Supporting Information

LiBr-promoted photoredox neutral Minisci hydroxyalkylations of quinolines with aldehydes

Xiaochen Ji,* Qiong Liu, Zhongzhen Wang, Pu Wang,* Guo-Jun Deng, and Huawen Huang*

Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, China E-mail: xcji@xtu.edu.cn; 90wangpu@xtu.edu.cn; hwhuang@xtu.edu.cn

Table of Contents

1. General information	S2	
 General procedure Mechanistic studies Late-stage modification of product 3a Characterization data of products References 	S3 S4	
		S 8
	S10 S25	
		7. Copies of ¹ H and ¹³ C NMR spectra of products

1. General information

The reactions via general procedure **A** was carried out under an atmosphere of nitrogen unless otherwise noted. Column chromatography was performed using silica gel (200-300 mesh) or thin layer chromatography was performed using silica gel (GF254). ¹H NMR, ¹³C NMR spectra were recorded on Bruker-AV instrument (400 and 100 MHz, respectively), and chloroform is the solvent with TMS as the internal standard, with the chemical shifts referenced to signals at 7.26 and 77.16 ppm, respectively. Mass spectra were measured on Agilent 5975 GC-MS instrument (EI). High-resolution mass spectra (ESI) were obtained with the Thermo Scientific LTQ Orbitrap XL mass spectrometer. The structures of known compounds were further corroborated by comparing their ¹H NMR, ¹³C NMR data and HRMS data with those in literature. Melting points were measured with a YUHUA X-5 melting point instrument and were uncorrected. All reagents obtained from commercial suppliers were used without further purification. Cyclic voltammograms were recorded with a CHI830B potentiostat at room temperature in MeCN. *n*-Bu₄NBF₄ (0.1 M) was used as the supporting electrolyte, and a glass carbon electrode was used as the working electrode. The auxiliary electrode was a platinum wire electrode. All potentials are referenced against the Ag/AgCl redox couple. The scan rate was 100 mV·s⁻¹.

2. General procedure

A 10 mL reaction vessel was charged with 2-phenylquinoline (**1a**, 41 mg, 0.2 mmol), benzaldehyde (**2a**, 43 μ L, 2.0 equiv), LiBr (8.7 mg, 0.5 equiv), 4CzIPN (0.8 mg, 0.5 mol %), TfOH (5.6 M aq, TfOH/H₂O=1/5, 36 μ L, 1.0 equiv), H₂O (162 μ L, 45 equiv) and PhCl (1.0 mL) successively. The atmosphere was exchanged by applying vacuum and backfilling with N₂ (this process was conducted for three times). The reaction mixture was stirred at 60 °C under the irradiation by a 35 W blue LED for 48 h. The reaction was monitored by TLC. The crude reaction mixture was quenched with saturated sodium carbonate and extracted with ethyl acetate (3×10 mL). The solvent was evaporated under vacuum, and the crude product was purified using silica gel (200-300 mesh) or thin layer chromatography was performed using silica gel (GF254) to give product **3a**.

3. Mechanistic studies

3.1. H/D exchange experiments

3.2. Radical trapping experiments

The following reaction was carried out under general procedure. A 10 mL reaction vessel was charged with 2-phenylquinoline (41 mg, 0.2 mmol), benzaldehyde (43 μ L, 2.0 equiv), LiBr (8.7 mg, 0.5 equiv), 4CzIPN (0.8 mg, 0.5 mol %), TfOH (5.6 M aq, TfOH/H₂O=1/5, 36 μ L, 1.0 equiv), H₂O (162 μ L, 45 equiv), 2,2,6,6-tetramethyl-1-piperidinyloxy (TEMPO) (62.8 mg, 2.0 equiv), and

PhCl (1.0 mL), The atmosphere was exchanged by applying vacuum and backfilling with N_2 (this process was conducted for three times). The reaction mixture was stirred at 50-60 °C under the irradiation by a 35 W blue LED for 48 h. After completion, The formation of **3a** was completely suppressed. Meanwhile, TEMPO-trapped product **6a** was detected by GC-MS.

3.3. Stern–Volmer Quenching¹

Formulation solution: 2-Phenylquinoline (513.8 mg) was dissolved in PhCl in a 25 mL volumetric flask to set the concentration to be 0.1 M. Benzaldehyde (255 μ L) was dissolved in PhCl in a 25 mL volumetric flask to set the concentration to be 0.1 M. LiBr (217.1 mg) was dissolved in acetone in a 25 mL volumetric flask to set the concentration to be 0.1 M. Photocatalyst 4CzIPN (4 mg) was dissolved in PhCl (50 mL) to set the concentration to be 0.1 mM.

Experimental procedure: The resulting 0.1 mM solution (20 μ L) was added to cuvette to obtain different concentrations of catalyst solution. This solution was then diluted to a volume of 2.0 mL by adding further solvent (PhCl) to prepare a 1.0 μ M solution. The resulting mixture was sparged with nitrogen for 3 minutes and then irradiated at 430 nm. Fluorescence emission spectra were recorded (3 trials per sample). Into this solution, 10.0 μ L of a 2-phenylquinoline solution was successively added and uniformly stirred, and the resulting mixture was bubbled with nitrogen for 3 minutes and irradiated at 430 nm. Fluorescence emission spectra of 0 μ L, 10.0 μ L, 20.0 μ L, 30.0 μ L, 40.0 μ L, 50.0 μ L fluorescence intensity. Follow this method and make changes to the amount to obtain the Stern–Volmer relationship in turn.

(a) 4CzIPN quenched by 2-phenylquinoline in PhCl.

(b) 4CzIPN quenched by benzaldehyde in PhCl.

(c) 4CzIPN quenched by LiBr in acetone.

3.4. Cyclic Voltammetry

Cyclic voltammograms were recorded with a CHI830B potentiostat at room temperature in MeCN. n-Bu₄NBF₄ (0.1 M) was used as the supporting electrolyte, and a glass carbon electrode was used as the working electrode. The auxiliary electrode was a platinum wire electrode. All potentials are referenced against the Ag/AgCl redox couple. The scan rate was 100 mV·s⁻¹.

3.5 Light On-Off Experiments

The yield of **3a** was determined by ¹H NMR using CH_2Br_2 as an internal standard. The results revealed that a radical chain process was not the major reaction pathway.

4. Late-stage modification of product 3a

4.1 Oxidation

To a 10 mL reaction vessel was charged successively with **3a** (62.2 mg, 0.2 mmol), Dess-Martin Periodinane (DMP, 848.3 mg, 1.5 equiv) and CH_2Cl_2 (1.0 mL) at 0 °C. The reaction mixture was stirred at room temperature for 4 h. The reaction was monitored by TLC. The crude reaction mixture was quenched with Na₂S₂O₃ (aq, 10%, 5 mL) and then NaOH (1.0 N, 2 mL) were added sequentially. Then the mixture was extracted with ethyl acetate for three times (3*10 mL). The organic solution was washed with brine, dried over sodium sulfate, and filtered. The crude material was purified by silica gel to deliver the product **5a** as a white solid (52.2 mg, 84%).

