Supplemental Information to:

Efficient synthesis of bio-derived polycarbonates from dimethyl carbonate and isosorbide: regulating *exo*-OH and *endo*-OH reactivity by ionic liquids

Wei Qian,^{a,b} Xifei Ma,^{a,b} Lei Liu,^a Lili Deng,^{a,b} Qian Su,^a Ruibing Bai,^a Zengliang Zhang,^a Haibin Gou,^{a,b} Li Dong,^a Weiguo Cheng^{*a} and Fei Xu^a

^aBeijing Key Laboratory of Ionic Liquids Clean Process, CAS Key Laboratory of Green Process and

Engineering, State Key Laboratory of Multiphase Complex Systems, Innovation Academy for

Green Manufacture, CAS, Institute of Process Engineering, Chinese Academy of Sciences, Beijing

100190 (P.R. China).

^bSchool of Chemical Engineering, University of Chinese Academy of Sciences, 19A Yuquan Road,

Shijingshan District. Beijing 100049 (P.R. China).

*Email: wgcheng@ipe.ac.cn

Content

1.	Materials	2			
2.	Characterizations	2			
3.	Characterization of ILs	3			
4.	Characterization of carboxymethyl products	6			
5.	The thermability of IL catalysts	12			
6.	Influence of reaction parameters on PIC molecular weight	12			
7.	The ¹³ C NMR analysis of PIC	14			
8.	The correlation of thermal behaviors with the molecular weight	14			
9.	In-situ ¹ H NMR of transesterification products with the reaction progressed	15			
10.	GPC charts of PICs	15			
Refe	References				

1. Materials

Dimethyl Isosorbide (IS, 98%) was received from Alfa Aesar. Dimethyl carbonate (DMC, 99%, anhydrous), tetrabutylphosphonium bromide ([P4444]Br, 98%), tetrabutylammonium bromide ([N4444]Br, 99%), 1-methylimidazole (99%), bromoethane (99%), n-butyl bromide (99%), 1-bromooctane (98%), and 1-bromodecane (98%) were purchased from Aladdin biochemical technology Co., Ltd., (Shanghai, China). Additionally, isosorbide was recrystallized with acetone. The others were used as received without further purification.

2. Characterizations

The molecular weights of all PIC samples were measured employing an Agilent PL-GPC 50 gel permeation chromatography (GPC) and polystyrene was adopted to establish the standard curve with dimethylformamide (DMF) as the mobile phase. The selectivities of PIC intermediates were measured on a SHIMADZU LC-20AT HPLC with an InertSustain C18 chromatographic column and a differential refraction detector (RID) using methanol and H₂O as a mobile phase.¹ The ¹H NMR and ¹³C NMR spectra were recorded on a Bruker AVANCE III HD 600 MHz NMR spectrometer with tetramethylsilane (TMS) as the internal reference using deuterated chloroform (CDCl₃) or dimethylsulfoxide (DMSO-d₆) as the solvent. Mass spectra data were collected on a Bruker micrQTOF-Q II mass spectrometer. An elemental analyzer (elementar vario EL cube) was used for measuring element content. The Br anion contents of ILs were measured using the AgNO₃ titration method with a Mettler Toledo V10S Karl-Fischer titrator. The thermogravimetric analysis (TGA) curves were recorded on a Setaram Labsys Evo thermal gravimetric analyzer with a heating rate of 10 °C/min under an N₂ atmosphere. The glass transition temperature was

measured on a Mettler Toledo DSC 1 differential scanning calorimeter (DSC) with a heating rate of 10 °C/min and a nitrogen flow rate of 50 mL/min.

3. Characterization of ILs

1-ethyl-3-methylimidazolium bromide ([Emim]Br)

¹H NMR (600 MHz, CDCl₃): δ 10.35 (s, 1H), 7.56 (m, 2H), 4.39 (m, 2H), 4.08 (s, 3H), 1.57 (t, 3H); MS (ESI): m/z: 110.17 [Emim], 301.20 [Emim]₂Br; elemental analysis calcd (%) for C₆H₁₁N₂Br: C 37.72, H 5.80, N 14.66, Br 41.82; found: C 37.80, H 5.75, N 14.72, Br 41.31. Purity (Based on Br anion) = found (%) Br × 100% / calcd (%) Br = 98.78%. Water content: 0.12 wt%.

1-butyl-3-methylimidazolium bromide ([Bmim]Br)

¹H NMR (600 MHz, CDCl₃): δ 10.33 (s, 1H), 7.59 (t, 1H), 7.47 (t, 1H), 4.29 (t, 2H), 4.08 (s, 3H), 1.86 (m, 2H), 1.33 (m, 2H), 0.91 (t, 3H); MS (ESI): m/z: 139.18 [Bmim], 357.19 [Bmim]₂Br; elemental analysis calcd (%) for C₈H₁₅N₂Br: C 43.85, H 6.90, N 12.78, Br 36.47; found: C 43.78, H 6.94, N 12.83, Br 35.85. Purity (Based on Br anion) = found (%) Br × 100% / calcd (%) Br = 98.30%. Water content: 0.13 wt%.

1-octyl-3-methylimidazolium bromide ([Omim]Br)

¹H NMR (600 MHz, CDCl₃): δ 10.37 (s, 1H), 7.59 (t, 1H), 7.42 (t, 1H), 4.28 (t, 2H), 4.09 (s, 3H), 1.87 (m, 2H), 1.22 (m, 10H), 0.82 (t, 3H); MS (ESI): m/z: 195.19 [Omim], 469.35 [Omim]₂Br; elemental analysis calcd (%) for C₁₂H₂₃N₂Br: C 52.37, H 8.42, N 10.18, Br 29.03; found: C 52.41, H 8.46, N 10.13, Br 28.66. Purity (Based on Br anion) = found (%) Br × 100% / calcd (%) Br = 98.73%. Water content: 0.08 wt%.

