ELECTRONIC SUPPLEMENTARY INFORMATION (ESI)

Supramolecular biosolvents made up of self-assembled rhamnolipids: synthesis and characterization

Encarnación Romera-García¹, Ana Ballesteros-Gómez^{1*}, Soledad Rubio¹

¹Department of Analytical Chemistry, University Institute of Nanochemistry, Faculty of Science, University of Córdoba, Marie Curie Annex Building, Campus of Rabanales, 14071 Córdoba, Spain

*Corresponding author. Tel.: +34 957 218 644; fax: +34 957 218 644. E-mail address: ana.ballesteros@uco.es.

Table of contents

Figures	Page
Figure ESI1. General scheme for the synthesis of supramolecular solvents	ESI4
Figure ESI2. Chemical structures of Rha-C10-C10 (A) and Rha-Rha-C10-C10 (B)	ESI5
Figure ESI3. Variation of the slopes of the linear regression lines of SUPRAS volume (μ L·mL ⁻¹ mixture) versus rhamnolipid percentage (w/v), as a function of salt concentration (M) in the synthesis mixture	ESI6
Figure ESI4. Volume of bioSUPRAS (μ L·mL ⁻¹ mixture) versus initial concentration of rhamnolipid (%, w/v), at two concentrations of salt (A: 1.50 M; B: 1.75 M)	ESI7
Figure ESI5. Agreement between the measured volumes of bioSUPRASs (μ L·mL ⁻¹ mixture) and those calculated using the proposed equations (A: NaCl; B: Na ₂ SO ₄)	ESI8
Figure ESI6. Water content in bioSUPRASs (%, w/w) formed using different initial concentrations of salts (M) and rhamnolipid (1.8-9%, w/v)	ESI9
Figure ESI7. Optical micrograph of a bioSUPRAS produced from a mixture containing 4.5% of rhamnolipid (w/v) and 0.85 M of $NH_4CH_3CO_2$	ESI10
Figure ESI8. Chemical structures of trypan blue (A) and malachite green oxalate salt (B)	ESI11

Table of contents

Tables	Page
Table ESI1. Critical aggregation concentration (mM) reported for	ESI12
colloidal systems produced from pure and mixed rhamnolipids	
under different experimental conditions	
Table ESI2. Slopes and correlation coefficients calculated from the	ESI13
linear regression lines of SUPRAS volume ($\mu L \cdot m L^{-1}$ mixture) as a	
function of rhamnolipid percentage (w/v) in the colloidal system, at	
different concentrations of salts (M)	
Table ESI3. Density values (g·mL ⁻¹) of bioSUPRASs formed from	ESI14
different NaCl (M) and rhamnolipid (%, w/v) concentrations	
Table ESI4. Density values (g·mL ⁻¹) of bioSUPRASs formed from	ESI15
different Na ₂ SO ₄ (M) and rhamnolipid (%, w/v) concentrations	
Table ESI5. Morphology and size distribution of anionic	ESI16-17
rhamnolipids at different concentrations of biosurfactant (g $\cdot L^{-1}$) and	
salt (M)	
Table ESIC Comparison of any ironmental /health and sustainability	EC110 10

Table ESI6. Comparison of environmental/health and sustainabilityESI18-19concerns and market prices for different SUPRAS developed inextraction processes.

Figure ESI1. General scheme for the synthesis of supramolecular solvents

Concentration-induced self-assembly

Environmental conditions-induced coacervation

Figure ESI2. Chemical structures of Rha-C10-C10 (A) and Rha-Rha-C10-C10 (B)

Figure ESI3. Variation of the slopes of the linear regression lines of SUPRAS volume $(\mu L \cdot m L^{-1} \text{ mixture})$ versus rhamnolipid percentage (w/v), as a function of salt concentration (M) in the synthesis mixture

Figure ESI4. Volume of bioSUPRAS (μ L·mL⁻¹ mixture) versus initial concentration of rhamnolipid (%, w/v), at two concentrations of salt (A: 1.50 M; B: 1.75 M)

