2 Towards a sustainable generation of pseudopterosin-type

3 bioactives

4

5 Ringel et al.

9 and plasmid coding for HpS; error bars show standard deviation calculated from triplicates

11

- 12 Figure S 2: Time dependent, total terpene yield from fermentation (HpS) shown in Figure S1;
- 13 error bars show standard deviation calculated from duplicates (quantification from GC-FID

14 measurements).

18 and plasmid coding for HpS M75L; error bars show standard deviation calculated from

20

21 Figure S 4: Time dependent, total terpene yield from fermentation (HpS M75L) shown in

- 22 Figure S3; error bars show standard deviation calculated from duplicates (quantification from
- 23 GC-FID measurements).

Towards a sustainable generation of pseudopterosin-type bioactives - Ringel et al. 2020

25

26

- 27 Figure S 5: GC-MS spectra of HpS' main products (obtained in *E. coli*); (A) isoelisabethatriene
- 28 A; (B) isoelisabethatriene B; (C) hydropyrene; (D) hydropyrenol

29

Towards a sustainable generation of pseudopterosin-type bioactives - Ringel et al. 2020

31

32 Figure S 6: Comparison of GC-MS spectra of isoelisabethatriene A (A and C) and B (B and D)

33 from wild-type HpS and HpS M75L; (A) and (B): wt HpS; (C) and (D): HpS M75L. The isoforms

34 produced in different enzyme variants show identical fragmentation patterns.

Towards a sustainable generation of pseudopterosin-type bioactives - Ringel et al. 2020

Table S 1: NMR data of isoelisabethatriene A (HpS wild-type); Standardised on solvent (benzene- d_6) peak: ¹H = 7.16ppm, ¹³C = 128.06 ppm

С	Art	¹ H [ppm]	Multiplet	Integral	¹³ C [ppm]
1	CH	2.18	m	1	34.07
2	CH ₂	1.81	m	1	31.87
		1.21	m	1	
3	CH ₂	1.65	m	1	21.17
		1.42	m	1	
4	CH	2.24	m	1	41.28
5	CH	5.78	S	1	122.77
6	C _q	-			132.33
7	CH ₂	2.08	m	1	29.22
		1.84	m	1	
8	CH ₂	2.18	m	1	27.50
		1.94	m	1	
9	Cq	-			133.38
10	Cq	-			130.31
11	CH	2.00	m	1	34.49
12	CH ₂	1.44	m	1	35.88
		1.37	m	1	
13	CH ₂	2.10	m	1	26.92
		2.07	m	1	
14	CH	5.27	m	1	125.57
15	Cq	-			130.94
16	CH ₃	1.59	S	3	17.82
17	CH ₃	1.71	S	3	25.90
18	CH ₃	0.84	d	3	15.07
19	CH ₃	1.76	S	3	23.36
20	CH ₃	0.97	d	3	19.36

Electronic Supplementary Information (ESI) Towards a sustainable generation of pseudopterosin-type bioactives - Ringel et al. 2020

44 Figure S 7: ¹H NMR spectrum of isoelisabethatriene A produced by wild-type HpS.

Electronic Supplementary Information (ESI) Towards a sustainable generation of pseudopterosin-type bioactives - Ringel et al. 2020

47 Figure S 8: ¹³C NMR spectrum of isoelisabethatriene A produced by wild-type HpS.

Towards a sustainable generation of pseudopterosin-type bioactives - Ringel et al. 2020

- 49 Table S 2: Comparison of ¹³C-NMR spectra of isoelisabethatriene A produced in HpS, HpS
- 50 M75L and HpS M75F, respectively.

