Electronic Supplementary Information

Hierarchical Beta zeolites as catalysts in one-pot three-component cascade Prins–Friedel–Crafts reaction

Fig. S1 TEM images of the calcined samples MB-1 (a, b), MB-3 (c, d) and CB-1 (e, f).

Fig. S2 Mesopore size distribution (from the desorption branch of the nitrogen ad(de)sorption isotherm, -196 °C) curves for the samples MB-1 – 5 and CB-1.

Fig. S3 TEM images of the calcined sample MB-7.

Fig. S4 Mesopore size distribution (from the desorption branch of the nitrogen ad(de)sorption isotherm, -196 °C) curves for the samples MB-6 – MB-8.

Fig. S5 TEM image of the calcined sample MB-8.

Fig. S6. FTIR spectra of the samples MB-1 – 8 and CB-1 (in the region of $1600 - 1400 \text{ cm}^{-1}$) recorded after adsorption of pyridine and its desorption at 150 - 450 °C.

Fig. S7. FTIR spectra of the sample CB-2 (in the region of $1600 - 1400 \text{ cm}^{-1}$) recorded after adsorption of pyridine and its desorption at $150 - 450 \text{ }^{\circ}\text{C}$.

Fig. S8. FTIR spectra of the samples MB-1 – 8 and CB-1 (in the regions of $3800 - 3200 \text{ cm}^{-1}$ and 1750 - 1550) recorded after evacuated (P = 1.4 Pa) at 450 °C, adsorption of 2,4,6-tritertbutylpyridine and its desorption at 150 - 450 °C.

Fig. S9 XRD patterns of the calcined samples NS-1 and CB-2.

Fig. S10 TEM image of the sample NS-1.

Fig. S11 Nitrogen ad(de)sorption isotherms at -196 °C (a) and mesopore size distribution (from the desorption branch) curves (b) for the samples NS-1 and CB-2.

Fig. S12 TEM image of the sample CB-2.

Fig. S13 ¹H NMR spectrum of a mixture of *o*-, *p*-isomers of 4-(2(4)-methoxyphenyl)-2-propyltetrahydropyran.

Fig. S14 *o/p*-4-Aryltetrahydropyrans ratio versus conversion of butyraldehyde in Prins–Friedel– Crafts reaction over the obtained and reference samples.

Fig. S15 4-(3-Buten-1-oxy)-2-propyltetrahydropyran **4** selectivity versus conversion of butyraldehyde in Prins–Friedel–Crafts reaction over the obtained and reference samples.

Fig. S16 2-Propyloxan-4-ol **5** selectivity versus conversion of butyraldehyde in Prins–Friedel– Crafts reaction over the obtained and reference samples.

Fig. S17 2-Ethyl-2-hexenal **6** selectivity versus conversion of butyraldehyde in Prins–Friedel– Crafts reaction over the obtained and reference samples.

Fig. S18 Yield of 4-aryltetrahydropyrans as a function of reaction time in Prins–Friedel–Crafts reaction over the obtained and reference samples. Reaction conditions: 2.5 mmol of butyraldehyde, 5 mmol of 3-buten-1-ol, 10 ml of anisole (also as a solvent), 0.2 g of *n*-dodecane (internal standard), 50 mg of catalyst, 60 °C.

Fig. S19. Correlation of 4-aryltetrahydropyrans yield with relative concentration of the medium-strength Brønsted acid sites on the mesopore surface for the Prins–Friedel–Crafts reaction over Beta samples obtained without CTAB (black line) and with CTAB (red line).

