## **Electronic Supplementary Information**

Photocatalytic ensemble **HP-T**@ Au-Fe<sub>3</sub>O<sub>4</sub>: Synergistic and balanced operation in Kumada and Heck coupling reactions.

## Harpreet Kaur, Manoj Kumar\*, Vandana Bhalla\*

# Department of Chemistry, UGC Sponsored Centre for Advanced Studies-II, Guru Nanak Dev University, Amritsar 143005, and Punjab, India vanmana@yahoo.co.in

- **S3** General Experimental procedures
- S4 Synthetic scheme for derivative 2.
- **S5** Procedures for Kumada cross coupling and Heck coupling reactions.
- **S6** Comparison of catalytic activity of **HP-T**@Au-Fe<sub>3</sub>O<sub>4</sub> nanohybrid material in Kumada coupling reaction for the preparation of biaryl derivatives reported in literature.
- **S7** Comparison of catalytic activity of **HP-T**@Au-Fe<sub>3</sub>O<sub>4</sub> nanohybrid material in Heck coupling reaction reported in literature.
- **S8** <sup>1</sup>H NMR and <sup>13</sup>C NMR spectra of derivative **2**.
- **S9** ESI-MS spectrum of derivative **2** and Elemental analysis of derivative **2**.
- **S10** UV-vis absorption and emission spectra of derivative **2** upon varying water fraction.
- **S11** UV-vis absorption spectra of derivative **2** upon increasing temperature and UV-vis absorption spectra of derivative **2** upon addition of Au<sup>3+</sup> and Fe<sup>3+</sup> ions.
- S12 DLS studies and TGA of HP-T@ Au-Fe<sub>3</sub>O<sub>4</sub> nanohybrid material.
- **S13** Hysteresis loop of **HP-T**(*a*) **Au-Fe<sub>3</sub>O<sub>4</sub>** nanohybrid material.
- S14 Overlay <sup>1</sup>H NMR spectra of (a) compound 2 and (b) its polymeric species after reaction of derivative 2 with AuCl<sub>3</sub> and FeCl<sub>3</sub> and GPC chromatogram of oxidized species HP-T.

- S15 UV-vis absorption of HP-T and A) Fluorescence spectra of HP-T and upon addition of bare Au-Fe<sub>3</sub>O<sub>4</sub> nanoparticles; (B) Spectral overlap of absorption spectrum of Au-Fe<sub>3</sub>O<sub>4</sub> NPs and fluorescence spectrum of oxidized species HP-T.
- **S16** Kumada coupling reaction using different solvent systems and Kumada coupling reaction by varying different amount of catalytic system.
- **S17** Calculations for TON/TOF and ICP-MS analysis of **HP-T@Au-Fe<sub>3</sub>O<sub>4</sub>** nanohybrid material.
- **S18** ICP-MS analysis of whole reaction mixture.
- S19 Characterization data of compounds 5a-5h
- S20 Characterization data of compounds 8a-8g
- **S21** <sup>1</sup>H-NMR spectra of compound **5a** and **5b**.
- S22  $^{1}$ H-NMR spectra of compound 5c and 5d.
- **S23** <sup>1</sup>H-NMR spectra of compound **5e** and **5f**.
- S24 <sup>1</sup>H-NMR spectra of compound 5g and 5h.
- S25 <sup>1</sup>H-NMR spectra of compound 8a and 8b.
- S26 <sup>1</sup>H-NMR spectra of compound 8c and 8d.
- S27 <sup>1</sup>H-NMR spectra of compound 8e and 8f.
- S28 <sup>1</sup>H-NMR spectra of compound 8g.
- **S29** Recyclability graphs for Kumada coupling and Heck coupling reaction.

#### GENERAL EXPERIMENTAL SECTION

**Materials and reagents:** All the reagents were purchased from Aldrich and were used without further purification. THF was dried over sodium and benzophenone as an indicator. UV-vis studies were performed in THF, distilled water and HEPES buffer (0.05 M) (pH = 7.05).

**Instrumentation:** UV-vis spectra were recorded on a SHIMADZU UV-2450 spectrophotometer, with a quartz cuvette (path length, 1 cm). The cell holder was thermostatted at 25°C. The fluorescence spectra were recorded with a SHIMADZU- 5301 PC spectrofluorimeter. The TEM and HR-TEM images were recorded in HR-TEM-JEM 2100 microscope. The dynamic light scattering (DLS) data were recorded with MALVERN Instruments (Nano-ZS). <sup>1</sup>H and <sup>13</sup>C NMR spectra were recorded on a BRUKER-AVANCE-II FT-NMR-AL 500 MHz and JEOL 400 MHz spectrophotometer using CDCl<sub>3</sub>, as solvent and tetramethylsilane, SiMe<sub>4</sub> as internal standards. Data are reported as follows: chemical shifts in ppm, multiplicity (s = singlet, d = doublet, t = triplet, m = multiplet, dd = doublet of doublet), coupling constants *J* (Hz), integration and interpretation. Silica gel 60 (60-120 mesh) was used for column chromatography.

