2 .

Fig. S2. Photoluminescence emission spectra of Au/TiO₂ and TiO₂ (P25).

6. The ratio between H_2 and C_2H_6 produced from the photocatalytic NOCM reaction over Au-TiO₂

Fig. S3. The ratio of n(H2)/n(C2H6) calculated from Fig. 2c.

7. The gas chromatographs for the products

Fig. S4. The gas chromatographs for the products of photocatalytic NOCM reaction over Au-TiO₂. FID detector (a) and TCD detector (b) were used to analyzed the hydrocarbons and hydrogen, respectively.

8. Comparison of surfaces of catalyst substrates for photocatalytic NOCM

Fig. S5. C₂H₆ yield from photocatalytic NOCM over Au/TiO₂ dispersed on the light-diffuse-reflection-surface and the common-surface under simulated AM 1.5G solar light irradiation at room temperature.

9. Effect of reactor types for photocatalytic NOCM over Au/TiO₂

Fig. S6. Average C₂H₆ yield from methane coupling in first 8hours over Au-TiO₂ dispersed on light-diffuse-reflection surface in different reactors under simulated AM 1.5G solar light irradiation at room temperature.

10. Photocatalytic NOCM comparison between Au/TiO₂ dispersed on the light-reflection-diffuse-surface and on the common surface

Fig. S7. (a) Schematic diagram of the reaction region in a continuous flow reactor, and (b) The effect of reactant flow rate on photocatalytic NOCM over Au/TiO₂ under simulated AM 1.5G solar light irradiation at room temperature.

11. Characterization results of catalysts

Fig. S8. XRD patterns of Au/TiO₂ and TiO₂ (P25). The blue vertical bar represents the PDF#84-1285 of anatase; the orange vertical bar represents the PDF#73-1765 of rutile. The crystallite sizes of the sample are about 23 nm calculated from the FWHM of 25.4° by Scherrer formula.

Fig. S9. TEM (a) and SEM (b) images of the Au/TiO_2 powders. The particles size of TiO_2 are about 25 nm that is consistent with the XRD results.

Fig. S10. XPS spectra of Au/TiO₂: (a) Survey, (b) Au 4f spectrum, and (c) O1s spectrum. The data was fitted into one set of peaks at 83.09 eV and 86.70 eV attributed to the 4f_{7/2} and 4f_{5/2} of Au⁰ species, respectively. The gold ions were reduced to zero valence during the photo deposition process.

12. Role of photogenerated holes

To clarify whether the photo-generated hole participated in the NOCM reaction, methanol was introduced as a hole scavenger. The reaction was suppressed when the hole was trapped by methanol, indicating that the holes played a vital role in this photocatalytic process (Fig. S11).

Fig. S11. The photocatalytic NOCM performance over Au/TiO₂ in the presence of CH₃OH.

13. Modeling results

Fig. S12. The model of optimized unit cell of TiO_2 and model of relaxed (1 0 0) surface of TiO_2 .

Fig. S13. The average adsorption energy and the optimized models of Au_n/TiO_2 as a function of Au atom number in Au_n cluster.

 Au_n/TiO_2 with large n was usually used to simulate the interface structure of Au and TiO₂ in previous studies [15, 16]. The average adsorption energy of Au_n/TiO_2 was used to estimate the size effect of Au cluster. As shown in **Fig. S13**, the average adsorption energy initially decreased rapidly from -1.48 eV in Au_1/TiO_2 to -0.20 eV in Au_6/TiO_2 , and then remained in a range from -0.23 to -0.15 eV. For Au_n/TiO_2 with $n \ge 6$, the size effect can be ignored because the average adsorption energy fluctuates within a narrow range. Considering the rationality of the structure and the consumption of computing resources, the Au_6/TiO_2 was chosen for the next mechanism study.

Fig. S14. The model of Au_6 cluster and the optimized interface model of Au/TiO_2 .

Fig. S15. The models of CH₄ activation section: (a) (b) (c) are the initial state, transition state and final state on Au/TiO₂; (d) (e) are the initial state and final state on surface of TiO₂. According the DFT calculation, there is no transition state in the process of CH₄ activation over the surface of TiO₂.