Phenyl(2-phenylquinolin-4-yl)methanone (5a).² Mp: 102 – 104 °C. ¹H NMR (400 MHz, Chloroform-*d*) δ 8.28 (d, J = 8.5 Hz, 1H), 8.17 (d, J = 7.0 Hz, 2H), 7.94 – 7.90 (m, 2H), 7.89 (s, 1H), 7.86 (d, J = 8.4 Hz, 1H), 7.81 – 7.75 (m, 1H), 7.65 (t, J = 7.4 Hz, 1H), 7.55 – 7.46 (m, 6H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 196.4, 156.6, 148.8, 145.4, 139.0, 136.8, 134.3, 130.5, 130.4, 130.3, 129.9, 129.0, 128.9, 127.6, 127.4, 125.3, 124.0, 117.7. HRMS (ESI) m/z calcd for C₂₂H₁₆NO⁺ (M+H)⁺ 310.1226, found 310.1222.

4.2 Bromination

To a 10 mL reaction vessel was charged successively with **3a** (62.2 mg, 0.2 mmol), CBr₄ (99.5 mg, 1.5 equiv), CH₂Cl₂ (1.0 mL), and PPh₃ (62.9 mg, 1.2 equiv) in an ice bath. After the reaction mixture was stirred for 4 h at room temperature, the reaction solution was concentrated under reduced pressure. The residue was purified by silica gel flash column chromatography to give the corresponding compound **5b** (39.2 mg, 53% yield).

4-(Bromo(phenyl)methyl)-2-phenylquinoline (5b). Yellow oil. ¹H NMR (400 MHz, Chloroform-*d*) δ 8.24 (d, *J* = 8.4 Hz, 1H), 8.16 – 8.14 (m, 3H), 8.02 (d, *J* = 8.4 Hz, 1H), 7.72 (t, *J*

= 7.5 Hz, 1H), 7.56 – 7.46 (m, 6H), 7.40 – 7.30 (m, 3H), 6.98 (s, 1H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 157.3, 148.9, 145.8, 139.5, 139.4, 130.7, 129.8, 129.7, 129.0, 129.0, 128.8, 128.6, 127.7, 126.8, 124.3, 123.4, 120.0, 50.9. HRMS (ESI) m/z calcd for C₂₂H₁₇BrN⁺ (M+H)⁺ 374.0539, found 374.0540.

4.3 Esterification

To a 10 mL reaction vessel was charged successively with **3a** (112.0 mg, 0.36 mmol), Ac₂O (70 μ L, 2.0 equiv), toluene (1.0 mL), and N,N-dimethylpyridin-4-amine (DMAP, 2.2 mg, 5 mol%). The reaction mixture was stirred at room temperature for 4 h. After completion, saturated NaHCO₃ (aq, 10 mL) was added and then the mixture was extracted with ethyl acetate for three times (3*10 mL). The organic solution was washed with brine, dried over sodium sulfate, and filtered. The filtrate was concentrated in vacuo. The crude product was purified by the flash column chromatography to give compound **5c** (97.0 mg, 77%).

Phenyl(2-phenylquinolin-4-yl)methyl acetate (5c). Yellow oil. ¹H NMR (400 MHz, Chloroform-*d*) δ 8.21 (dd, J = 13.8, 8.3 Hz, 3H), 8.06 (s, 1H), 7.96 (d, J = 8.4 Hz, 1H), 7.74 – 7.67 (m, 1H), 7.64 (s, 1H), 7.57 (t, J = 7.4 Hz, 2H), 7.53 – 7.40 (m, 4H), 7.38 – 7.32 (m, 3H), 2.25 (s, 3H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 169.9, 157.2, 148.8, 145.5, 139.7, 138.4, 130.7, 129.6, 129.6, 129.0, 128.9, 128.8, 127.9, 127.7, 126.8, 124.5, 123.7, 116.9, 73.6, 21.4. HRMS (ESI) m/z calcd for C₂₄H₂₀NO₂⁺ (M+H)⁺ 354.1489, found 354.1490.

5. Characterization data of products

Phenyl(2-phenylquinolin-4-yl)methanol (3a)³

White solid. mp: 74 - 76 °C.

¹H NMR (400 MHz, Chloroform-*d*) δ 8.18 (d, J = 8.4 Hz, 1H), 8.12 – 7.96 (m, 3H), 7.74 (d, J = 8.4 Hz, 1H), 7.63 (t, J = 7.6 Hz, 1H), 7.48 – 7.44 (m, 3H), 7.40 – 7.15 (m, 6H), 6.32 (s, 1H), 3.64 (brs, 1H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 157.3, 149.2, 148.4, 141.9, 139.5, 130.2, 129.5, 129.4, 128.9, 128.9, 128.3, 127.7, 127.4, 126.3, 124.7, 123.8, 116.4, 72.8. HRMS (ESI) m/z calcd for C₂₂H₁₈NO⁺ (M + H)⁺ 312.1390, found 312.1392.

4-Benzyl-2-phenylquinoline (3a')⁴

Yellow oil.

¹H NMR (400 MHz, Chloroform-*d*) δ 8.22 (d, J = 84 Hz, 1H), 8.13 – 8.11 (m, 2H), 8.03 (d, J = 8.4, 1H), 7.71 (ddd, J = 8.3, 6.8, 1.4 Hz, 1H), 7.66 (s, 1H), 7.56 – 7.42 (m, 4H), 7.35 – 7.31 (m, 2H), 7.27 – 7.24 (m, 3H), 4.51 (s, 2H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 157.3, 148.7, 147.2, 139.9, 138.9, 130.6, 129.5, 129.4, 129.0, 128.9, 128.9, 127.7, 126.8, 126.7, 126.4, 123.9, 120.0, 38.7.

(2-Phenylquinolin-4-yl)(p-tolyl)methanol (3b)

Yellow solid. mp: 116 – 118 °C.

¹H NMR (400 MHz, Chloroform-*d*) δ 8.23 – 8.13 (m, 4H), 7.81 (d, J = 8.4 Hz, 1H), 7.65 (ddd, J = 8.3, 6.9, 1.2 Hz, 1H), 7.57 – 7.43 (m, 3H), 7.39 (ddd, J = 8.2, 6.9, 1.2 Hz, 1H), 7.27 (d, J = 8.4 Hz,

2H), 7.12 (d, J = 7.9 Hz, 2H), 6.44 (s, 1H), 2.75 (brs, 1H), 2.31 (s, 3H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 157.3, 149.0, 148.6, 139.8, 139.2, 138.3, 130.5, 129.7, 129.5, 129.3, 128.9, 127.8, 127.4, 126.3, 124.7, 123.7, 116.2, 72.9, 21.3. HRMS (ESI) m/z calcd for C₂₃H₂₀NO⁺ (M+H)⁺ 326.1539, found 326.1539.