Figure ESI5. Agreement between the measured volumes of bioSUPRASs (μ L·mL⁻¹ mixture) and those calculated using the proposed equations (A: NaCl; B: Na₂SO₄)

Figure ESI6. Water content in bioSUPRASs (%, w/w) formed using different initial concentrations of salts (M) and rhamnolipid (1.8-9%, w/v)

Figure ES17. Optical micrograph of a bioSUPRAS produced from a mixture containing 4.5% of rhamnolipid (w/v) and 0.85 M of $NH_4CH_3CO_2$

⊢––| 50 μm

Table ESI1. Critical aggregation concentration (mM) reported for colloidal systems

 produced from pure and mixed rhamnolipids under different experimental conditions

Common sitting of	Production of co		
composition of rhamnolipid product	Experimental conditions	Critical aggregation concentration (mM)	Reference
	рН 4.0	0.01	
Rha-Rha-C ₁₀ -C ₁₀ (50%)	pH 7.4	0.50	
Rha-Rha- C ₁₀ -C ₁₂ (29%)	pH 4.0, 0.15 M NaCl	0.01	[52]
Impurities (21%)	pH 7.4, 0.15 M NaCl	0.11	
	pH 7.4, 0.50 M NaCl	0.10	
Pho Cu Cu	pH 4.0	0.05	
	pH 7.4	0.25	[[2]
RIId- C10-C12:1	pH 4.0, 0.1 M NaCl	0.05	[53]
KIId- C10-C12	pH 7.4, 0.1 M NaCl	0.04	
Rha-C ₁₀ -C ₁₀	UHQ water	0.04	
	pH 7.0	0.18	
	рН 9.0	0.36	
	0.5 M NaCl	0.03	
Rha-Rha-C10-C10	UHO water	0.07	
	pH 7.0	0.11	
	pH 9.0	0.18	
	0.5 M NaCl	0.08	
		0.00	[49]
Rha-C10-C10 (30%) Rha-Rha-C10-C10 (70%)	рН 9	0.26	
Rha-C10-C10 (50%) Rha-Rha-C10-C10 (50%)	рН 9	0.34	
Rha-C ₁₀ -C ₁₀ (70%) Rha-Rha-C ₁₀ -C ₁₀ (30%)	рН 9	0.34	
Rha-C ₁₀ -C ₁₀	UHQ water	0.1	
	0.05 M NaCl	0.1	
	0.50 M NaCl	0.05	
	1 M NaCl	0.04	
			[54]
Rha-Rha-C ₁₀ -C ₁₀	UHQ water	0.15	
	0.05 M NaCl	0.08	
	0.50 M NaCl	0.08	
	1 M NaCl	0.04	
Rha-C ₁₀ -C ₁₀	UHQ water	0.10	
	0.375 M NaCl	0.05	
	0.875 M NaCl	0.05	
			[48]
Rha-Rha-C ₁₀ -C ₁₀	UHQ water	0.02	
	0.375 M NaCl	0.02	
	0.875 M NaCl	0.02	

Table ESI2. Slopes and correlation coefficients calculated from the linear regression lines of SUPRAS volume (μ L·mL⁻¹ mixture) as a function of rhamnolipid percentage (w/v) in the colloidal system, at different concentrations of salts (M)

Synthesis conditions	Slope (µL SUPRAS · mL ⁻¹ mixture · % ⁻¹ w/v RL)	Correlation coefficient
1.25 M NaCl	64.49	0.9958
1.50 M NaCl	47.75	0.9977
1.75 M NaCl	40.85	0.9988
2.00 M NaCl	36.53	0.9975
2.25 M NaCl	31.08	0.9999
1.00 M Na ₂ SO ₄	51.81	0.9995
1.15 M Na ₂ SO ₄	40.49	0.9998
1.35 M Na ₂ SO ₄	33.03	0.9992
1.50 M Na ₂ SO ₄	28.15	0.9987
1.75 M Na ₂ SO ₄	23.23	0.9987