Fig. S16. The model of CH₃ ion migration section

The barriers of CH₃ ions migration were calculated using the climbing image nudged elastic band method (CI-NEB). The surface supercell was enlarged to (6×2) for CH₃ ion migration with a vacuum layer of 20 angstroms. The minimum energy paths of CH₃ ion migration were determined with six images between starting point and destination of the migration process presented.

Fig. S17. The models of C_2H_6 formation section: (a), (b), and (c) are the initial state, transition state, and final state on Au/TiO₂; (d), (e), and (f) are the initial state, transition state, and final state on the surface of TiO₂.

Fig. S18. The models of competitive mechanism A (a-f) and competitive mechanism B (g-l).

Fig. S19. The model of CH₃-Au/TiO₂ for IR spectrum simulation. Yellow, blue, red, brown, and white balls represent Au, Ti, O, C and H atoms, respectively.

The model consists of Au_6 cluster, TiO_2 cluster, and CH_3 group. The terminal O atoms were coordinately saturated by H atoms. The simulated IR spectrum was obtained from a frequency calculation using Gaussian software. As shown in the orange line of **Fig. 6**, the simulated IR response at about 600-800 cm⁻¹ was very similar to the actual IR signal, which demonstrates the existence of methyl anion during the photocatalytic NOCM process.

14. Bader charge analysis

The bader charge analysis was carried out based on DFT calculations and the results were listed in **Table S4**. We constructed a model (**Fig. S15a**) containing a $[CH_3+H]$ group with negative charge on the Au-TiO₂ surface to describe the situation of Reactions **a** and **b**. It is noted that the bader charge of C atom was about 4.32 e approximately equaling to the charge of CH_3^- on Au-TiO₂ model, which indicates Reaction **a** is described for the NOCM reaction. On the other hand, the bader charge analysis of a model (**Fig. S15d**) containing a $[CH_3+H]$ group with negative charge on the TiO₂ surface was also performed. The bader charge of C atom has about 4.34 e, indicating that Reaction **a** can also occur on TiO₂ rather than reaction **b**. Similarly, a model containing a $[CH_3+H]$ group with positive charge on the TiO₂ surface was built to distinguish Reactions c and d. Therefore, the CH₃ species as CH_3^- on Au or CH_3^+ on TiO₂ indicated that the CH₄ molecule was activated in CH_3^- / CH_3^+ process rather than methyl radical process.

Models	Bader charge of C atom (e)
[CH ₃ +H] ⁻ on Au-TiO ₂	4.32
CH ₃ ⁺ on Au-TiO ₂	4.25
·CH ₃ on Au-TiO ₂	4.18
CH3 ⁻ on Au-TiO2	4.31
[CH ₃ +H] ⁺ on TiO ₂	4.21
[CH ₃ +H] ⁻ on TiO ₂	4.34
CH ₃ ⁺ on TiO ₂	4.20
·CH ₃ on TiO ₂	4.25
CH ₃ ⁻ on TiO ₂	4.38

 Table S4. Bader charge analysis results

15. Comparison of the CH₃ anion mechanisms with other reported mechanisms

Fig. S20. Detailed free energy diagrams of CH₄ activation over different surfaces.

In order to distinguish whether the reaction **a** occurred on the TiO_2 site or Au site of Au/TiO₂, we performed a DFT calculation of CH₄ activation on the different surfaces (**Fig. S20**). The barrier energy of reaction a on TiO_2 site of Au/TiO₂ was about 1.1 eV, which is larger than that occurs on the Au site of Au/TiO₂. Therefore, CH₄ molecule was preferentially activated on the Au of Au/TiO₂ in the form of reaction **a**.