С	Li	terature ¹	Measur	ements conducted i	in C ₆ D ₆
	Art	WT δ ¹³ C (175 MHz)	WT δ ¹³ C (126MHz, Cryo)	M75L δ ¹³ C (75 MHz)	M75F δ ¹³ C (75 MHz)
1	СН	34.07	34.0	34.0	34.0
2	CH ₂	31.87	31.5	31.5	31.5
3	CH ₂	21.17	21.0	21.0	21.0
4	СН	41.28	41.0	41.0	41.0
5	СН	122.77	122.7	122.7	122.7
6	Cq	132.33	132.3	132.3	132.3
7	CH ₂	29.22	29.0	29.0	29.0
8	CH ₂	27.50	27.4	27.4	27.4
9	Cq	133.38	133.2	133.2	133.2
10	Cq	130.31	130.3	130.3	130.3
11	СН	34.49	34.4	34.4	34.4
12	CH ₂	35.88	35.7	35.7	35.7
13	CH ₂	26.92	26.8	26.8	26.8
14	СН	125.57	125.6	125.6	125.6
15	Cq	130.94	130.9	130.9	130.9
16	CH ₃	17.82	17.8	17.8	17.8
17	CH₃	25.90	25.9	25.9	25.9
18	CH₃	15.07	15.0	15.0	15.0
19	CH ₃	23.36	23.2	23.2	23.2
20	CH ₃	19.36	19.2	19.2	19.2

51

- 53

Towards a sustainable generation of pseudopterosin-type bioactives - Ringel et al. 2020

- Table S 3: NMR data of isoelisabethatriene B (wild-type) Standardised on solvent (benzene-56 d₆) peak: 1 H = 7.16 ppm, 13 C = 128.06 ppm.

С	Art	¹ H [ppm]	Multiplet	Integral	¹³ C [ppm]
1	Cq	-			130.20
2	CH ₂	1.91	m	1	32.73
		2.00	m	1	
3	CH ₂	1.53	m	1	21.63
		1.20	m	1	
4	CH	1.34	m	1	43.33
5	CH	5.61	m	1	124.68
6	Cq	-			133.77
7	CH ₂	1.91	m	1	32.09
		1.88	m	1	
8	CH ₂	2.70	m	2	27.00
9	Cq	-			123.95
10	CH	2.67	m	1	39.61
11	CH	1.96	m	1	31.60
12	CH ₂	1.37	m	2	36.01
13	CH ₂	2.04	m	2	26.36
14	CH	5.22	m	1	125.29
15	Cq	-			130.69
16	CH ₃	1.56	S	3	17.58
17	CH ₃	1.69	S	3	25.53
18	CH ₃	0.82	d	3	13.96
19	CH ₃	1.66	S	3	23.57
20	CH ₃	1.65	S	3	18.40

Electronic Supplementary Information (ESI) Towards a sustainable generation of pseudopterosin-type bioactives - Ringel et al. 2020

62 Figure S 9: ¹H NMR spectrum of isoelisabethatriene B produced by wild-type HpS.

Electronic Supplementary Information (ESI) Towards a sustainable generation of pseudopterosin-type bioactives - Ringel et al. 2020

65 Figure S 10: ¹³C NMR spectrum of isoelisabethatriene B produced by wild-type HpS.

Towards a sustainable generation of pseudopterosin-type bioactives - Ringel et al. 2020

- 67 Table S 4: Comparison of ¹³C-NMR spectra of isoelisabethatriene B produced in HpS, HpS
- 68 M75L and HpS M75F, respectively

Lite	erature (C	DCl ₃) ²	Me	Measurements conducted in C ₆ D ₆						
Nr. C	Art	δ ¹³ C	WT δ ¹³ C (75 MHz)	M75F δ ¹³ C (101 MHz)	M75L δ ¹³ C (75 MHz)					
1	C_q	130.0	130.20	130.5	130.5					
2	CH ₂	32.4	32.73	32.9	32.9					
3	CH ₂	21.5	21.63	22.0	22.0					
4	СН	43.2	43.33	43.6	43.6					
5	СН	124.4	124.68	124.2	124.2					
6	Cq	134.2	133.77	134.1	134.1					
7	CH ₂	31.9	32.09	32.4	32.4					
8	CH_2	26.7	27.00	27.3	27.3					
9	Cq	124.5	123.95	125.0	125.0					
10	СН	39.2	39.61	39.7	39.7					
11	СН	31.5	31.60	31.9	31.9					
12	CH_2	35.8	36.01	36.3	36.3					
13	CH_2	26.2	26.36	26.7	26.7					
14	СН	124.9	125.29	125.6	125.6					
15	Cq	131.2	130.69	131.0	131.0					
16	CH ₃	18.0	17.58	17.8	17.8					
17	CH ₃	25.7	25.53	25.9	25.9					
18	CH ₃	13.9	13.96	14.3	14.3					
19	CH ₃	23.5	23.57	23.9	23.9					
20	CH_3	18.5	18.40	18.8	18.8					

69

Towards a sustainable generation of pseudopterosin-type bioactives - Ringel et al. 2020

- 72
- 73 Figure S 11: Alignment of secondary structure elements of CotB2 and HpS. Red: α-helices;
- 74 blue: β-sheet. The secondary structure of both diterpene synthases match in the positions of
- 75 their respective α -helices (HHPred³ and Ali2D using PSIPRED⁴ and MEMSAT⁵).