#### Procedure for analyte sensing by derivative 2

A 5.58 mg portion of compound **2** was dissolved in 10.0 mL of dry THF to prepare a  $10^{-3}$  M stock solution. This stock solution (15 µL) was further diluted with 1185 µL of double distilled water and 1800 µL of dry THF to prepare an experimental solution of derivative **2** (3.0 mL 5.0 µM) in Water/THF (4/6, v/v), pH 7.06, which was used for each UV–vis and fluorescence experiment.  $10^{-1}$  M to  $10^{-3}$  M solutions of Au<sup>3+</sup> and Fe<sup>3+</sup> metal ions as their perchlorate/chloride salts were used. In titration experiments, each time a 3 ml solution of **2** was taken in a quartz cuvette to record the spectra.

#### Synthesis of Supramolecular Ensemble HP-T@Au-Fe<sub>3</sub>O<sub>4</sub> nanohybrid material

An aqueous solution of 38  $\mu$ L of 10<sup>-3</sup> M AuCl<sub>3</sub> and 30  $\mu$ L of 10<sup>-3</sup> M FeCl<sub>3</sub> was mixed into 3.0 mL of a 5.0  $\mu$ M solution of compound **2** in an H<sub>2</sub>O/THF (4/6, v/v)

mixture. The reaction mixture was stirred at room temperature, and the color of solution changed from colourless to reddish brown after 1h; thereafter formation of brown HP-T@AuFe<sub>3</sub>O<sub>4</sub> nanohybrid material.

#### Synthesis of Derivative 2.

A solution of [2,5-diphenyl-3,4-di(thiophen-2-yl)cyclopenta-2,4 dien-1-one] **2a** (0.2 g, 1.0 mmol) and [1,2-di(thiophen-2-yl)ethyne] **2b** (0.095 g, 1.0 mmol) were mixed in 2mL of diphenylether and refluxed for 24 h under an inert atmosphere (N<sub>2</sub>). After the completion of reaction, the reaction mixture was cooled down to r.t. and methanol (10 mL) was then added to it. The reaction mixture was kept for stirring at r.t for 1h. After this, methanol layer was decanted off, and the insoluble dark oil was subjected to column chromatography using 10:90 EtOH/hexane as an eluent to give (0.210 g, 75%) of compound **2** as a white solid. <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>)  $\delta$  7.91 (d, *J* = 5 Hz, 4H), 7.71 (d, *J* = 5 Hz, 4H), 7.46 (d, *J* = 5 Hz, 2H), 7.37 (d, *J* = 5 Hz, 2H), 7.20 – 7.18 (m, 2H), 7.01-6.99 (m, 4H), 6.61-6.56 (m, 2H), 6.47 (d, *J* = 5 Hz, 2H). <sup>13</sup>C NMR (75 MHz, CDCl<sub>3</sub>)  $\delta$  143.4, 141.2, 135.6, 130.5, 129.3, 126.9, 126.0, 125.7. The ESI-MS of C<sub>34</sub>H<sub>22</sub>S<sub>4</sub>: showed a parent ion peak at m/z 559.6495 corresponding to [M + H]<sup>+</sup>. Elemental analysis: Found for C<sub>34</sub>H<sub>22</sub>S<sub>4</sub>: C, 73.08; H, 3.97; S, 22.95. Anal. Calcd for C<sub>34</sub>H<sub>22</sub>S<sub>4</sub>: 72.84; H, 3.66; S, 22.89.



Scheme S1.Synthesis of derivative 2

General procedure for the photocatalytic Kumada cross coupling catalyzed by Supramolecular ensemble HP-T@AuFe<sub>3</sub>O<sub>4</sub>: Chlorobenzene 3a (100 mg, 1 mmol) was dissolved in THF (2 mL) in the presence of HP-T@AuFe<sub>3</sub>O<sub>4</sub> (200 uL) in a 10 mL RBF, then the Grignard reagent 4 (4 mmol) was slowly added dropwise. The solution was stirred for 20 min at RT under visible light irradiation. After the reaction was completed (TLC), The reaction mixture was diluted with water and ethyl acetate. The resultant organic layer was passed through anhydrous Na<sub>2</sub>SO<sub>4</sub> and was concentrated under reduced pressure to acquire the crude sample. The target products (5a-5h) were purified by flash chromatography using hexane as an eluent. The desired products 5a-5h were found in excellent to good yield and confirmed from their spectroscopic and analytical data.