Table ESI3.	Density values (g·mL ⁻¹) of bioSUPRASs formed from different NaCl ((M) a	and
rhamnolipic	l (%, w/v) concentrations		

Synthesis co	nditions	bioSUPRAS
% Rhamnolipid (w/v)	[NaCl] (M)	ρ±SD (g·mL⁻¹)
1.8	1.00	1.07±0.01
1.8	1.25	1.05±0.02
1.8	1.50	1.08±0.01
1.8	1.75	1.06±0.02
2.7	1.00	1.063±0.001
2.7	1.25	1.07±0.02
2.7	1.50	1.06±0.02
2.7	1.75	1.081±0.008
2.7	2.00	1.067±0.007
4.5	1.25	1.088±0.008
4.5	1.50	1.073±0.009
4.5	1.75	1.071±0.008
4.5	2.00	1.09±0.01
5.4	1.25	1.07±0.01
5.4	1.50	1.083±0.003
5.4	1.75	1.075±0.001
5.4	2.00	1.08±0.02
5.4	2.25	1.092±0.001
6.3	1.25	1.08±0.03
6.3	1.50	1.09±0.01
6.3	1.75	1.09±0.01
6.3	2.00	1.08±0.01
6.3	2.25	1.10±0.02
9.0	1.25	1.081±0.005
9.0	1.50	1.05±0.01
9.0	1.75	1.11±0.02
9.0	2.00	1.078±0.004
9.0	2.25	1.08±0.02

Synthesis co	onditions	bioSUPRAS
% Rhamnolipid (w/v)	[Na ₂ SO ₄] (M)	ρ±SD (g·mL⁻¹)
1.8	1.00	1.07±0.04
1.8	1.15	1.10±0.02
1.8	1.35	1.04±0.01
1.8	1.50	1.11±0.02
1.8	1.75	1.12±0.01
2.7	1.00	1.12±0.04
2.7	1.15	1.087±0.007
2.7	1.35	1.117±0.003
2.7	1.50	1.10±0.02
2.7	1.75	1.10±0.05
4.5	1.00	1.11±0.03
4.5	1.15	1.142±0.009
4.5	1.35	1.13±0.02
4.5	1.50	1.035±0.005
4.5	1.75	1.10±0.06
6.3	1.00	1.13±0.02
6.3	1.15	1.13±0.02
6.3	1.35	1.12±0.04
6.3	1.50	1.136±0.008
6.3	1.75	1.11±0.003
9.0	1.00	1.10±0.06
9.0	1.15	1.07±0.06
9.0	1.35	1.16±0.01
9.0	1.50	1.149±0.001
9.0	1.75	1.13±0.02

Table ESI4. Density values ($g \cdot mL^{-1}$) of bioSUPRASs formed from different Na₂SO₄ (M) and rhamnolipid (%, w/v) concentrations