- 77 Figure S 12: Structure alignment CotB2 and HpS. Identical amino acids (AA) are highlighted
- in deep purple, similar AA are marked in light purple, AA with no corresponding match coloured in pink; highly conserved motifs are framed by a red box.
- 80

Towards a sustainable generation of pseudopterosin-type bioactives - Ringel et al. 2020

Figure S 13: Evaluation of the HpS' product spectrum (black: wild-type; pink: M75L and blue: M75F) with corresponding MS spectra. Whole spectrum of crude *E. coli* extract. (1) isoelisabethatriene B; (2) isoelisabethatriene A; (3) hydropyrene.

Figure S 14: Zoom into figure S 14 to enhance comparison of main products: (1) isoelisabethatriene B; (2) isoelisabethatriene A; (3) hydropyrene. Black: wild-type HpS; blue: HpS M75F; pink: HpS M75L.

Figure S 15: GC chromatogram after 1 month storage of extract in hexane gained from HpS M75F. Analysis of compound with retention time 20.94 min (Figure S 16) showed spontaneous formation of erogorgiaene.

Figure S 16: GC-MS spectra analysis of compounds highlighted in figure S 16. (A) 20.46 min: isoelisabethatriene A, (B) 20.87 min: isoelisabethatriene B, (C) 20.94 min: erogorgiaene, (D) 21.73 min: hydropyrene

Figure S 17: GC chromatogram of mono hydroxylated diterpene (retention time 22.28 min) identified in HpS M75L extract.

Figure S 18: GC-MS spectrum of hydroxylated diterpene (retention time 22.28 min) identified in HpS M75L extract with respective parent ion mass of 290.

Figure S 19: Time resolved monitoring of CalB mediated conversion of isoelisabethatriene B. Blue: isoelisabethatriene B; green: isoelisabethatriene B monoepoxide; yellow: isoelisabethatriene B diepoxides.

Figure S 20: GC-MS-chromatogram – isoelisabethatriene B monoepoxide; Total Ion Count (TIC) Recording started at 18 min.

Figure S 21: Comparison of GC-MS spectra of isoelisabethatriene B (A) and the monoepoxide product 1*R*-epoxy-5,14- elisabethadiene (B), respectively.

Figure S 22: GC MS spectrum of putative isoelisabethatriene B derived diepoxide with parent ion mass m/z 304; Retention time R_t = 22.42 min.

Towards a sustainable generation of pseudopterosin-type bioactives - Ringel et al. 2020

Table S 5: NMR data of 1*R*-epoxy-5,14- elisabethadiene; Standardised on solvent (benzene- d_6) peak: ¹H = 7.16 ppm, ¹³C = 128.06 ppm.

Position	C [ppm]	H [ppm]	Multiplet	Integral	J- Coupling Constant [Hz]	COSY	нмвс	HSQC	NOESY
1	62.66	-					20		
2a	32.68	1.42	m	1		2b	20	yes	2b; 20
2b	32.68	1.87	m	1		3a; 2a	20	yes	2a
3a	18.02	1.60	m	1		3b; 4		yes	3b
3b	18.02	1.09	m	1		2b; 3a		yes	3а
4	44.83	1.03	m	1		10	18	yes	2a; 11; 12
5	125.89	5.42	S	1		10; 19	19	yes	8b;10; 19
6	132.90	-					19		
7a	29.87	1.74	m	1		8a	5	yes	
7b	29.87	1.94	m	1		8b		yes	
8a	29.68	1.97	m	1		7a		yes	5; 20
8b	29.68	1.66	m	1		7b		yes	10
9	64.21	-					5; 8; 20		
10	38.83	2.47	d	1	10.04	4; 5		yes	5; 18
11	33.33	1.67	m	1		12; 18	12. 18	yes	5; 18
12	35.85	1.29	m	2		11; 13	13; 18	yes	4; 14; 18
13	26.63	2.02	m	1		12; 14	14	yes	11; 14
14	125.44	5.20	t	1	7.14	13; 16;17	13; 16; 17	yes	12; 13; 16
15	131.04	-					16; 17		
16	25.98	1.69	S	3		14	15; 17	yes	14; 18
17	17.82	1.56	S	3		14	15; 16	yes	
18	14.67	0.81	d	3	6.83			yes	3b; 8b; 10; 11; 12
19	23.61	1.62	S	3		5	5; 6	yes	5
20	19.0	1.22	S	3			1; 2; 9	yes	2b;8b

