Electronic Supporting Information (ESI)

Monitoring lignin partition in aqueous/alcohol biphasic systems according to pH: influences of the molecular structure and solvent characteristics

Quentin Schmetz^a, Claire Muzyka^b, Thomas Berchem^a and Aurore Richel^a

- a. University of Liège Gembloux Agro-Bio Tech, Laboratory of Biomass & Green Technologies, Passage des Déportés, 2, B-5030 Gembloux, Belgium
- b. University of Liège Gembloux Agro-Bio Tech, Passage des Déportés, 2, B-5030 Gembloux, Belgium

Lignin	Alcohol	pH 12	рН 9.5	рН 7	рН 3.5
	1-butanol	-1.238 ± 0.275	-0.019 ± 0.044	0.250 ± 0.060	1.337 ± 0.073
Indulin AT	1-pentanol	-1.482 ± 0.003	-0.275 ± 0.023	0.156 ± 0.028	1.027 ± 0.007
	1-octanol	-2.204 ± 0.022	-1.071 ± 0.008	-0.573 ± 0.012	0.566 ± 0.033
	1-butanol	-1.489 ± 0.051	-0.586 ± 0.031	-0.352 0.001	0.947 ± 0.041
P1000	1-pentanol	-1.722 ± 0.069	-0.817 ± 0.026	-0.456 0.069	0.850 ± 0.075
	1-octanol	-1.916 ± 0.145	-1.144 ± 0.035	-0.818 0.090	0.062 ± 0.042
	1-butanol	-1.922 ± 0.012	-0.808 ± 0.010	-0.488 ± 0.126	0.600 ± 0.009
R5000	1-pentanol	-1.903 ± 0.02	-1.019 ± 0.029	-0.715 ± 0.005	0.393 ± 0.040
	1-octanol	-2.137 ± 0.05	-1.317 ± 0.001	-1.090 ± 0.017	0.004 ± 0.015

 Table S1
 Lignin partition coefficients of biphasic system according to alcohol type and pH of the aqueous phase

Wavelength (cm ⁻¹) - Maximal absorption			Assignements (Casas et al., 2012; Faix,
			1992; Li and Mcdonald, 2014)
Indulin AT	P1000	R5000	
3400-3346	3410-3394	3410-3369	OH stretching
2931-2923	2929-2919	2931-2925	CH asymmetric stretching
2869-2835	2869-2840	2871-2854	C-H symmetric stretching
4707 4700	1707 1702	4707 4700	C=O stretching (carboxylic acid
1/3/-1/02	1/3/-1/02	1/3/-1/02	unconjugated)
1643-1635	1637-1629	1639-1635	C=O stretching in conjugated
1500 1500	1600 1504	1600 1506	Aromatic skeletal vibrations plus C=O
1220-1202	1000-1394	1000-1590	stretch (S>G)
1512-1508	1513-1512	1517-1513	Aromatic skeletal vibrations
1463-1458	1463-1456	1459-1453	Asymmetric bending deformation of
1400 1400	1403 1430	1+55 1+55	methyl and methylene groups
1427-1423	1425	1427-1421	C-H in plane deformation with aromatic
112, 1125	1125	1127 1121	ring stretching
_	1330-1324	1324-1321	S unit breathing with C-O stretching and
	2000 202 1		condensed G rings
1267-1263	1270-1267	1269-1267	C-O of guaiacyl ring
1216-1213	1216-1209	1216-1209	C-C plus C-O stretch
1130-1122	-	-	Ether -O-
-	1120-1116	1116-1110	Aromatic C-H deformation in syringyl units
1090-1080	_	_	C-O deformation in secondary alcohols and
			aliphatic esters
1033-1027	1033-1029	1035-1031	Aromatic C-H in plane deformation (G>S)
1000 102,	1000 1020	1000 1001	plus C-O deformation in primary alcohols
858-852	_	_	C-H out of plane in position 2,5 and 6 of G
000 002	- 200-000		unit
_	833-829	827	C-H out of plane in position 2 and 6 of S
	- 655-629 827		and all positions of H unit
815-813	_	_	C–H out-of-plane in positions 2, 5 and 6 of
013-013	-		G units