Composition of	Experimental conditions			Hydrodynamic	Aggregate morphology	
rhamnolipid product	mnolipid product Rhamnolipid pH NaCl		NaCl	diameter range or mean (nm)	(electron microscopy)	Reference
Rha-Rha-C10-C10 (50%) Rha-Rha- C10-C12 (29%)	<0.7 g·L ⁻¹	7.4	0.15 M	Bimodal distribution (43-66; 350-550)	Spherical vesicles (150-200 nm); elongated vesicles with lengths >1000 nm and aggregated	[52]
Impurities (21%)	> 1.8 g·L ⁻¹	L^{-1} 7.4 0.15 M > 1500 structures of larger size	structures of larger size			
Rha-C ₁₀ -C ₁₀	0.07-0.7 g·L ⁻¹	6.8	0.05-1 M	Not reported	Morphology transition from spherical micelles to bilayer structures and to hexagonal (rod	[54]
Rha-Rha-C ₁₀ -C ₁₀	0.07-0.7 g·L ⁻¹	6.8	0.05-1 M		shaped) micelles, for both monoRha and diRha, with increasing NaCl concentration.	[0.]
Rha-C ₁₀ -C ₁₀	1 g·L ⁻¹		No salt	140.3±2.0 (PDI 0.263)		
			0.375 M	2212±444.1 (PDI 0.890)		
			0.875 M	4674±359.8 (PDI 1.0)		
Rha-Rha-C ₁₀ -C ₁₀	0.5 g·L ⁻¹		No salt 0.375 M 0.875 M	133.1±4.9 (PDI 0.373) >10000 >10000	NaCl 0.875 M: Giant vesicle-like structures (in the μ m range) by self-assembling of the crude RL mixture and spherical structures for mono-RLs and di-RLs.	[48]
Rha-C10-C10 (10%) Rha-Rha-C10-C10 (30%) Impurities (60%)	1.5 g·L ⁻¹		No salt 0.375 M 0.875 M	302.8±7.4 (PDI 0.549) 456.6±42.2 (PDI 0.596) 2343±154.1 (PDI 0.753)		

Table ESI5. Morphology and size distribution of anionic rhamnolipids at different concentrations of biosurfactant (g·L⁻¹) and salt (M)

PDI: polydispersity index

Composition of	Experimental conditions		Hydrodynamic	Aggregate mornhology		
rhamnolipid product	Rhamnolipid	рН	NaCl	diameter range or mean (nm)	(electron microscopy)	Reference
Mixture 1 (monoRha) Rha-C _{14:2} (3.1%) Rha-C _{12:2} (24 %)	1.8 g·L ⁻¹	6.8	0.01 M	Unimodal distribution (40-350)		
Rha-C ₁₂ -C ₁₀ (14.1%) Rha-C ₁₀ -C _{12:1} (5.0%) Rha-C ₁₀ -C ₁₀ (43.4%) Rha-C _{10:1} C8 (4.5%) Rha-Rha-C ₁₀ -C ₁₀ (5.9%)	3.6 g·L ⁻¹	6.8	0.01M	Multimodal distribution (50-300; 300-1000; 2000-3000)		
Mixture 2: (DiRha) Rha-Rha-C ₁₀ -C _{14:1} (4.1%) Rha-Rha-C ₁₀ -C ₁₃ (2.2%)	1.8 g·L ⁻¹	6.8	0.01 M	Multimodal distribution (4-10; 40-100; 200-500)		
Rha-Rha-C ₁₀ -C ₁₂ (22,23) Rha-Rha-C ₁₀ -C ₁₂ (37,5%) Rha-Rha-C ₁₀ -C ₁₀ (45,1%) Rha-Rha-C ₁₀ -C ₈ and Rha-Rha-C ₈ -C ₁₀ (6,9%) Rha-Rha-C ₁₀ (4,12%)	3.6 g·L ⁻¹	6.8	0.01 M	Multimodal distribution (10-40; 150-1000; 2000-4000)	Not reported	[62]
Crude extract containing mixture 1 (64%) and mixture 2 (36%)	1.8 g·L ⁻¹	6.8	0.01 M	Bimodal distribution (70-200; 400-1000)		
. ,	3.6 g·L ⁻¹	6.8	0.01 M	Multimodal distribution (80-170; 500-2000; 2000-5000)		

Table ESI5. Morphology and size distribution of anionic rhamnolipids at different concentrations of biosurfactant (g·L⁻¹) and salt (M)