Electronic Supplementary Information (ESI) Towards a sustainable generation of pseudopterosin-type bioactives - Ringel et al. 2020

Figure S 23: ¹H NMR Spectrum of 1*R*-epoxy-5,14- elisabethadiene.

Electronic Supplementary Information (ESI) Towards a sustainable generation of pseudopterosin-type bioactives - Ringel et al. 2020

Figure S 24: ¹³C NMR Spectrum of 1*R*-epoxy-5,14- elisabethadiene.

Figure S 25: ¹³C DEPT spectra of 1*R*-epoxy-5,14- elisabethadiene.

Figure S 26: ¹H-¹H COSY spectrum of 1*R*-epoxy-5,14- elisabethadiene.

Figure S 27: ¹H-¹³C HSQC spectrum of 1*R*-epoxy-5,14- elisabethadiene.

Figure S 28: ¹H-¹³C HMBC spectrum 1*R*-epoxy-5,14- elisabethadiene.

Figure S 29: ¹H-¹H NOESY spectrum of 1*R*-epoxy-5,14- elisabethadiene.

Figure S 30: Time resolved erogorgiaene formation upon treatment of isoelisabethatriene A with CalB (0 min to 90 min).

Figure S 31: GC-MS – chromatogram of erogorgiaene; Total ion Count recording started at 6 min.

Figure S 32: Comparison of GC-MS spectra of erogorgiaene. (A) Derived from Lipasemediated isoelisabethatriene A conversion. (B) Originating from a coral extract.

Towards a sustainable generation of pseudopterosin-type bioactives - Ringel et al. 2020

Table S 6: NMR data of erogorgiaene; Standardised on solvent (CDCl₃) peak: ${}^{1}H$ = 7.26 ppm, ${}^{13}C$ = 77.2 ppm.

Position	C [ppm]	H [ppm]	Multiplet	Integral	J- Coupling Constant [Hz]	COSY	НМВС	HSQC	NOESY
1	32.95	2.72	m	1	10.9	2b; 20	20	yes	2b; 3b; 8; 20
2a	31.95	1.34	m	1		2b	20	yes	2b
2b	31.95	1.94	m	1		1; 2a		yes	2a
За	21.68	1.82	m	1		3b; 4		yes	3b
3b	21.68	1.55	m	1		3a		yes	3a
4	41.64	2.87	m	1	10.2	3a; 18	18	yes	2a; 3a; 5; 11; 12a
5	128.24	7.02	s	1		19	7; 19	yes	11
6	134.85	-					8; 19		
7	126.11	6.94	d	1	8.01	8;19	5; 19	yes	
8	126.55	7.13	d	1	8.01	7		yes	20
9	140.55	-					8; 20		
10	140.07	-					5; 8		
11	37.11	2.14	m	1		4; 12a; 18	18	yes	4; 5; 18
12a	35.38	1.44	m	1		11	18	yes	
12b	35.38	1.35	m	1		13		yes	
13a	26.46	2.08	m	1		12b; 14		yes	
13b	26.46	2.00		1				yes	
14	125.02	5.17	m	1	7.0	13; 16;17	16; 17	yes	12ab; 13ab; 17
15	131.45	-					16; 17		
16	25.98	1.72	s	3		14	15; 17	yes	
17	17.88	1.64	s	3		14	15; 16	yes	
18	14.67	0.64	d	3	6.83			yes	11; 2b; 3b
19	21.34	2.30	s	3		5; 7	5; 7	yes	
20	22.01	1.26	d	3	6.92	1		yes	1; 8

Electronic Supplementary Information (ESI) Towards a sustainable generation of pseudopterosin-type bioactives - Ringel et al. 2020

Figure S 33: ¹H NMR spectrum of erogorgiaene.