Sample	$V_{\rm micro}{}^{\rm a}$	V _{meso} ^b	$D_{\rm meso}^{\rm c}$	Smeso ^d	$S_{\rm BET}^{\rm e}$
Sample	(cm^{3}/g)	(cm^3/g)	(nm)	(m^{2}/g)	(m^2/g)
MB-1	0.24^{f}	0.43	50±7.4	110	670
MB-2	0.25	0.69	36±17.2	130	760
MB-3	0.23	0.46	g	85	640
MB-4	0.21	0.81	15±1.0	230	765
MB-5	0.23	0.84	19±2.2	200	780
MB-6	0.23	0.85	29±6.6	155	720
MB-7	0.23	0.14	g	65	640
MB-8	0.11	0.56	g	325	600
CB-1	0.25	0.06	g	20 ^h	645
NS-1	0.13	0.93	8±3.0	355	645
CB-2	0.22	0.10	g	100 ^h	585

Table S1 Characteristics of porous structure of the samples obtained.

^a V_{micro} , micropore volume. ^b V_{meso} , mesopore volume. ^c D_{meso} , average mesopore diameter and deviation from this value. ^d S_{meso} , mesopore surface area. ^e S_{BET} , total specific surface area. ^f Micropore diameter for the samples given in Table S1 is 0.65 nm. ^g Mesopore size distribution without maximum. ^h The external surface area of Beta zeolite.

Table S2 Si/Al molar ratio in the obtained samples and their acidity by pyridine ad(de)sorption with IR-spectral analysis.

Sample Si/Al		Brønste	ed acid sites	concentr	Lewis acid	Total acid	
		(µmol/g	g)		sites	sites	
Sample	Sample SI/AI		Madium	Strong	Total	concentration	concentration
		W Cak	Medium	Sublig	Total	(µmol/g)	(µmol/g)
MB-1	27	35	37	35	107	73	180
MB-2	31	36	40	48	124	62	186
MB-3	29	28	38	37	103	49	152
MB-4	26	37	38	63	138	64	202
MB-5	19	25	36	53	114	53	167
MB-6	22	37	36	37	110	50	160
MB-7	23	9	34	60	103	42	145
MB-8	18	1	11	42	54	34	88
CB-1	20	36	66	156	258	87	345
CB-2	19	30	60	230	320	110	430

^a Weak acid sites – pyridine is desorbed in the range of 150 - 250 °C, medium acid sites – pyridine is desorbed in the range of 250 - 350 °C, strong acid sites – pyridine remains after desorption at 350 °C.

Sampla	Acidity by	PDA	
Sample	T_{\max}^{a} (°C)	$C^{b}(\mu mol/g)$	
MB-1	220	94	
	355	133	
MB-2	200	178	
	355	251	
MB-3	200	137	
	340	240	
MB-4	200	205	
	335	295	
MB-5	190	378	
	345	245	
MB-6	210	27	
	325	65	
MB-7	195	155	
	335	481	
MB-8	185	185	
	335	259	
CB-1	180	211	
	325	380	

 Table S3 Acidity of the obtained samples by temperature-programmed desorption of ammonia.
· 1·/

1

^a T_{max} , temperature of the maximum of ammonia desorption. ^b C, concentration of acid sites.

Table S4 The integral intensity of the absorption band at 3370 cm⁻¹ in FTIR spectra of the samples after 2,4,6-tri-tert-butylpyridine adsorption (at a temperature of 150 °C) and its desorption at 150 -450 °C.

Samula			Int	egral intens	ity		
Sample	150 °C	200 °C	250 °C	300 °C	350 °C	400 °C	450 °C
MB-1	1.28ª	1.15	1.01	0.89	0.63	0.25	0.07
MB-2	1.20	1.18	1.10	1.05	0.86	0.39	0.10
MB-3	1.60	1.41	1.33	1.19	0.84	0.35	0.07
MB-4	2.39	2.14	1.97	1.62	1.32	0.84	0.50
MB-5	2.63	2.26	2.15	1.53	1.43	0.89	0.39
MB-6	1.19	1.14	0.98	0.95	0.72	0.47	0.19
MB-7	0.68	0.61	0.51	0.48	0.37	0.24	0.11
MB-8	1.30	1.28	1.12	0.80	0.50	0.18	0
CB-1	0.39	0.32	0.31	0.30	0.19	0.10	0

^a The intensities are normalized per weight of the sample

Table S5 The integral intensity of the absorption band at 1612 cm⁻¹ in FTIR spectra of the samples after 2,4,6-tri-*tert*-butylpyridine adsorption (at a temperature of 150 °C) and its desorption at 150 – 450 °C.

