## Selective hydrogenation of nitroarenes under mild conditions by the optimization of active sites in a well defined Co@NC catalyst

Shuo Chen+, Li-Li Ling+, Shun-Feng Jiang, Hong Jiang\*

CAS Key Laboratory of Urban Pollutants Conversion, Department of Applied

Chemistry, University of Science and Technology of China, Hefei 230026, China.

Email: jhong@ustc.edu.cn (H. J.)

Text S1

The conversion rate and selectivity were evaluated based on the amount of nitrobenzene. Nitrobenzene conversion rate (mol%), product yield (mol%) and carbon balance:

$$Nitrobenzene\ conversion = \left(1 - \frac{Moles\ of\ nitrobenzene}{Moles\ of\ nitrobenzene\ loaded}\right) \times 100\%$$

$$product \ yield = \left(\frac{Moles \ of \ product}{Moles \ of \ nitrobenzene \ loaded}\right) \times 100\%$$

carbon balance = 
$$\left(\frac{Moles \ of \ all \ products}{Moles \ of \ nitrobenzene \ loaded}\right) \times 100\%$$

| No. | Cataiyst                          | <b>Reaction conditions</b>                             | TOF×10 <sup>-4</sup> (s <sup>-1</sup> ) | Refs.      |
|-----|-----------------------------------|--------------------------------------------------------|-----------------------------------------|------------|
| 1   | Co/CoO @Carbon                    | H <sub>2</sub> , 4MPa,120°C                            | 7.01                                    | [1]        |
| 2   | Co@CN-400                         | H <sub>2</sub> , 1MPa,60°C                             | 13.3                                    | [2]        |
| 3   | CeO <sub>2</sub> nanorods         | N <sub>2</sub> H <sub>4</sub> ·H <sub>2</sub> O, 80 °C | 13.9                                    | [3]        |
| 4   | 2.5%Co 25%Mo <sub>2</sub> C/ AC   | N <sub>2</sub> H <sub>4</sub> ·H <sub>2</sub> O, 80 °C | 4.9                                     | [4]        |
| 5   | Rh–Fe <sub>3</sub> O <sub>4</sub> | N <sub>2</sub> H <sub>4</sub> ·H <sub>2</sub> O, 80 °C | 9.8                                     | [4]        |
| 6   | Fe-Ni NPs                         | NaBH4, rt                                              | 47.62                                   | [5]        |
| 7   | Co@NC-800                         | $N_2H_4$ · $H_2O$ , 80 °C                              | 91.1                                    | This study |

Table S1 TOF of nitrobenzene hydrogenation compare with representative work

| Entry | Catalyst | Т (°С) | Time (min) | Yield (%) | Sel (%) |
|-------|----------|--------|------------|-----------|---------|
| 1     | Co@NC    | 600    | 30         | 98        | 83      |
| 2     | Co@NC    | 800    | 30         | 100       | 97      |
| 3     | Co@NC    | 1000   | 30         | 100       | 70      |

Table S2 Catalytic Hydrogenation of Nitrobenzene with different pyrolysistemperature

| Catalysts | Co%  |
|-----------|------|
| Co@NC     | 36.8 |
| Co-NC     | 32.1 |
| Co@NC(al) | 14.7 |

Table S3 Co weight content in Co@NC, Co-NC and Co@NC (al) by ICP-MS

| Catalysts | C%    | N%   | O%   | Co%  |
|-----------|-------|------|------|------|
| Co@NC     | 88.12 | 4.43 | 2.45 | 5    |
| Co-NC     | 82.88 | 5.56 | 3.87 | 7.69 |
| Co@NC(al) | 90.02 | 9.41 | /    | 0.57 |

Table S4 Atomic ratio of each element in the XPS spectrum

| Catalysts | С%   | N%   | O%  | Co%  |
|-----------|------|------|-----|------|
| Co@NC     | 78.2 | 4.3  | 2.7 | 20.2 |
| Co-NC     | 62.7 | 4.9  | 3.9 | 28.5 |
| Co@NC(al) | 86.8 | 10.6 | /   | 2.6  |

Table S5 Weight ratio of each element in the XPS spectrum



Figure S1 The pore sizes distribution diagram derived of Co@NC



**Figure S2** The GC spectra of the solution after reaction. Reaction conditions: 1 mmol of nitrobenzene, 10 mg of catalyst, 5 mL of ethanol



Figure S3 Magnetization data for Co@NC



Figure S4 XRD patterns of the Co-NC



Figure S5 Hot filtration test of the reduction of nitrobenzene with Co@NC as a catalyst.



**Figure S6.** The GC spectra of the solution after reaction. (a) Nitrobenzene hydrogenation (b) p-nitrobenzaldehyde hydrogenation (c) p-nitrostyrene hydrogenation Reaction conditions: 1 mmol of nitrobenzene, 10 mg of catalyst, 5 mL of ethanol



Figure S7. GC-MS analysis of Co-NC catalyst for p-nitrobenzaldehyde hydrogenation



Figure S8. GC-MS analysis of Co-NC catalyst for p-nitrostyrene hydrogenation



Figure S9. <sup>1</sup>H NMR spectra analysis of Co-NC catalyst for p-nitrobenzaldehyde hydrogenation



Figure S10. <sup>1</sup>H NMR spectra analysis of Co-NC catalyst for p-nitrostyrene hydrogenation



**Figure S11** (a) Raman shift of Co@NC and after 20th-Co@NC, (b,c) Representative TEM image of Co-NC and Co@NC



Figure S12The metal particle size distribution histogram of fresh Co-NC



**Figure S13**XANES N K-edge spectra of fresh Co-NC, 5th-Co-NC, fresh Co@NC and 20th-Co@NC respectively

## References

- [1] B. Chen, F. Li, Z. Huang, G. Yuan, ChemCatChem 2016, 8 (6), 1132-1138.
- [2]Y. Cao, K. Liu, C. Wu, H. Zhang, Q. Zhang, Appl. Catal., A 2020, 592, 117434.
- [3] H.-Z. Zhu, Y.-M. Lu, F.-J. Fan, S.-H. Yu, Nanoscale 2013, 5, 7219-7223.
- [4] Z. Zhao, H. Yang, Y. Li, X. Guo, Green Chem. 2014, 16, 1274-1281.
- [5] D. R. Petkar, B. S. Kadu, R. C. Chikate, RSC Adv. 2014, 4, 8004-8010.