 Table S2
 FTIR band assignments of Indulin AT, P1000 and R5000

Solvent	рН	Indulin AT (Softwood)	P1000 (Herbaceous)	R5000 (Hardwood)
		^a 1724 cm ⁻¹	^a 1720 cm ⁻¹	^a 1716 cm ⁻¹
	9.5	0,14	0,10	0,25
D t I	7	0,14	0,61	0,43
Butanol	3.5	0,40	0,87	0,76
	2.5	1,28	1,60	3,69
		^a 1726 cm ⁻¹	^a 1722 cm ⁻¹	^a 1722 cm ⁻¹
Pentanol	9.5	0,12	0,17	0,22
	7	0,60	0,81	0,75
	3.5	0,74	1,06	1,19
	2.5	1,22	1,27	2,28

Table S3	ATR-FTIR ratio	of C=O	unconju	gated	signal

Ratio = absorbance of the signal of the carbonyl region/absorbance of the signal attributed to ring vibrations (1512 cm⁻¹) (Faix, 1992)

^a wavenumber of the maximal absorbance of the signal in the unconjugated region for fraction at pH 2.5

Solvent	рН	Indulin AT (Softwood)	P1000 (Herbaceous)	R5000 (Hardwood)
	95	0.90	1 22	1 32
Butanol	7	1.17	0.91	1.07
	3.5	1,10	1,36	1,30
	2.5	2,18	1,94	3,73
Pentanol	9.5	0,96	1,13	0,53
	7	1,10	1,24	1,25
	3.5	1,27	1,30	1,99
	2.5	1,57	1,43	3,39
Ratio = abso vibrations (2.5 orbance of the sig 1512 cm ⁻¹) (Faix.	1,57 gnal of the C-C and C-O (1215 o 1992)	1,43 cm ⁻¹)/absorbance of the sig	3,39 mal attributed to r

 Table S4
 ATR-FTIR ratio of the aromatic region (1215 cm⁻¹)