Commla		Integral intensity					
Sample	150 °C	200 °C	250 °C	300 °C	350 °C	400 °C	450 °C
MB-1	6.91 ^a	6.18	5.61	5.15	3.17	0	0
MB-2	7.62	6.87	6.01	5.85	2.99	1.88	0.22
MB-3	10.59	9.05	8.69	7.19	4.77	2.32	0.99
MB-4	11.32	9.52	7.57	5.37	3.73	1.97	0.63
MB-5	12.76	9.43	7.98	6.14	4.68	1.83	0.59
MB-6	5.77	5.55	4.77	3.83	2.80	2.12	0.55
MB-7	3.98	3.38	2.41	1.15	0.49	0.16	0
MB-8	6.54	5.91	4.06	1.97	0.67	0	0
CB-1	5.24	3.84	3.07	2.19	1.16	0.30	0

^a The intensities are normalized per weight of the sample

Table S6 Fractions of weak, medium and strong Brønsted acid sites in the obtained samples accessible for 2,4,6-tri-*tert*-butylpyridine calculated using the integral intensities of the absorption band at 1612 cm⁻¹.

Sample	Fractions of Brønsted acid sites				
1	accessible for TTBPy (%)				
	Weak ^a	Medium	Strong		
MB-1	19	35	46		
MB-2	21	40	39		
MB-3	18	37	45		
MB-4	33	34	33		
MB-5	37	26	37		
MB-6	17	34	48		
MB-7	39	48	12		
MB-8	38	52	10		
CB-1	41	37	22		

^a Weak acid sites – TTBPy is desorbed in the range of 150 - 250 °C, medium acid sites – TTBPy is desorbed in the range of 250 - 350 °C, strong acid sites – TTBPy remains after desorption at 350 °C.

Table S7 Recyclability test of MB-4 in the Prins–Friedel–Crafts reaction between butyraldehyde, 3-buten-1-ol and anisole.

Cycle	Butyraldehyde	4-Aryltetrahydropyrans	4-Aryltetrahydropyrans
	conversion (%)	selectivity (%)	yield (%)
1 ^a	57	44	25
2 ^b	51	38	19
3°	55	34	19
4 ^c	50	30	15

^a Reaction conditions: 2.5 mmol of butyraldehyde, 5 mmol of 3-buten-1-ol, 10 ml of anisole (also as a solvent), 0.2 g of *n*-dodecane (internal standard), 50 mg of catalyst, 60 °C, 6 h. ^b For the 2nd cycle, the used catalyst was washed with anisole and acetone, dried and activated at 450 °C for 5 h. ^c The 3rd and 4th cycles were carried out with the catalyst washed with anisole and acetone, dried and calcined at 550 °C for 6 h after using in the previous reaction.

Cycle	Butyraldehyde	4-Aryltetrahydropyrans	4-Aryltetrahydropyrans
	conversion (%)	selectivity (%)	yield (%)
1 ^a	53	39	21
2 ^b	56	38	21
3°	46	23	11
4 ^c	46	22	10

Table S8 Recyclability test of CB-2 in the Prins–Friedel–Crafts reaction between butyraldehyde,3-buten-1-ol and anisole.

^a Reaction conditions: 2.5 mmol of butyraldehyde, 5 mmol of 3-buten-1-ol, 10 ml of anisole (also as a solvent), 0.2 g of *n*-dodecane (internal standard), 50 mg of catalyst, 60 °C, 6 h. ^b For the 2nd cycle, the used catalyst was washed with anisole and acetone, dried and activated at 450 °C for 5 h. ^c The 3rd and 4th cycles were carried out with the catalyst washed with anisole and acetone, dried and calcined at 550 °C for 6 h after using in the previous reaction.