(4-Fluorophenyl)(2-phenylquinolin-4-yl)methanol (3c)

Yellow solid. mp: 148 - 150 °C.

¹H NMR (400 MHz, Chloroform-*d*) δ 8.18 (d, J = 8.4 Hz, 1H), 8.05 (dd, J = 7.9, 1.7 Hz, 2H), 8.03 (s, 1H), 7.70 (d, J = 8.4 Hz, 1H), 7.68 – 7.61 (m, 1H), 7.53 – 7.43 (m, 3H), 7.37 (ddd, J = 8.3, 6.9, 1.2 Hz, 1H), 7.29 (dd, J = 8.7, 5.3 Hz, 2H), 6.96 (t, J = 8.7 Hz, 2H), 6.33 (s, 1H), 3.51 (brs, 1H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 162.5 (d, J = 245.6 Hz), 157.3, 148.9, 148.5, 139.5, 137.8(d, J = 3.2 Hz), 130.4, 129.6 (d, J = 13.6 Hz), 129.2 (d, J = 8.2 Hz), 128.9, 127.7, 126.4, 124.5, 123.6, 116.3, 115.9, 115.7, 72.2. HRMS (ESI) m/z calcd for C₂₂H₁₇FNO⁺ (M+H)⁺ 330.1289, found 330.1286.

(4-Chlorophenyl)(2-phenylquinolin-4-yl)methanol (3d)

White solid. mp: 155 – 158 °C.

¹H NMR (400 MHz, Chloroform-*d*) δ 8.19 (d, J = 8.4 Hz, 1H), 8.15 – 8.10 (m, 2H), 8.08 (s, 1H), 7.77 (d, J = 8.3 Hz, 1H), 7.71 – 7.61 (m, 1H), 7.55 – 7.44 (m, 3H), 7.43 – 7.35 (m, 1H), 7.33 – 7.26 (m, 4H), 6.41 (s, 1H), 3.03 (brs, 1H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 157.3, 148.6, 148.5, 140.5, 139.5, 134.2, 130.6, 129.7, 129.6, 129.1, 128.9, 128.8, 127.7, 126.5, 124.5, 123.6, 116.4, 72.4. HRMS (ESI) m/z calcd for C₂₂H₁₇ClNO⁺ (M+H)⁺ 346.0993, found 346.0994.

(4-Bromophenyl)(2-phenylquinolin-4-yl)methanol (3e)

White solid. mp: $162 - 164^{\circ}$ C.

¹H NMR (400 MHz, Chloroform-*d*) δ 8.17 (d, J = 8.4 Hz, 1H), 8.09 – 8.02 (m, 2H), 8.00 (s, 1H), 7.72 (d, J = 8.4 Hz, 1H), 7.65 (t, J = 7.7 Hz, 1H), 7.50 – 7.45 (m, J = 5.9 Hz, 3H), 7.39 (t, J = 7.5 Hz, 3H), 7.19 (d, J = 8.4 Hz, 2H), 6.30 (s, 1H), 3.55 (brs, 1H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 157.3, 148.7, 148.5, 140.9, 139.4, 131.9, 130.4, 129.7, 129.6, 129.0, 128.9, 127.7, 126.5, 124.5, 123.6, 122.3, 116.5, 72.3. HRMS (ESI) m/z calcd for C₂₂H₁₇BrNO⁺ (M+H)⁺ 390.0488, found 390.0489.

(2-Phenylquinolin-4-yl)(4-(trifluoromethoxy)phenyl)methanol (3f)

Yellow solid. mp: 141 – 144°C.

¹H NMR (400 MHz, Chloroform-*d*) δ 8.18 (d, J = 8.4 Hz, 1H), 8.04 – 7.93 (m, 3H), 7.74 – 7.61 (m, 2H), 7.51 – 7.42 (m, 3H), 7.41 – 7.30 (m, 3H), 7.12 (d, J = 8.1 Hz, 2H), 6.30 (s, 1H), 3.83 (brs, 1H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 157.3, 148.9, 148.8, 148.4, 140.6, 139.3, 130.3, 129.7, 129.6, 128.9, 128.8, 127.7, 126.5, 124.5, 123.6, 121.2, 120.5 (q, J = 256.0 Hz), 116.5, 72.0. HRMS (ESI) m/z calcd for C₂₃H₁₇F₃NO₂⁺ (M+H)⁺ 396.1206, found 396.1204.

(4-Methoxyphenyl)(2-phenylquinolin-4-yl)methanol (3g)

Yellow oil.

¹H NMR (400 MHz, Chloroform-*d*) δ 8.18 (d, J = 8.3 Hz, 1H), 8.13 (s, 1H), 8.12 – 8.08 (m, 2H), 7.73 (d, J = 8.3 Hz, 1H), 7.67 – 7.60 (m, 1H), 7.53 – 7.41 (m, 3H), 7.36 (t, J = 7.6 Hz, 1H), 7.23 (d, J = 8.7 Hz, 2H), 6.80 (d, J = 8.7 Hz, 2H), 6.33 (s, 1H), 3.74 (s, 3H), 3.28 (brs, 1H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 159.5, 157.3, 149.3, 148.4, 139.6, 134.3, 130.3, 129.5, 129.3, 128.9, 128.8, 127.7, 126.3, 124.6, 123.7, 116.1, 114.3, 72.4, 55.4. HRMS (ESI) m/z calcd for $C_{23}H_{20}NO_2^+$ (M+H)⁺ 342.1489, found 342.1487.

[1,1'-Biphenyl]-4-yl(2-phenylquinolin-4-yl)methanol (3h)

White solid. mp: 206 - 209 °C.

¹H NMR (400 MHz, Chloroform-*d*) δ 8.21 (d, J = 8.4 Hz, 1H), 8.14 (s, 1H), 8.12 (d, J = 6.7 Hz, 2H), 7.82 (d, J = 8.3 Hz, 1H), 7.66 (t, J = 8.2 Hz, 1H), 7.56 – 7.31 (m, 14H), 6.42 (s, 1H), 3.39 (brs, 1H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 157.3, 149.1, 148.5, 141.2, 140.9, 140.5, 139.6, 130.4, 129.6, 129.4, 128.9, 128.9, 127.8, 127.7, 127.6, 127.6, 127.2, 126.4, 124.7, 123.8, 116.4, 72.6. HRMS (ESI) m/z calcd for C₂₈H₂₂NO⁺ (M+H)⁺ 388.1696, found 388.1700.