Label	δ _c /δ _H	Assignement (Yuan et al., 2011; Heikkinen et al., 2014; Del Río et al., 2012;		
		Constant et al., 2016; Hu et al., 2016b; Crestini et al., 2017)		
Β _β	53.4/3.05	C_{β} – H_{β} in phenylcoumaran substructures		
C _β	53.6/3.4	C_{β} – H_{β} in β – β' resinol substructures		
-OCH₃	55.6/3.7	C-H in methoxyls		
Aγ	59,8/3.7	$C_{\gamma}\text{-}H_{\gamma}$ in $\gamma\text{-}hydroxylated \beta\text{-}O\text{-}4'$ substructures		
lγ	60.12-61.3/4.07-4.1	C_{γ} – H_{γ} in cinnamylalcoholend-groups		
Βγ	62.7/3.7	$C_{\gamma}\text{-}H_{\gamma}$ in phenylcoumaran substructures		
A _{α(G)}	70.9/4.7	$C_{\alpha}\text{-}H_{\alpha}$ in $\beta\text{-}O\text{-}4'$ substructures linked to a G-unit		
Cγ	70.9/4.1	$C_{\gamma}\text{-}H_{\gamma}$ in $\beta\text{-}\beta'$ resinol substructures		
A _{a(S)}	71.6/4.8	$C_{\alpha}\text{-}H_{\alpha}$ in $\beta\text{-}O\text{-}4'$ substructures linked to a S-unit		
X2	73/3.1	C ₂ –H ₂ in xylan substructure		
Х3	74/3.3	C ₃ -H ₃ in xylan substructure		
X4	75.7/3.5	C ₄ –H ₄ in xylan substructure		
Eα	79.1/5.54	C_{α} – H_{α} in α -O-4' substructures		
Fα	81.2/5.0	C_{α} – H_{α} in spirodienone substructure		
A _{β(G)}	83.8/4.26	$C_{\beta}\text{-}H_{\beta}$ in $\beta\text{-}O\text{-}4'$ substructures linked to a G unit		
Cα	84.6/4.62	$C_{\alpha} - H_{\alpha}$ in $\beta - \beta'$ resinol substructures		
Α _{β (S)}	85.9/4.1	$C_{\beta}\text{-}H_{\beta}$ in $\beta\text{-}O\text{-}4'$ substructures linked to a S unit		
Βα	85.9-87.7/5.42-5.5	C_{α} – H_{α} in phenylcoumaran substructures		
S _{2,6}	103.7/6.67	C_2 – H_2 and C_6 – H_6 in etherified syringyl units		
S' _{2,6}	106.3/7.3	$C_2\text{-}H_2$ and $C_6\text{-}H_6$ in $\alpha\text{-}oxidised$ syringyl units		
G2	110.9/6.96	C ₂ -H ₂ in guaiacyl units		
Fer ₂	111.0/7.32	C ₂ -H ₂ in ferulate		
ΡϹΑ _β /ϜΑ _β	113.6/6.25	C_{β} – H_{β} in <i>p</i> -coumarate and ferulate		
G₅	114.4/6.7	C_5 – H_5 in guaiacyl units		
PCA _{3,5}	115.5/6.77	C_3 - H_3 and C_5 - H_5 in <i>p</i> -coumarate		
G ₆	118.8/6.75	C_6-H_6 in guaiacyl units		
FA ₆	123.1/7.1	C ₆ -H ₆ in ferulate		
H _{2,6}	127.7/7.1-7.2	C _{2,6} -H _{2,6} in <i>p</i> -hydroxyphenyl units		
PCA _{2,6}	130.0/7.44	C_2 - H_2 and C_6 - H_6 in <i>p</i> -coumarate		
ΡϹΑ _α /ϜΑ _α	144.9/7.5	C_{α} – H_{α} in <i>p</i> -coumarate and ferulate		
ArCHO	191.1/9.78	$C_{\alpha}\text{-}H_{\alpha}$ in cinnamyl aldehyde end-groups		

Fig. S1³¹P spectrum of Indulin AT (**A**), magnification on the region of interest for quantification from 125-150 ppm (**B**).

Fig. S2 ³¹P spectrum of P1000 (**A**), magnification on the region of interest for quantification from 125-150 ppm (**B**).

Fig. S3 ³¹P spectrum of R5000 (**A**), magnification on the region of interest for quantification from 125-150 ppm (**B**).

Fig. S4 Partition coefficient evolution of (square) Indulin AT (I), (circle) P1000 (**P**) and (triangle) R5000 (**R**) in biphasic system according to pH variation of the aqueous phase and the organic phase (red) butanol (**B**), (green) pentanol (**P**) and (blue) octanol (**O**).

Fig. S5 ATR-FTIR spectra of Indulin AT, P1000 and R5000 parent and migrated fractions in octanol in transmittance (%) as function of wavelength (cm⁻¹).

Fig. S6 2D-HSQC spectra of R5000 fraction in butanol at pH 9.5 (**A**) and 2.5 (**B**) as well as fractions in pentanol at pH 9.5 (**C**) and 2.5 (**D**).

Fig. S7 2D-HSQC spectra of aromatic/unsaturated region of Indulin AT fraction in butanol at pH 9.5 (**A**) and 3.5 (**B**) as well as fractions in pentanol at pH 9.5 (**C**) and 3.5 (**D**).

Fig. S8 2D-HSQC spectra of aromatic/unsaturated region of P1000 fraction in butanol at pH 9.5 (**A**) and 3.5 (**B**) as well as fractions in pentanol at pH 9.5 (**C**) and 3.5 (**D**).