1-decyl-3-methylimidazolium bromide ([Dmim]Br)

¹H NMR (600 MHz, CDCl₃): δ 10.40 (s, 1H), 7.57 (t, 1H), 7.40 (t, 1H), 4.28 (t, 2H), 4.10 (s, 3H), 1.88 (m, 2H), 1.21 (m, 14H), 0.83 (t, 3H); MS (ESI): m/z: 223.26 [Dmim], 529.29 [Dmim]₂Br; elemental analysis calcd (%) for C₁₄H₂₇N₂Br: C 55.44, H 8.97, N 9.24, Br 26.35; found: C 55.51, H 8.90, N 9.29, Br 25.78. Purity (Based on Br anion) = found (%) Br × 100% / calcd (%) Br = 97.84%. Water content: 0.09 wt%.

tetrabutylphosphonium bromide ([P4444]Br)

Water content: 0.04 wt%.

tetrabutylammonium bromide ([N4444]Br)

Water content: 0.08 wt%.

4. Characterization of carboxymethyl products

DC: C₁₀H₁₄O₈; ¹H NMR (600 MHz, CDCl₃): δ 5.10 (m, 2 H), 4.88 (t, 1H), 4.54 (d, 1H), 4.06 (d, 1H), 4.01 (m, 1H), 3.90 (m, 2H), 3.81 (s, 3H), 3.80 ppm (s, 3H); ¹³C NMR (600 MHz, CDCl₃): δ 155.24, 154.91, 86.00, 81.36, 80.98, 76.90, 73.39, 70.61, 55.28, 55.24 ppm; MS (ESI): m/z: 285.06 [DC+Na]⁺; elemental analysis calcd (%) for C₁₀H₁₄O₈: C 45.81, H 5.38, O 48.81; found: C 45.78, H 5.37, O 48.82.

MC-1: C₈H₁₂O₆; ¹H NMR (600 MHz, CDCl₃): δ 5.13 (d, 1 H), 4.65 (t, 1 H), 4.53 (d, 1H), 4.31 (m, 1H), 4.02 (dd, 1H), 3.89 (m, 1H), 3.81 (s, 3H), 3.58 (m, 1 H), 2.50 ppm (s, 1H); ¹³C NMR (600 MHz, CDCl₃): δ 154.87, 85.51, 82.11, 81.71, 73.78, 73.42, 72.41, 55.28 ppm; MS (ESI): m/z: 227.06 [MC-1+Na]⁺; elemental analysis calcd (%) for C₈H₁₂O₆: C 47.06, H 5.92, O 47.02; found: C 47.08, H 5.88, O 46.98.

MC-2: C₈H₁₂O₆; ¹H NMR (600 MHz, CDCl₃): δ 5.04 (m, 1H), 4.87 (t, 1H), 4.39 (d, 1H), 4.31 (d, 1H), 3.90 (m, 4H), 3.80 (s, 3H), 2.41 ppm (s, 1H); ¹³C NMR (600 MHz, CDCl₃): δ 155.41, 88.57, 80.63, 77.46, 76.28, 75.86, 70.54, 55.32 ppm; MS (ESI): m/z: 227.05 [MC-2+Na]⁺; elemental analysis calcd (%) for C₈H₁₂O₆: C 47.06, H 5.92, O 47.02; found: C 47.08, H 5.85, O 47.03.

The standard curves of PIC intermediates were determined using isosorbide 5-mononitrate as the internal standard. Subsequently, the selectivities of PIC intermediates could be calculated using HPLC analysis.

5. The thermability of IL catalysts

Fig. S1 The thermostability of selected bromide-based IL catalysts.

6. Influence of reaction parameters on PIC molecular weight

Fig. S2 Influence of (a) polycondensation temperature and (b) polycondensation time on PIC molecular weight.

7. The ¹³C NMR analysis of PIC

Fig. S3. Typical chemical structure of PIC identified through the spectra of ¹³C NMR catalyzed by [Emim]Br.

8. The correlation of thermal behaviors with the molecular weight

Entry	PT (°C)	$T_{d-5\%}$ (°C)	$T_{\rm g}$ (°C)	$M_{\rm w}$ (kg/mol)
1	200	317	138	20.9
2	230	322	141	24.3
3	240	325	146	27.4
4	250	329	150	33.5
5	260	330	150	34.6
6	270	336	156	45.4
7	280	334	155	43.3

Table S1. The correlation of thermal behaviors with molecular weight.

PT represents polycondensation temperature.

9. In-situ ¹H NMR of transesterification products with the reaction progressed

10. GPC charts of PICs

MW Averages

(2) Influence of reaction parameters catalyzed by [Emim]Br

MW Averages

Mp: 14704	Mn: 9005	Mv: 15146	Mw: 16337
Mz: 25317	Mz+1: 34655	PD: 1.8142	

Transesertification time 10 h Distribution Plots 1.3 95 1.2--90 1.1--85 -80 1--75 -70 0.9--65 0.8--60 dw/dlogM -55 0.7-% Ht -50 0.6--45 -40 0.5--35 0.4--30 -25 0.3--20 0.2--15 -10 0.1--5 0+ 11+0 1000 10000 100000 Т MW Ranges 1e6 MW

MW Averages

S23

References

(1) Qian, W.; Tan, X.; Su, Q.; Cheng, W.; Xu, F.; Dong, L.; Zhang, S. *ChemSusChem* **2019**, *12*, 1169.