(2-Phenylquinolin-4-yl)(o-tolyl)methanol (3i)

Yellow solid. mp: 146 – 147 °C.

¹H NMR (400 MHz, Chloroform-*d*) δ 8.20 (d, J = 8.4 Hz, 1H), 8.14 – 8.07 (m, 2H), 8.01 (s, 1H), 7.71 – 7.60 (m, 2H), 7.53 – 7.42 (m, 3H), 7.42 – 7.34 (m, 1H), 7.26 – 7.18 (m, 2H), 7.06 (dt, J =14.2, 7.6 Hz, 2H), 6.61 (s, 1H), 2.72 (brs, 1H), 2.50 (s, 3H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 157.3, 148.9, 148.5, 139.8, 139.7, 136.2, 131.1, 130.5, 130.5, 129.5, 129.4, 128.9, 128.6, 127.7, 127.3, 126.6, 126.5, 124.9, 123.5, 116.7, 69.7, 19.4. HRMS (ESI) m/z calcd for C₂₃H₂₀NO⁺ (M+H)⁺ 326.1539, found 326.1541.

(2-Chlorophenyl)(2-phenylquinolin-4-yl)methanol (3j)

Yellow solid. mp: 160 – 163 °C.

¹H NMR (400 MHz, Chloroform-*d*) δ 8.19 (d, J = 8.7 Hz, 1H), 8.06 – 8.02 (m, 2H), 8.01 (s, 1H), 7.69 – 7.60 (m, 2H), 7.49 – 7.35 (m, 5H), 7.21 (dt, J = 8.3, 4.5 Hz, 1H), 7.09 (d, J = 4.4 Hz, 2H), 6.80 (s, 1H), 3.69 (brs, 1H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 157.3, 148.3, 148.2, 139.5, 139.3, 133.4, 130.3, 129.9, 129.7, 129.5, 129.5, 129.2, 128.9, 127.7, 127.5, 126.6, 124.7, 123.5, 116.6, 68.9. HRMS (ESI) m/z calcd for C₂₂H₁₇ClNO⁺ (M+H)⁺ 346.0993, found 346.0994.

(2-Phenylquinolin-4-yl)(*m*-tolyl)methanol (3k)

Yellow solid. mp: 128 - 130 °C.

¹H NMR (400 MHz, Chloroform-*d*) δ 8.19 (d, J = 8.4 Hz, 1H), 8.13 (s, 2H), 8.12 – 8.11 (m, 1H), 7.78 (d, J = 8.0 Hz, 1H), 7.69 – 7.61 (m, 1H), 7.54 – 7.42 (m, 3H), 7.38 (ddd, J = 8.2, 6.9, 1.2 Hz, 1H), 7.23 – 7.10 (m, 3H), 7.08 (d, J = 7.3 Hz, 1H), 6.36 (s, 1H), 3.19 (brs, 1H), 2.28 (s, 3H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 157.3, 149.1, 148.5, 142.0, 139.7, 138.7, 130.4, 129.5, 129.3, 129.2, 128.9, 128.8, 128.1, 127.7, 126.3, 124.7, 124.5, 123.8, 116.3, 73.0, 21.6. HRMS (ESI) m/z calcd for C₂₃H₂₀NO⁺ (M+H)⁺ 326.1539, found 326.1538.

(3-Fluorophenyl)(2-phenylquinolin-4-yl)methanol (3l)

Yellow oil.

¹H NMR (400 MHz, Chloroform-*d*) δ 8.18 (d, J = 8.4 Hz, 1H), 8.02 (dd, J = 7.5, 1.7 Hz, 2H), 7.96

(s, 1H), 7.74 (d, J = 8.4 Hz, 1H), 7.65 (t, J = 7.5 Hz, 1H), 7.52 – 7.42 (m, 3H), 7.38 (t, J = 7.6 Hz, 1H), 7.25 – 7.19 (m, 1H), 7.07 (t, J = 8.4 Hz, 2H), 6.94 (td, J = 8.5, 2.2 Hz, 1H), 6.30 (s, 1H), 3.72 (brs, 1H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 163.1 (d, J = 245.3 Hz), 157.3, 148.6, 148.5, 144.5 (d, J = 6.6 Hz), 139.4, 130.4 (d, J = 10.5 Hz), 129.6 (d, J = 9.3 Hz), 128.9, 127.7, 126.5, 124.5, 123.6, 122.9 (d, J = 2.9 Hz), 116.6, 115.3, 115.1, 114.4, 114.2, 72.3. HRMS (ESI) m/z calcd for C₂₂H₁₇FNO⁺ (M+H)⁺ 330.1289, found 330.1288.

(3-Bromophenyl)(2-phenylquinolin-4-yl)methanol (3m)

Yellow solid. mp: 135 – 137 °C.

¹H NMR (400 MHz, Chloroform-*d*) δ 8.18 (d, J = 8.4 Hz, 1H), 8.09 – 8.02 (m, 2H), 8.00 (s, 1H), 7.74 (d, J = 8.3 Hz, 1H), 7.71 – 7.63 (m, 1H), 7.56 – 7.43 (m, 4H), 7.43 – 7.35 (m, 2H), 7.22 (d, J = 7.8 Hz, 1H), 7.14 (t, J = 7.8 Hz, 1H), 6.31 (s, 1H), 3.51 (brs, 1H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 157.3, 148.5, 148.4, 144.2, 139.4, 131.4, 130.4, 130.3, 129.7, 129.6, 128.9, 127.7, 126.6, 125.9, 124.5, 123.6, 123.0, 116.6, 72.3. HRMS (ESI) m/z calcd for C₂₂H₁₇BrNO⁺ (M+H)⁺ 390.0488, found 390.0489.

(2,4-Dichlorophenyl)(2-phenylquinolin-4-yl)methanol (3n)

Yellow solid. mp: 153 – 156 °C.

¹H NMR (400 MHz, Chloroform-*d*) δ 8.19 (d, J = 8.4 Hz, 1H), 8.03 (dd, J = 7.8, 1.6 Hz, 2H), 7.96 (s, 1H), 7.70 – 7.58 (m, 2H), 7.51 – 7.36 (m, 5H), 7.12 – 6.99 (m, 2H), 6.73 (s, 1H), 3.66 (brs, 1H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 157.3, 148.3, 147.7, 139.4, 137.9, 134.9, 134.1, 130.4, 130.1, 129.7, 129.7, 129.6, 128.9, 127.8, 127.7, 126.8, 124.5, 123.2, 116.5, 68.4. HRMS (ESI) m/z calcd for C₂₂H₁₆Cl₂NO⁺ (M+H)⁺ 380.0603, found 380.0605.

(2-Chloro-4-fluorophenyl)(2-phenylquinolin-4-yl)methanol (30)

Yellow solid. mp: 148 - 150 °C.