In literature, two general types of mechanisms were proposed for photocatalytic NOCM, which are summarized as follows:

- A. CH₄ is firstly adsorbed on the surface of the oxide to dissociate into CH₃ and H species. Then, the CH₃ species react with photogenerated hole/electron to generate CH₃ radical. Finally, the CH₃ radical combines another CH₄ molecule or CH₃ radical to form C₂H₆. This mechanism was proposed for NOCM over Au/ZnO [13] and Ga-ETS [12] systems.
- B. Another type of mechanism considered the effect of reactive metal for photocatalytic NOCM over Pt/TiO₂-SiO₂[17]. Namely, after adsorbing on the metal atom, a CH₄ molecule is splitting to form a CH₃ radial by light irradiation. Then, another CH₄ molecule is adsorbed on the same metal atom to yield a CH₃ radical via the same photocatalytic process. Finally, two CH₃ radicals combine to generate a C₂H₆.

Those two general types of mechanisms were evaluated for NOCM over Au/TiO₂ and compared with the CH₃ anion mechanism. As shown in **Fig. S21**, the mechanism **A** has the largest reaction barrier (2.56 eV) because the absent of active sites for CH₄ dissociation. Furthermore, in mechanism **B**, although the metal (as an active center) can facilitate the activation of CH₄, the activation barrier for the 2^{nd} CH₄ molecule is about 1.86 eV, which is larger than that of CH₃ anion migration barrier. This indicates that the CH₃ anion mechanism is better to match the NOCM over Au/TiO₂ than other two types of mechanisms.

Fig. S21. Comparison between various mechanisms for NOCM over Au/TiO₂ from DFT calculations.

References

- 1. Y. Zhou, L. Zhang and W. Wang, Nat Commun, 2019, 10, 1-8.
- 2. L. Yu, Y. Shao and D. Li, Appl. Catal., B, 2017, 204, 216-223.
- 3. Y. Kato, H. Yoshida and T. Hattori, Chem. Commun., 1998, 2389-2390.
- 4. Y. Kato, H. Yoshida, A. Satsuma and T. Hattori, *Microporous Mesoporous Mater.*, 2002, 51, 223-231.
- 5. H. Yoshida, N. Matsushita, Y. Kato and T. Hattori, J. Phys. Chem. B, 2003, 107, 8355-8362.
- 6. L. Yuliati, T. Hattori and H. Yoshida, PCCP, 2005, 7, 195-201.
- 7. L. Yuliati, M. Tsubota, A. Satsuma, H. Itoh and H. Yoshida, J. Catal., 2006, 238, 214-220.
- 8. L. Yuliati, H. Itoh and H. Yoshida, Chem. Phys. Lett., 2008, 452, 178-182.
- 9. L. Yuliati, T. Hamajima, T. Hattori and H. Yoshida, J. Phys. Chem. C, 2008, 112, 7223-7232.
- 10. L. Yuliati, T. Hattori, H. Itoh and H. Yoshida, J. Catal., 2008, 257, 396-402.

11. L. Li, G. D. Li, C. Yan, X. Y. Mu, X. L. Pan, X. X. Zou, K. X. Wang and J. S. Chen, *Angew. Chem. Int. Ed.*, 2011, **50**, 8299-8303.

12. L. Li, Y. Y. Cai, G. D. Li, X. Y. Mu, K. X. Wang and J. S. Chen, Angew. Chem. Int. Ed., 2012, 51, 4702-4706.

13. L. Meng, Z. Chen, Z. Ma, S. He, Y. Hou, H.-H. Li, R. Yuan, X.-H. Huang, X. Wang and X. Wang, *Energy & Environmental Science*, 2018, **11**, 294-298.

- 14. C. Yang and Z.-Y. Zhao, Comput. Mater. Sci., 2018, 151, 160-173.
- 15. Y.-G. Wang, Y. Yoon, V.-A. Glezakou, J. Li and R. Rousseau, J. Am. Chem. Soc., 2013, 135, 10673-10683.
- 16. J. Wang and B. Hammer, Phys. Rev. Lett., 2006, 97, 136107.
- 17. S. Wu, X. Tan, J. Lei, H. Chen, L. Wang and J. Zhang, J. Am. Chem. Soc., 2019, 141, 6592-6600.