Table ESI6. Comparison of environmental/health and sustainability concerns and market prices for different SUPRAS developed in extraction

processes

Extraction of compounds/ samples	Surfactant(s) and solvents (percentage ^a)	Coacervation- inducing agent ^b	Environmental/health concerns and specific regulations ^c	Sustainability concerns	Surfactant market price	Reference
Bixin and norbixin in food	Octanoic acid (2%, v/v) THF (35%, v/v)	Poor solvent (type II water, 3.207 mL; H ₂ O/THF volume ratio 1.80; pH 3)	Decanoic acid: harmful to aquatic life with long lasting effects. THF is suspected of causing cancer , highly flammable. Included in the Community rolling action plan (CoRAP). Other: acid conditions needed.	Synthetic surfactant and organic solvent. Mild acidic synthesis conditions	Carboxylic acids: \$ 0.5-2/kg	[64]
Xanthohumol in beer	Triton X-114 (2.5%, v/v) Water content in sample, pH 5	Temperature (70 ℃) and salt (NaCl, 15% w/v)	Triton X-114 is an endocrine disruptor , very toxic to aquatic life, with long lasting effects, harmful if swallowed and suspected of damaging fertility or the unborn child. It is classified as substance of very high concern (SVHC)	Synthetic surfactant. High temperature synthesis conditions	Triton series: \$ 2-10/kg	[65]
Vitamin E in water	Sodium dodecane sulphonic acid, SDSA (1%, w/v) Water sample	Acid (HCl, 4.2 M)	-	Synthetic surfactant. Strong acidic synthesis conditions	SDSA: \$ 1-1.5/kg	[66]
Erythrosine and tartrazine in food	Triton X-100 (~2%, w/v) Cetyl trimethyl ammonium bromide, CTAB (~6·10 ⁻⁴ %, w/v), type II water, pH 2.5	Temperature (70 °C) and salt (KCl, 0.1% w/v)	Triton X-100 is an endocrine disruptor very toxic to aquatic life with long lasting effects, causes serious eye damage, harmful if swallowed. It is classified as substance of very high concern (SVHC)	Synthetic surfactant. High temperature synthesis conditions	Triton series: \$ 2-10/kg Cetyl trimethyl ammonium bromide: \$ 1-10/kg	[67]

^a Percentage of each compound in the synthesis mixture.

^b In the case of water-induced coacervation, water volume per sample and H₂O/solvent volume ratio are indicated.

^cEU ECHA database (hazards regarding eye or skin or respiratory irritation not included).

Table ESI6. Comparison of environmental/health and sustainability concerns and market prices for different SUPRAS developed in extraction processes

Extraction of compounds/ samples	Surfactant(s) and solvents (percentage ^a)	Coacervation- inducing agent ^b	Environmental/health concerns and specific regulations ^c	Sustainability concerns	Surfactant market price	Reference
Perfluoroalkyl compounds in blood serum	Hexanoic acid (6.5%, v/v), THF (40%, v/v)	Poor solvent (water content in sample;~765 μL/volume ratio H ₂ O/THF 1.28, acid pH	THF: see first table row	Synthetic surfactant and organic solvent. Mild acidic synthesis conditions	Carboxylic acids: \$ 0.5-2/kg	[68]
Chlorophenols in river water	Cetrimide (0.5%, w/v) 1-octanol (0.08%, v/v) Water sample	Salt (NaCl, 37.8% w/v)	Cetrimide: substance very toxic to aquatic life, harmful if swallowed, causes serious eye damage, may cause damage to organs through prolonged or repeated exposure, causes skin irritation and may cause respiratory irritation. 1-octanol: very toxic to aquatic life with long lasting effects, causes serious eye damage, harmful if swallowed and in contact with skin, highly flammable, may cause respiratory irritation and may cause drowsiness or dizziness	Synthetic surfactant and co-surfactant	Cetrimide: \$ 1-10/kg	[69]
Dyes in water	Rhamnolipids	Salt (NaCl at ~1-2 M, Na ₂ SO ₄ , ~0.5- 1.5M or NH ₄ CH ₃ CO ₂ ~0.5- 1.5M	-	-	\$ 20-25/kg	This study

^a Percentage of each compound in the synthesis mixture.

^b In the case of water-induced coacervation, water volume per sample and H₂O/solvent volume ratio are indicated.

^cEU ECHA database (hazards regarding eye or skin or respiratory irritation not included).