¹H NMR (400 MHz, Chloroform-*d*) δ 8.19 (d, J = 8.4 Hz, 1H), 8.07 – 8.01 (m, 2H), 8.00 (s, 1H), 7.69 – 7.63 (m, 1H), 7.61 (d, J = 8.3 Hz, 1H), 7.48 – 7.44 (m, 3H), 7.40 (t, J = 8.0 Hz, 1H), 7.17 (dd, J = 8.4, 2.5 Hz, 1H), 7.06 (dd, J = 8.7, 6.1 Hz, 1H), 6.81 (td, J = 8.4, 2.6 Hz, 1H), 6.75 (s, 1H), 3.58 (brs, 1H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 162.2 (d, J = 249.7 Hz), 157.28, 148.31, 148.02, 139.38, 135.4 (d, J = 3.5 Hz), 134.2 (d, J = 10.4 Hz), 130.5 (d, J = 6.9 Hz), 130.34, 129.6 (d, J = 3.8 Hz), 128.96, 127.70, 126.72, 124.53, 123.29, 117.3 (d, J = 24.7 Hz), 116.47, 114.89, 114.68, 68.37. HRMS (ESI) m/z calcd for C₂₂H₁₆CIFNO⁺ (M+H)⁺ 364.0899, found 364.0901.

(2-Bromo-5-fluorophenyl)(2-phenylquinolin-4-yl)methanol (3p)

Yellow solid. mp: 175 - 179 °C.

¹H NMR (400 MHz, Chloroform-*d*) δ 8.20 (d, J = 8.6 Hz, 1H), 8.06 – 7.98 (m, 2H), 7.87 (s, 1H), 7.73 – 7.71(m, 2H), 7.54 (dd, J = 8.4, 5.1 Hz, 1H), 7.51 – 7.37 (m, 4H), 6.94 – 6.82 (m, 2H), 6.68 (s, 1H), 3.81 (brs, 1H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 162.3 (d, J = 246.6 Hz), 157.3, 147.4, 143.1 (d, J = 6.8 Hz), 139.3, 134.4 (d, J = 7.7 Hz), 130.4, 129.7, 128.9, 127.7, 126.8, 124.7, 123.3, 117.7 (d, J = 3.2 Hz), 117.4, 117.1, 116.8, 116.6 (d, J = 4.5 Hz), 71.2. HRMS (ESI) m/z calcd for C₂₂H₁₆BrFNO⁺ (M+H)⁺ 408.0394, found 408.0397.

(2-Phenylquinolin-4-yl)(thiophen-2-yl)methanol (3q)

Brown solid. mp: 150 - 151 °C.

¹H NMR (400 MHz, Chloroform-*d*) δ 8.20 (d, J = 8.4 Hz, 1H), 8.16 (s, 1H), 8.15 – 8.10 (m, 2H), 7.85 (d, J = 8.3 Hz, 1H), 7.72 – 7.63 (m, 1H), 7.55 – 7.38 (m, 4H), 7.28 – 7.24 (m, 1H), 6.94 – 6.80 (m, 2H), 6.67 (s, 1H), 3.25 (brs, 1H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 157.4, 148.6, 148.5, 145.9, 139.6, 130.5, 129.6, 129.5, 128.9, 127.7, 127.0, 126.5, 126.2, 126.2, 124.5, 123.5, 115.8, 68.4. HRMS (ESI) m/z calcd for C₂₀H₁₆NOS⁺ (M+H)⁺ 318.0947, found 318.0947.

Naphthalen-2-yl(2-phenylquinolin-4-yl)methanol (3r)

Brown solid. mp: 138 - 140 °C.

¹H NMR (400 MHz, Chloroform-*d*) δ 8.26 – 8.10 (m, 4H), 7.88 – 7.74 (m, 5H), 7.66 – 7.61 (m, 1H), 7.53 – 7.43 (m, 6H), 7.38 – 7.32 (m, 1H), 6.58 (s, 1H), 3.20 (brs, 1H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 157.3, 148.8, 148.5, 139.6, 139.4, 133.4, 133.2, 130.4, 129.6, 129.5, 123.0, 128.9, 128.3, 127.8, 127.8, 126.5, 126.5, 126.5, 125.1, 124.7, 123.8, 116.6, 73.2. HRMS (ESI) m/z calcd for C₂₆H₂₀NO⁺ (M+H)⁺ 362.1539, found 362.1540.

Phenyl(2-(p-tolyl)quinolin-4-yl)methanol (4a)

Yellow solid. mp: 177 – 180 °C.

¹H NMR (400 MHz, Chloroform-*d*) δ 8.16 (d, J = 8.4 Hz, 1H), 8.06 (s, 1H), 7.99 (d, J = 8.1 Hz,

2H), 7.76 (d, J = 8.3 Hz, 1H), 7.68 – 7.55 (m, 1H), 7.42 – 7.20 (m, 8H), 6.37 (s, 1H), 3.38 (brs, 1H), 2.42 (s, 3H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 157.2, 148.9, 148.5, 142.0, 139.6, 136.8, 130.2, 129.6, 129.3, 128.9, 128.9, 128.3, 127.6, 127.4, 126.1, 124.6, 123.7, 116.3, 72.9, 21.5. HRMS (ESI) m/z calcd for C₂₃H₂₀NO⁺ (M+H)⁺ 326.1539, found 326.1537.

(2-(4-Fluorophenyl)quinolin-4-yl)(phenyl)methanol (4b)

Yellow solid. mp: 171 - 174 °C.

¹H NMR (400 MHz, Chloroform-*d*) δ 8.18 (d, J = 8.4 Hz, 1H), 8.05 (dd, J = 7.9, 1.7 Hz, 2H), 8.03 (s, 1H), 7.70 (d, J = 8.4 Hz, 1H), 7.64 (ddd, J = 8.3, 6.9, 1.3 Hz, 1H), 7.53 – 7.42 (m, 3H), 7.40 – 7.33 (m, 1H), 7.33 – 7.27 (m, 2H), 7.01 – 6.90 (m, 2H), 6.33 (s, 1H), 3.51 (brs, 1H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 162.5 (d, J = 245.6 Hz), 157.3, 148.9, 148.4, 139.4, 137.8 (d, J = 3.2 Hz), 130.3, 129.6 (d, J = 13.6 Hz), 129.2 (d, J = 8.2 Hz), 128.9, 127.7, 126.4, 124.5, 123.6, 116.3, 115.9, 115.7, 72.2. HRMS (ESI) m/z calcd for C₂₂H₁₇FNO⁺ (M+H)⁺ 330.1289, found 330.1288.

(2-(4-Chlorophenyl)quinolin-4-yl)(phenyl)methanol (4c)

Yellow solid. mp: 169 - 171 °C.