Figure S 34: ¹³C NMR spectrum of erogorgiaene.

f1 (ppm)

Figure S 36: ¹H-¹H COSY spectrum of erogorgiaene.

Figure S 37: ¹H-¹³C HSQC spectrum of erogorgiaene.

Figure S 38: ¹H-¹³C HMBC spectrum of erogorgiaene.

Figure S 39: ¹H-¹H NOESY spectrum of erogorgiaene.

Towards a sustainable generation of pseudopterosin-type bioactives - Ringel et al. 2020

Figure S 40: Postulated mechanism for formation of (-)-erogorgiaene via epoxidation, dehydration and subsequent spontaneous aromatization.

Towards a sustainable generation of pseudopterosin-type bioactives - Ringel et al. 2020

Table S 7: Summary of approximate costs for biotechnological production of erogorgiaene

	#	Items	Description	Cost
	1	CAPEX	Total /10 years depreciation	1,449,732.11
	2	OPEX	Including: Maintenance, insurance and utility	1,464,014.73
RY	3	RM		23,055,842.10
MA			Total cost	25,969,589
Σ		Revenues	Kg of Product /yr.	2,829
S			Unit cost	9,181.17

Table S 8: Capital Investment for biotechnological production of erogorgiaene

	Capital Investment													
#	Item	Unit Purchased	In process	Quantity Standby	Total	Cost	Installation factor	Installed Cost	Ref.					
1	Fermenter, Vessel Volume = 200.00 m ³	2,266,000	2	0	2	4,532,000	1.6	7,251,200	SuperPro Designer (V10) Built-in cost model (Year analysis 2020)					
2	Stirred Reactor Vessel Volume = 10 m3	53,000	1	0	1	53,000	1.3	68,900	SuperPro Designer (V10) Built-in cost model (Year analysis 2020)					
3	Blending Tank, Vessel Volume = 150.00 m3	192,000	1	0	1	192,000	1.3	249,600	SuperPro Designer (V10) Built-in cost model (Year analysis 2020)					
4	Decanter Centrifuge, Throughput = 200 m3/h	262,000	1	0	1	262,000	1.6	419,200	SuperPro Designer (V10) Built-in cost model (Year analysis 2020)					
5	Distillation column,Volume = 100.00 m3	546,000	1	0	1	546,000	1.6	873,600	SuperPro Designer (V10) Built-in cost model (Year analysis 2020)					
6	Inoculum preparation, Vessel Volume = 5.00 m3	-	1	0	1	-	1.3	-	SuperPro Designer (V10) Built-in cost model (Year analysis 2020)					
7	Chromatography unit, 0.5D*2.5H	268,000	1	0	1	268,000	1.3	348,400	SuperPro Designer (V10) Built-in cost model (Year analysis 2020)					
8	Centrifugal Extraction, Vol. 1000	462,000	1	0	1	462,000	1.6	739,200	SuperPro Designer (V10) Built-in cost model (Year analysis 2020)					
g	Unlisted (10* of total PC)					631,500.0	1	631,500	SuperPro Designer (V10) Built-in cost model (Year analysis 2020)					
				Total+ int			11,216,496							

Table S 9: Total direct costs (TDC) for biotechnological production of erogorgiaene

#	Item	Unit cost		Quantity		Factor	Cost	Pof
"	item	Onit cost	In process	Standby	Total	1 8000	COSC	Nei.
1	Warehouse ,On-site storage of	448,660	1	-	1	0.04	448,659.84	Estimated as: 4.0%% of the ISBL
	equipment and supplies.	,						
	Site development, Includes							
	fencing, curbing, parking lot,							
	roads, well drainage, rail							
	system, soil borings, and							
	general paving. This factor							
2	allows for minimum site	1,009,485	1	-	1	0.090	1,009,484.64	Estimated as: 9%% of the ISBL
	development assuming a clear							
	site with no unusual problems							
	such as right-of-way, difficult							
	land clearing, or unusual							
	environmental problems.							
	Additional piping, Includes							
	fencing, curbing, parking lot,							
	roads, well drainage, rail							
	system, soil borings, and							
	general paving. This factor							
3	allows for minimum site	504,742	1	-	1	0.045	504,742.32	Estimated as: 4.5%% of the ISBL
	development assuming a clear							
	site with no unusual problems							
	such as right-of-way, difficult							
	land clearing, or unusual							
	environmental problems.							
					Total		1,962,886.80	
					. (75.0)			
			I otal D	pirect Cos	ts (TDC)		13,179,382.80	

