1		Electronic Supporting Information				
2						
3						
4	Bio	-based Solvents as entrainers for Extractive Dis	stillation			
5	1	an Aromatic/Aliphatic and Olemi/Faranin Separa				
6 7		Thomas Brouwer, Boelo Schuur*				
8						
9 10	Sustainable Process Technology group, Process and Catalysis Engineering cluster, Faculty of Science and Technology, University of Twente.					
11 12	* corresponding author: Meander building 221, PO Box 217, 7500 AE, Enschede, The Netherlands, e: b.schuur@utwente.nl , p: +31 53 489 2891					
13						
14 15	This su	upporting information document contains four sections.				
16 17	1	A summation of all materials used	nage 2			
18 19	2.	Additional xy- and Txy-diagrams of Methylcyclohexane-Toluene-Solvent	page 3			
20 21	3.	UNIQUAC Fit Parameters	page 4			
22 23 24	4.	Stability Test using ¹ H-NMR of Cyrene [™]	page 5			
25	5.	References	page 5			

1. Materials

 $\,$ Table S1: All used chemicals with their purity and vendor specified $\,$

Chemical	Purity	Vendor
Methylcylohexane	Reagent Grade. 99%	Honeywell
Toluene	ACS, Reag.Ph.Eur.	VWR
Sulfolane™	99%	Sigma Aldrich
Acetone	LiChrosolv®	Merck
Cyrene™	99.3%	Circa Group
Propylene Glycol	≥99.5%	Sigma Aldrich
Ethylene Glycol	Emsure®, Reag.Ph.Eur	Merck
Propionic acid	≥99.5%	Sigma Aldrich
γ-Valerolactone	98%	Acros Organics
Methyl salicylate	>99%	Sigma Aldrich
Ethylene Carbonate	98%	Sigma Aldrich
Isophorone	97%	Sigma Aldrich
Guaiacol	≥99%	Sigma Aldrich
Phenol	≥99%	Sigma Aldrich
Furfural	99%	Sigma Aldrich
Levulinic acid	98+%	Acros Organics
Acetophenone	99%	Sigma Aldrich
Triacetin	99%	Acros Organics
Tributyl phosphate	99+%	Acros Organics
n-Heptane	99%	Alfa Aesar
1-Heptene	97%	Sigma Aldrich
D-chloroform	99.5%	Cambridge Isotope Laboratories, Inc.
N-methylpyrrolidone	99.5%	Sigma Aldrich

2. Additional xy- and Txy-diagrams of Methylcyclohexane-Toluene-Solvent

Figure S1: (upper) The xy-diagram of methylcyclohexane and toluene in a solvent to feed (mass basis) of 1 with Cyrene[™] at
800 mbar and 500 mbar. (lower) Also the temperature profile of methylcyclexane and toluene in a solvent to feed (mass basis)
of 1 with Cyrene[™] at 1000 mbar, 800 mbar and 500 mbar and Sulfolane[™] at 1000 mbar. The open symbols indicate gas
composition, while the closed symbols indicate liquid composition.

40 **3. UNIQUAC Fit Parameters**

41 The UNIQUAC model required the Van der Waals area (r_i) and volume (q_i) of each component.

42 These parameters are known for methylcyclohexane and toluene, however not of Cyrene[™].

43 The unknown parameters are estimated with Density Functional Theory with a B3LYP 6-

44 311+G** parameterization in combination with the methodology of Banerjee et al.[1]

45 Table S2: Van der Waals area (r_i) and volume (q_i) of each component for the UNIQUAC correlation

Component	r _i	q i	(ref)
Methylcyclohexane	5,174	4,396	[2]
Toluene	3,920	2,970	[3]
CyreneTM	4,843	3,322	-

46

47 The fitting of both models resulted in the following parameters.

48 Table S3: The parameters associated with the UNIQUAC fitting procedure

UNIQUAC								
	J	a _{ij}	a _{ji}	b _{ij}	b _{ji}	C _{ij}	C _{jj}	
Methylcyclohexane	Cyrene™	-7.904	15.97	533.5	-418.1	1.022	-2.592	
Toluene	Cyrene™	76.88	-13.22	815.3	-799.8	-13.59	2.666	
Methylcyclohexane	Toluene	1.983·10 ⁻¹	-4.047·10 ⁻²	-93.56	5.613	(-)	(-)	

49 The pure component vapor pressure of Cyrene™ has been used from. [4]

51 4. Stability Test using 1H-NMR of Cyrene[™]

52 The stability of Cyrene[™] was evaluated by comparing fresh Cyrene[™] with Cyrene[™] which has been

53 reclaimed after experimentation and purified via rotary evaporation. Additionally, the reclaimed

54 Cyrene[™] was stored for over 9 months. The results of the 1H-NMR spectrum, the samples were

55 diluted in D-chloroform, are shown in Figure S2.

57 Figure S2: The ¹H-NMR spectra of fresh (below) and reclaimed (upper) Cyrene[™] diluted in d-chloroform.

58

56

59

60 5. References

- Banerjee, T., et al., Volume, surface and UNIQUAC interaction parameters for imidazolium
 based ionic liquids via polarizable continuum model. Fluid Phase Equilibria, 2005. 234(1-2): p.
 64-76.
- 64 2. Chen, D., H. Ye, and H. Wu, Liquid–liquid equilibria of methylcyclohexane–benzene–N-
- 65 *formylmorpholine at several temperatures.* Fluid phase equilibria, 2007. **255**(2): p. 115-120.
- 66 3. Gupta, S., et al., *Isobaric vapour—liquid equilibria of the systems: Benzene—triethylene*
- *glycol, toluene—triethylene glycol and benzene—N-methylpyrrolidone.* Fluid phase equilibria,
 1989. 46(1): p. 95-102.
- 69 4. Baird, Z., et al., *Vapor pressures, densities, and PC-SAFT parameters for 11 bio-compounds.*70 2019.