¹H NMR (400 MHz, Chloroform-*d*) δ 8.17 (d, J = 8.4 Hz, 1H), 8.09 (s, 1H), 8.06 (d, J = 8.5 Hz, 2H), 7.79 (d, J = 8.4 Hz, 1H), 7.70 – 7.62 (m, 1H), 7.45 (d, J = 8.5 Hz, 2H), 7.43 – 7.27 (m, 6H), 6.42 (s, 1H), 3.08 (brs, 1H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 155.9, 149.2, 148.4, 141.9, 138.0, 135.7, 130.4, 129.6, 129.1, 129.0, 128.9, 128.5, 127.4, 126.6, 124.7, 123.7, 115.9, 72.9. HRMS (ESI) m/z calcd for C₂₂H₁₇ClNO⁺ (M+H)⁺ 346.0993, found 346.0990.

(2-(4-Bromophenyl)quinolin-4-yl)(phenyl)methanol (4d)

Yellow solid. mp: 100 - 101 °C.

¹H NMR (400 MHz, Chloroform-*d*) δ 8.16 (d, J = 8.4 Hz, 1H), 8.03 (s, 1H), 7.91 (d, J = 8.5 Hz, 2H), 7.74 (d, J = 8.3 Hz, 1H), 7.64 (t, J = 7.6 Hz, 1H), 7.57 (d, J = 8.5 Hz, 2H), 7.38 (t, J = 7.6 Hz, 1H), 7.35 – 7.23 (m, 5H), 6.35 (s, 1H), 3.54 (brs, 1H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 155.9, 149.4, 148.3, 141.9, 138.3, 132.0, 130.2, 129.6, 129.2, 128.9, 128.4, 127.4, 126.6, 124.7, 124.1, 123.7, 115.9, 72.8. HRMS (ESI) m/z calcd for C₂₂H₁₇BrNO⁺ (M+H)⁺ 390.0488, found 390.0490.

Phenyl(2-(4-(trifluoromethoxy)phenyl)quinolin-4-yl)methanol (4e)

Yellow solid. mp: 158 - 160 °C.

¹H NMR (400 MHz, Chloroform-*d*) δ 8.17 (d, J = 8.4 Hz, 1H), 8.13 (d, J = 8.7 Hz, 2H), 8.09 (s, 1H), 7.78 (d, J = 8.4 Hz, 1H), 7.66 (t, J = 7.6 Hz, 1H), 7.43 – 7.27 (m, 8H), 6.40 (s, 1H), 3.23 (brs, 1H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 155.8, 150.3, 149.3, 148.4, 141.9, 138.2, 130.4, 129.6, 129.2, 129.0, 128.5, 127.4, 126.7, 124.7, 123.7, 121.2, 120.6 (q, J = 255.9 Hz), 116.0, 72.9. HRMS (ESI) m/z calcd for C₂₃H₁₇F₃NO₂⁺ (M+H)⁺ 396.1206, found 396.1207.

(2-(3-Chlorophenyl)quinolin-4-yl)(phenyl)methanol (4f)

Yellow solid. mp: 101 - 102 °C.

¹H NMR (400 MHz, Chloroform-*d*) δ 8.16 (d, J = 8.4 Hz, 1H), 8.03 (s, 1H), 7.99 (d, J = 8.6 Hz, 2H), 7.75 (d, J = 8.3 Hz, 1H), 7.69 – 7.61 (m, 1H), 7.44 – 7.24 (m, 8H), 6.36 (s, 1H), 3.46 (brs, 1H), 7.69 – 7.61 (m, 1H), 7.44 – 7.24 (m, 8H), 6.36 (s, 1H), 3.46 (brs, 1H), 7.44 – 7.24 (m, 8H), 6.36 (s, 1H), 3.46 (brs, 1H), 7.44 – 7.44 (m, 8H), 6.36 (s, 1H), 3.46 (brs, 1H), 7.44 – 7.44 (m, 8H), 6.36 (s, 1H), 3.46 (brs, 1H), 7.44 – 7.44 (m, 8H), 6.36 (s, 1H), 3.46 (brs, 1H), 7.44 – 7.44 (m, 8H), 6.36 (s, 1H), 3.46 (brs, 1H), 7.44 – 7.44 (m, 8H), 6.36 (s, 1H), 3.46 (brs, 1H), 7.44 – 7.44 (m, 8H), 6.36 (s, 1H), 3.46 (brs, 1H), 7.44 – 7.44 (m, 8H), 6.36 (s, 1H), 3.46 (brs, 1H), 7.44 – 7.44 (m, 8H), 6.36 (s, 1H), 3.46 (brs, 1H), 7.44 – 7.44 (m, 8H), 6.36 (s, 1H), 3.46 (brs, 1H), 7.44 – 7.44 (m, 8H), 6.36 (s, 1H), 3.46 (brs, 1H), 7.44 – 7.44 (m, 8H), 6.36 (s, 1H), 3.46 (brs, 1H), 7.44 – 7.44 (m, 8H), 6.36 (s, 1H), 7.44 – 7.44 (m, 8H), 7.44 – 7.44 (m, 8H

1H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 155.9, 149.3, 148.4, 141.9, 137.9, 135.7, 130.3, 129.5, 129.0, 128.9, 128.9, 128.4, 127.4, 126.5, 124.7, 123.7, 115.9, 72.8. HRMS (ESI) m/z calcd for C₂₂H₁₇ClNO⁺ (M+H)⁺ 346.0993, found 346.0995.

(2-(3-Bromophenyl)quinolin-4-yl)(phenyl)methanol (4g)

Yellow oil.

¹H NMR (400 MHz, Chloroform-*d*) δ 8.34 (t, J = 1.8 Hz, 1H), 8.18 (d, J = 8.4 Hz, 1H), 8.15 (s, 1H), 8.10 – 8.04 (m, 1H), 7.82 (d, J = 8.4 Hz, 1H), 7.71 – 7.63 (m, 1H), 7.61 – 7.56 (m, 1H), 7.45 – 7.28 (m, 7H), 6.47 (s, 1H), 2.87 (brs, 1H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 155.6, 149.2, 148.5, 141.9, 141.7, 132.4, 130.7, 130.6, 130.4, 129.6, 129.1, 128.6, 127.4, 126.8, 126.2, 124.8, 123.7, 123.2, 115.9, 73.0. HRMS (ESI) m/z calcd for C₂₂H₁₇BrNO⁺ (M+H)⁺ 390.0488, found 390.0487.

Phenyl(2-(4-(trifluoromethyl)phenyl)quinolin-4-yl)methanol (4h)

Brown oil.