Towards a sustainable generation of pseudopterosin-type bioactives - Ringel et al. 2020

Table S 10: Tota	l capital investment	(TCI) for	biotechnological	production of	^f erogorgiaene
		(

1	Indirect costs; Start-up and commissioning costs. Land, rights-of-way, permits, surveys, and fees. Piling, soil compaction/dewatering, unusual foundations. Sales, use, and other taxes. Freight, insurance in transit, and import duties on equipment, piping, steel, instrumentation, etc. Overtime pay during construction. Field insurance. Project team. Transportation equipment, bulk shipping containers, plant vehicles, etc.				0.100	1,317,938	Estimated as: 10% of total direct cost (TDC)
	Total					1,317,938.28	
			Total	Capital In	vestment (TCI)	14,497,321	
				Depre	ciation 10 year	1,449,732	

Table S 11: Annual operation cost for biotechnological production of erogorgiaene

	Annual Operation Cost													
#	Item	Unit cost	Unit	Quantity			Factor	Cost	Ref.					
1	Maintenance						0.03	395,381.48	Estimated as 3% of total direct fixed capital					
2	Property insurance						0.007	101,481.25	Estimated as 0.7% of total Capital Investment (TCI)					
3	Std Power	0.1		4,760,231				476,023.11	the consumption amount based on SuperPro Designer (V10) . The cost of kW-h is based on German price of Std power					
4	Steam	1.0	\$/MT	34,233				34,232.91						
5	Chilled water	0.50	\$/MT	911,016				455,508.20						
6	Consumable			1,388				1,387.77						
	Total													
			1,464,015											

Table S 12: Raw material cost for biotechnological production of erogorgiaene

						RM Cost			
#	ltem	Unit cost	Unit	Quantity			Factor	Cost	Ref.
1	Glycerol	0.3	Kg	313,971			1.00	78,492.86	biofuel waste stream
2	K2HPO4	1.5	Kg	31,114			1.00	46,671.43	Sigma with 30% save due to bulk procurement
3	KH2PO4	1.5	Kg	5,657			1.00	8,485.71	Sigma with 30% save due to bulk procurement
4	(NH4)2H2PO4	1.5	Kg	11,314			1.00	16,971.43	Sigma with 30% save due to bulk procurement
5	Citric acid	1.0	Kg	4,809			1.00	4,808.57	Sigma with 30% save due to bulk procurement
6	Yeast extract	3.0	Kg	14,143			1.00	42,428.57	Sigma with 30% save due to bulk procurement
7	propionic acid	1.0	L	16,398			1.00	16,397.52	Sigma with 30% save due to bulk procurement
8	urea-hydrogen peroxide	1.0	Kg	163,975			1.00	163,975.16	Sigma with 30% save due to bulk procurement
9	CalB (immobilized on beads)	30.0	Kg	163,975			1.00	4,919,254.66	Sigma with 30% save due to bulk procurement
10	Ethanol	13.0	L	67,347			95%	878,345.86	95% recovery and 5% loss
11	Hexane	33.7	L	101,020			90%	3,403,125.00	90% recovery and 10% loss
12	EtOAc	11.6	L	77,449			90%	899,957.14	90% recovery and 10% loss
13	Methanol	20.2	L	11,449			90%	231,078.57	90% recovery and 10% loss
14	Acetonitril	60.7	L	13,469			95%	817,928.57	95% recovery and 5% loss
					Total			11,527,921.05	
			23,055,842.10						

Towards a sustainable generation of pseudopterosin-type bioactives - Ringel et al. 2020

	#	Items	Description	Cost
	1	CAPEX	Total /10 years depreciation	232,470.08
	2	OPEX	Including: Maintenance, insurance and utility	102,195.25
RY	3	RM		5,736,249.18
MA			Total cost	6,070,915
N N N N N N N N N N N N N N N N N N N		Revenues	Kg of Product /yr.	286
55			Unit cost	21,194.54