¹H NMR (400 MHz, Chloroform-*d*) δ 8.45 (s, 1H), 8.30 (d, J = 7.8 Hz, 1H), 8.22 – 8.16 (m, 2H), 7.79 (d, J = 8.4 Hz, 1H), 7.74 – 7.63 (m, 2H), 7.60 (t, J = 7.8 Hz, 1H), 7.40 (t, J = 8.1 Hz, 1H), 7.37 – 7.27 (m, 5H), 6.43 (s, 1H), 3.20 (brs, 1H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 155.5, 149.5, 148.4, 141.9, 140.4, 131.3 (q, J = 32.0 Hz), 130.9, 130.5, 129.7, 129.4, 129.0, 128.5, 127.4, 126.8, 126.1 (q, J = 10.9 Hz), 124.8, 124.5 (q, J = 11.4 Hz), 124.3 (q, J = 270.9 Hz), 123.7, 115.8, 72.9. HRMS (ESI) m/z calcd for C₂₃H₁₇F₃NO⁺ (M+H)⁺ 380.1257, found 380.1258.

Phenyl(2-(thiophen-2-yl)quinolin-4-yl)methanol (4i)

Yellow solid. mp:160 – 163 °C.

¹H NMR (400 MHz, Chloroform-*d*) δ 8.07 (d, J = 8.4 Hz, 1H), 7.98 (s, 1H), 7.67 (t, J = 5.9 Hz, 2H), 7.63 – 7.56 (m, 1H), 7.47 (dd, J = 5.0, 0.9 Hz, 1H), 7.39 – 7.27 (m, 6H), 7.14 (dd, J = 5.0, 3.7 Hz, 1H), 6.36 (s, 1H), 3.07 (brs, 1H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 152.3, 148.9, 148.2, 145.2, 141.7, 129.8, 129.5, 128.9, 128.8, 128.4, 128.2, 127.4, 126.4, 126.1, 124.7, 123.7, 114.9, 72.8. HRMS (ESI) m/z calcd for C₂₀H₁₆NOS⁺ (M+H)⁺ 318.0947, found 318.0948.

(6-Methyl-2-phenylquinolin-4-yl)(phenyl)methanol (4j)

Orange solid. mp: 138 - 140 °C.

¹H NMR (400 MHz, Chloroform-*d*) δ 8.09 – 8.04 (m, 3H), 7.98 (s, 1H), 7.53 (s, 1H), 7.51 – 7.42 (m, 4H), 7.38 – 7.26 (m, 5H), 6.35 (s, 1H), 3.35 (brs, 1H), 2.42 (s, 3H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 156.3, 148.3, 147.0, 142.0, 139.6, 136.2, 131.6, 130.0, 129.3, 128.9, 128.9, 128.3, 127.6, 127.3, 124.7, 122.7, 116.3, 72.7, 22.1. HRMS (ESI) m/z calcd for C₂₃H₂₀NO⁺ (M+H)⁺ 326.1539, found 326.1540.

(4-Butylquinolin-2-yl)(phenyl)methanol (4k)

Yellow solid. mp: 130 - 134 °C.

¹H NMR (400 MHz, Chloroform-*d*) δ 8.15 (d, J = 8.4 Hz, 1H), 8.00 (d, J = 8.3 Hz, 1H), 7.73 (ddd, J = 8.3, 7.0, 1.3 Hz, 1H), 7.56 (ddd, J = 8.2, 7.0, 1.2 Hz, 1H), 7.46 – 7.38 (m, 2H), 7.38 – 7.27 (m, 3H), 7.00 (s, 1H), 6.15 (s, 1H), 5.84 (brs, 1H), 3.06 – 2.87 (m, 2H), 1.67 – 1.61 (m, 2H), 1.43 –

1.33 (m, 2H), 0.92 (t, J = 7.3 Hz, 3H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 160.1, 145.0, 146.2, 143.1, 129.6, 129.5, 128.7, 128.0, 127.6, 127.0, 126.4, 123.7, 118.8, 75.1, 32.2, 32.2, 22.8, 13.9. HRMS (ESI) m/z calcd for C₂₀H₂₂NO⁺ (M+H)⁺ 292.1696, found 292.1696.

(4-Chloroquinolin-2-yl)(phenyl)methanol (4l)

Yellow solid. mp: 123 – 125 °C.

¹H NMR (400 MHz, Chloroform-*d*) δ 8.21 – 8.18 (m, 1H), 8.16 (d, J = 8.5 Hz, 1H), 7.87 – 7.75 (m, 1H), 7.69 – 7.61 (m, 1H), 7.45 – 7.28 (m, 6H), 5.84 (s, 1H), 5.80 (s, 1H). ¹³C NMR (100 MHz, Chloroform-*d*) δ 160.8, 146.9, 143.6, 142.2, 131.0, 129.3, 128.9, 128.4, 127.7, 127.5, 125.8, 124.3, 119.4, 75.2. HRMS (ESI) m/z calcd for C₁₆H₁₃ClNO⁺ (M+H)⁺ 270.0680, found 270.0680.

(4-Chloro-6,7-dimethoxyquinolin-2-yl)(phenyl)methanol (4m)

Brown solid. mp: 187 - 190 °C.

¹H NMR (400 MHz, Chloroform-*d*) δ 7.46 (s, 1H), 7.42 – 7.39 (m, 2H), 7.38 – 7.33 (m, 3H), 7.32 – 7.29 (m, 1H), 7.15 (s, 1H), 5.80 (s, 1H), 5.64 (brs, 1H), 4.08 (s, 3H), 4.05 (s, 3H). ¹³C NMR (100MHz, Chloroform-*d*) δ 158.7, 153.5, 150.7, 144.1, 142.7, 141.4, 128.8, 128.2, 127.4, 121.1, 117.6, 108.1, 102.0, 75.1, 56.5, 56.4. HRMS (ESI) m/z calcd for C₁₈H₁₇ClNO₃⁺ (M+H)⁺ 330.0891, found 330.0894.

(6-Bromoisoquinolin-1-yl)(phenyl)methanol (4n)

Yellow solid. mp: 118 - 120 °C.

¹H NMR (400 MHz, Chloroform-*d*) δ 8.56 (d, *J* = 5.7 Hz, 1H), 8.01 (d, *J* = 1.9 Hz, 1H), 7.82 (d, *J* = 9.0 Hz, 1H), 7.63 - 7.50 (m, 2H), 7.36 - 7.16 (m, 6H), 6.33 (s, 1H). ¹³C NMR (100 MHz,

Chloroform-*d*) δ 159.6, 143.0, 141.0, 137.9, 131.2, 129.7, 128.9, 128.2, 127.7, 126.7, 125.4, 123.7, 120.2, 72.7. 6. HRMS (ESI) m/z calcd for C₁₆H₁₃BrNO⁺ (M+H)⁺ 314.0175, found 314.0178.

4-(4-methylbenzyl)-2-phenylquinoline (3b')

White solid. mp: 121 - 123 °C.