Table S 13: Summary of approximate costs for chemical synthesis of erogorgiaene

Table S 14: Capital investment for chemical synthesis of erogorgiaene

	Capital Investment												
#	Item	Unit Purchased	In process	Quantity Standby	Total	Cost	Installation factor	Installed Cost	Ref.				
1	Stirred Reactor Vessel Volume = 10 L	10,000	1	0	1	10,000	1.3	13,000	SuperPro Designer (V10) Built-in cost model (Year analysis 2020)				
2	Stirred Reactor Vessel Volume = 20 L	12,000	1	0	1	12,000	1.3	15,600	SuperPro Designer (V10) Built-in cost model (Year analysis 2020)				
3	Stirred Reactor Vessel Volume = 150 L	20,000	1	0	1	20,000	1.3	26,000	SuperPro Designer (V10) Built-in cost model (Year analysis 2020)				
4	Stirred Reactor Vessel Volume = 500 L	300,000	1	0	1	300,000	1.3	390,000	SuperPro Designer (V10) Built-in cost model (Year analysis 2020)				
5	Centrifugal Extraction, Vol. 100	20,000	1	0	1	20,000	1.3	26,000	SuperPro Designer (V10) Built-in cost model (Year analysis 2020)				
6	Centrifugal Extraction, Vol. 1000	36,000	1	0	1	36,000	1.3	46,800	SuperPro Designer (V10) Built-in cost model (Year analysis 2020)				
7	Chromatography unit, 0.5D*2.5H	268,000	1	0	1	268,000	1.3	348,400	SuperPro Designer (V10) Built-in cost model (Year analysis 2020)				
8	Distillation column,Volume = 100.00 m3	546,000	1	0	1	546,000	1.3	709,800	SuperPro Designer (V10) Built-in cost model (Year analysis 2020)				
9	Unlisted (10* of total PC)					121,200.0	1	121,200	SuperPro Designer (V10) Built-in cost model (Year analysis 2020)				
			al+ Interest 6%	1,798,608									

Table S 15: Total direct costs (TDC) for chemical synthesis of erogorgiaene

	ltom	Item Unit cost		Quantity	Fort	Easter	Cost	Pof	
#	item Ohit c		In process	Standby	Total	Facto	or	Cost	Rei.
1	Warehouse ,On-site storage of	71 944	1		1		0.04	71 944 32	Estimated as: 4.0% of the ISB
-	equipment and supplies.	71,511	-		-		0.01	71,511152	
	Site development, Includes								
	fencing, curbing, parking lot,								
	roads, well drainage, rail								
	system, soil borings, and								
	general paving. This factor								
2	allows for minimum site	161,875	1	-	1		0.090	161,874.72	Estimated as: 9% of the ISBL
	development assuming a clear								
	site with no unusual problems								
	such as right-of-way, difficult								
	land clearing, or unusual								
	environmental problems.								
	Additional piping, Includes								
	fencing, curbing, parking lot,								
	roads, well drainage, rail								
	system, soil borings, and								
	general paving. This factor								
3	allows for minimum site	80,937	1	-	1		0.045	80,937.36	Estimated as: 4.5% of the ISBL
	development assuming a clear								
	site with no unusual problems								
	such as right-of-way, difficult								
	land clearing, or unusual								
	environmental problems.								
					Total			314,756.40	
						Total Direct Costs	(TDC)	2,113,364.40	

Towards a sustainable generation of pseudopterosin-type bioactives - Ringel et al. 2020

Table e Ter Tetal capital integritation en	Table S 16: Tota	I capital investment	(TCI) for chemical	synthesis of	^r erogorgiaene
--	------------------	----------------------	--------------------	--------------	---------------------------

1	Indirect costs; Start-up and commissioning costs. Land, rights-of-way, permits, surveys, and fees. Piling, soil compaction/dewatering, unusual foundations. Sales, use, and other taxes. Freight, insurance in transit, and import duties on equipment, piping, steel, instrumentation, etc. Overtime pay during construction. Field insurance. Project team. Transportation equipment, bulk shipping containers, plant vehicles, etc.					0.100	211,336	Estimated as: 10% of total direct cost (TDC)
	Total							
	Total Capital Investment (TCI)							
		232,470						

Table S 17: Annual operation cost for chemical synthesis of erogorgiaene

	Annual Operation Cost											
#	Item	Unit cost	Unit	Quantity			Factor	Cost	Ref.			
1	Maintenance						0.03	63,400.93	Estimated as3% of total direct fixed capital			
2	Property insurance						0.007	16,272.91	Estimated as 0.7% of total Capital Investment (TCI)			
3	Uitility						0.01	21,133.64	the consumption amount based on SuperPro Designer (V10) . The cost of kW-h is based on German price of Std power			
6	Consumable			1,388				1,387.77				
	Total											
			operating costs	102,195								

|--|

#	Item	Unit cost	Unit	Quantity/yr.		Recovey factor	Bulk Factor	Cost	Ref.
1	triethylamine	114.13	L	2,940.35		1.00	0.70	234,907.66	
2	formic acid	50.85	L	1,345.00		1.00	0.70	47,875.18	
3	4-methylacetophenone	171.76	kg	454.48		1.00	0.70	54,642.59	
4	NaHCO3	5.65	kg	33,397.95		1.00	0.70	132,088.88	
5	MgSO4	5.65	kg	65,117.41		1.00	0.70	257,539.34	
6	THF	27.06	L	6,566.58		1.00	0.70	124,400.20	
7	sodium tert-butoxide	366.12	kg	35.22		1.00	0.70	9,026.51	
8	tert-butyl acrylate	186.45	L	596.96		1.00	0.70	77,912.44	
9	TMEDA	124.30	L	836.32		1.00	0.70	72,768.37	
10	MgBr2	1,785.40	kg	653.00		1.00	0.70	816,109.51	
11	KHSO4	101.70	kg	10,747.90		1.00	0.70	765,142.89	
12	toluene	22.04	L	22,430.40		0.10	0.70	34,597.77	
13	TBAF-3H2O	1,979.76	kg	1,300.96		1.00	0.70	1,802,916.16	
14	polyphosphoric acid	79.55	L	5,709.56		1.00	0.70	317,944.59	
15	HCI	339.00	L	1,058.10		1	0.70	251,087.78	
16	(R)-RuCl[(1S,2S)-pTsNCH (C6H5)CH(C6H5)NH2](η6-p- cymene)	187,580.00	kg	111.87		0.001	1.00	20,984.78	
17	EtOAc	18.76	L	455,331.59		0.100	0.70	597,877.70	
18	N,N-Diisopropylcarbamoyl chloride	7,774.40	kg	1,115.80		0.001	1.00	8,674.71	
19	CH2Cl2	115.26	L	178,968.01		0.100	0.70	1,443,949.69	
20	CuCl	11,920.00	kg	32.83		0.001	1.00	391.37	
21	DPEPhos	8,452.40	kg	65.67		0.001	1.00	555.03	
22	Bis(pinacolato)diboron	1,511.94	kg	1,092.44		0.001	1.00	1,651.70	
23	MeOH	32.58	L	3,845.29		0.100	0.70	8,770.01	
24	Et2O	60.77	L	33,726.59		0.100	0.70	143,466.90	
25	s-BuLi	299.45	L	4,005.29		0.001	1.00	1,199.38	
26	RuCl(p-cymene) [(S,S)- Ts-DPEN]	203,400.00	kg	79.11		0.001	1.00	16,090.40	
27	borane (S)-20	893.60	L	9,877.16		0.001	1.00	8,826.27	
28	pentane	65.92	L	79,017.27		0.10	0.70	364,598.87	
					Total			2,868,124.59	
			M Costs (TRM)	5,736,249.18					

- 1 J. Rinkel, P. Rabe, X. Chen, T. G. Köllner, F. Chen and J. S. Dickschat, *Chemistry* (Weinheim an der Bergstrasse, Germany), 2017, **23**, 10501
- 2 Y. Yamada, S. Arima, T. Nagamitsu, K. Johnstop J. Uekusa, T. Eguchi, K. Shin-ya, D. E. Cane and H. Ikeda, *The Journal of antibiotics*, 2015, **68**, 385–394.
- 3 L. Zimmermann, A. Stephens, S.-Z. Nam, D. Rau, J. Kübler, M. Lozajic, F. Gabler, J. Söding, A. N. Lupas and V. Alva, *Journal of molecular biology*, 2018, **430**, 2237–2243.
- 4 D. T. Jones, *Journal of molecular biology*, 1999, **292**, 195–202.
- 5 T. Nugent and D. T. Jones, *BMC bioinformatics*, 2009, **10**, 159.