¹H NMR (400 MHz, Chloroform-*d*) δ 8.23 (d, J = 8.4 Hz, 1H), 8.14 (d, J = 7.6 Hz, 2H), 8.04 (d, J = 8.4 Hz, 1H), 7.72 (t, J = 7.6 Hz, 1H), 7.67 (s, 1H), 7.55 – 7.45 (m, 4H), 7.17 – 7.12 (m, 4H), 4.47 (s, 2H), 2.35 (s, 3H); ¹³C NMR (100 MHz, Chloroform-*d*) δ 157.1, 148.5, 147.3, 139.7, 136.1, 135.6, 130.3, 129.4, 129.3, 129.2, 128.7, 128.7, 127.5, 126.5, 126.2, 123.7, 119.8, 38.1, 21.0. HRMS (ESI) m/z calcd for C₂₃H₂₀N⁺ (M+H)⁺ 310.1590, found 310.1584.

4-(4-fluorobenzyl)-2-phenylquinoline (3c')

White solid. mp: 113 - 115 °C.

¹H NMR (400 MHz, Chloroform-*d*) δ 8.25 (d, *J* = 8.5 Hz, 1H), 8.14 (d, *J* = 7.8 Hz, 2H), 7.98 (d, *J* = 8.3 Hz, 1H), 7.73 (t, *J* = 7.7 Hz, 1H), 7.62 (s, 1H), 7.58 – 7.43 (m, 4H), 7.19 (dd, *J* = 8.4, 5.5 Hz, 2H), 7.02 (t, *J* = 8.6 Hz, 2H), 4.44 (s, 2H); ¹³C NMR (100 MHz, Chloroform-*d*) δ 161.5 (d, *J* = 245.0 Hz), 157.1, 148.5, 146.7, 139.5, 134.3 (d, *J* = 3.2 Hz), 130.4, 130.3, 130.2, 129.3 (d, *J* = 9.6 Hz), 128.7, 127.4, 126.3, 126.3, 123.5, 119.6, 115.5 (d, *J* = 21.3 Hz), 37.6. HRMS (ESI) m/z calcd for C₂₂H₁₇FN⁺ (M+H)⁺ 314.1340, found 314.1342.

4-(naphthalen-2-ylmethyl)-2-phenylquinoline (3r')

White solid. mp: 158 - 160 °C.

¹H NMR (400 MHz, Chloroform-*d*) δ 8.26 (d, *J* = 8.5 Hz, 1H), 8.15 (d, *J* = 8.0 Hz, 2H), 8.06 (d, *J* = 8.4 Hz, 1H), 7.85 – 7.81 (m, 2H), 7.77 – 7.72 (m, 3H), 7.66 (s, 1H), 7.54 – 7.46 (m, 6H), 7.41 – 7.38 (m, 1H), 4.65 (s, 2H); ¹³C NMR (100 MHz, Chloroform-*d*) δ 157.1, 148.5, 146.8, 139.6, 136.2, 133.5, 132.2, 130.4, 129.4, 129.2, 128.7, 128.3, 127.6, 127.6, 127.5, 127.3, 127.1, 126.6, 126.3, 126.1, 125.6, 123.7, 119.9, 38.7. HRMS (ESI) m/z calcd for C₂₆H₂₀N⁺ (M+H)⁺ 346.1590, found 346.1588.

2-benzyl-4-chloroquinoline (4l')

White solid. mp: 57 - 59 °C.

¹H NMR (400 MHz, Chloroform-*d*) δ 8.12 (d, J = 8.4 Hz, 1H), 8.10 (d, J = 8.4 Hz, 1H), 7.74 – 7.70 (m, 1H), 7.57 – 7.53 (m, 1H), 7.31 – 7.29 (m, 5H), 7.25 – 7.21 (m, 1H), 4.29 (s, 2H); ¹³C NMR (100 MHz, Chloroform-*d*) δ 161.1, 148.5, 142.8, 138.4, 130.3, 129.2, 129.1, 128.7, 126.9, 126.7, 124.9, 123.9, 121.4, 45.2. HRMS (ESI) m/z calcd for C₁₆H₁₃ClN⁺ (M+H)⁺ 254.0731, found 254.0727.

6. References

- 1. Nacsa, E. D.; MacMillan, D. W. C. J. Am. Chem. Soc. 2018, 140, 3322 3330.
- Gao, G.-L.; Niu, Y.-N.; Yan, Z.-Y.; Wang, H.-L.; Wang, G.-W. Shaukat, A.; Liang, Y.-M. J. Org. Chem. 2010, 75, 1305 1308.
- León, B.; Fong, J. C. N.; Peach, K. C.; Wong, W. R.; Yildiz, F. H.; Linington, R. G. Org. Lett. 2013, 15, 1234 – 1237.
- 4. Z. Wang, Q. Liu, X. Ji, G.-J. Deng and H. Huang, ACS Catal., 2020, 10, 154-159.

7. Copies of ¹H and ¹³C NMR spectra of products

¹H and ¹³C NMR spectra of 3a

f1 (ppm)

¹H and ¹³C NMR spectra of 3a'

¹H and ¹³C NMR spectra of 3b

¹H and ¹³C NMR spectra of 3c

¹H and ¹³C NMR spectra of 3d

¹H and ¹³C NMR spectra of 3e

¹H and ¹³C NMR spectra of 3f

¹H and ¹³C NMR spectra of 3g

¹H and ¹³C NMR spectra of 3h

¹H and ¹³C NMR spectra of 3i

¹H and ¹³C NMR spectra of 3j

¹H and ¹³C NMR spectra of 3k

¹H and ¹³C NMR spectra of 3l

¹H and ¹³C NMR spectra of 3m

¹H and ¹³C NMR spectra of 3n

¹H and ¹³C NMR spectra of 30

¹H and ¹³C NMR spectra of 3q

¹H and ¹³C NMR spectra of 3r

f1 (ppm)

¹H and ¹³C NMR spectra of 4a

¹H and ¹³C NMR spectra of 4b

č 90 80 f1 (ppm)

¹H and ¹³C NMR spectra of 4c

¹H and ¹³C NMR spectra of 4d

¹H and ¹³C NMR spectra of 4e

¹H and ¹³C NMR spectra of 4f

¹H and ¹³C NMR spectra of 4g

¹H and ¹³C NMR spectra of 4h

¹H and ¹³C NMR spectra of 4i

¹H and ¹³C NMR spectra of 4j

δ f1 (ppm)

¹H and ¹³C NMR spectra of 4k

¹H and ¹³C NMR spectra of 4l

fl (ppm)

¹H and ¹³C NMR spectra of 4m

¹H and ¹³C NMR spectra of 4n

¹H and ¹³C NMR spectra of 7

H and ¹³C NMR spectra of 8

¹H and ¹³C NMR spectra of 9

¹H and ¹³C NMR spectra of 3c'