General procedure for the photocatalytic Heck coupling catalyzed by Supramolecular ensemble HP-T@AuFe<sub>3</sub>O<sub>4</sub>: A mixture of aryl-halides (3a, 100 mg, 1 mmol), acrylate (Me/Et/n-Bu, 1.2 mmol) and K<sub>2</sub>CO<sub>3</sub> (l mmol) in the presence of HP-T@AuFe<sub>3</sub>O<sub>4</sub> (200 uL) was stirred for 2h at 40 °C under visible light irradiation. The reaction progress was screened by TLC at different time intervals. After the completion of the reaction, the reaction mixture was treated with water and extracted with ethyl acetate and the resultant organic layer was dried over anhydrous Na<sub>2</sub>SO<sub>4</sub> and was concentrated under reduced pressure to acquire the crude sample. The desired products (8a-8g) were purified by flash chromatography using hexane as an eluent. The desired products 8a-8g were found in excellent to good yield and confirmed from their spectroscopic and analytical data.

**Tables S1**. Comparison of catalytic activity of HP-T@ Au-Fe<sub>3</sub>O<sub>4</sub> nanohybrid material for preparation of biaryl derivatives through Kumada coupling over other catalytic system reported in literature.

| S.  | Publication                                                | Catalyst                                                                                                                | Ar-X  | Solvent                               | Reaction conditio  | Photo                     | s Temp<br>. (°C) | Recycla<br>bility | Yield (%) |     |
|-----|------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|-------|---------------------------------------|--------------------|---------------------------|------------------|-------------------|-----------|-----|
| No. |                                                            | used                                                                                                                    | (X)   |                                       | n                  | catalysis                 |                  |                   | X-Cl      | X-I |
| 1.  | Present Work                                               | HP-T@Au<br>Fe3O4                                                                                                        | Cl    | H <sub>2</sub> O/<br>THF              | Aerial<br>atm.     | Yes<br>(Visible<br>light) | RT               | Yes               | 93        | 87  |
| 2.  | Angew. Chem.<br>Int. Ed. 2019, <b>58</b> ,<br>13030-13034. | Fe(acac)₃<br>and NHC                                                                                                    | Cl    | Dry<br>THF                            | $N_2$ atm          | Yes<br>(Blue<br>LED)      | RT               | No                | 93-95     |     |
| 3.  | Org. Lett. 2019,<br><b>21</b> , 50–55                      | Ni(xant)(o<br>Tol)Cl                                                                                                    | Cl    | Dry<br>THF/<br>(Toluen<br>e or<br>NMP | N <sub>2</sub> atm | No                        | RT-60<br>°C      | No                | 93        |     |
| 4.  | Adv. Synth.<br>Catal. 2019, <b>361</b> ,<br>2329-2336.     | Ni(dppe)Cl <sub>2</sub>                                                                                                 | OTs   | Dry<br>THF                            | Ar atm.            | No                        | 23 °C            | No                | 94        |     |
| 5.  | ACS Appl. Nano<br>Mater. 2018, 1,<br>6950-6958.            | Fe (II) NPs.<br>(SAFe)                                                                                                  | I/Br  | Dry<br>THF                            | Ar atm.            | No                        | 75 °C            | Yes               | 13        | 96  |
| 6.  | J. Am. Chem.<br>Soc. 2018, <b>140</b> ,<br>13628-13633.    | Ni-Li-Olefin<br>Complex                                                                                                 | Cl/Br | MTBE                                  | Ar atm.            | No                        | -50 °C           | No                | 60-70     |     |
| 7.  | Organometallics 2<br>017, <b>36</b> , 255-265.             | $[Ni(IMe)]_{2}(\mu \\ -Cl)(\mu:\eta^{1},\eta^{2} \\ -C_{6}H_{5})$                                                       | Cl    | Dry<br>THF                            | N <sub>2</sub> atm | No                        | RT               | No                | 85        |     |
| 8.  | Chem Asian<br>J. 2017 <b>12</b> , 1234-<br>1239.           | Co(PMe <sub>3</sub> ) <sub>3</sub> (1<br>-Si(Me) <sub>2</sub> -2-<br>(PPh <sub>2</sub> )C <sub>6</sub> H <sub>4</sub> ) | Cl    | Toluene                               | N <sub>2</sub> atm | No                        | 80 °C            | No                | 85        |     |
| 9.  | Adv. Synth.<br>Catal. 2016, <b>358</b> ,<br>2449-2459.     | Au supported<br>Ni NPs                                                                                                  | Ι     | Dry<br>THF                            | Ar atm.            | No                        | 75 °C            | Yes               |           | 90  |

**Tables S2**. Comparison of catalytic activity of HP-T@ Au-Fe<sub>3</sub>O<sub>4</sub> nanohybrid material for Heck coupling reaction over other catalytic system reported in literature.

| S.  | S. Publication                                                    | Catalyst                                                                            | Ar-X    | Base/                                     | Solvent                   | Photo     | Reaction<br>Temp.<br>(°C) | Recyc<br>labilit<br>y | Yield(%)/<br>Time |              |
|-----|-------------------------------------------------------------------|-------------------------------------------------------------------------------------|---------|-------------------------------------------|---------------------------|-----------|---------------------------|-----------------------|-------------------|--------------|
| No. |                                                                   | used                                                                                | (X)     | Additive                                  |                           | catalysis |                           |                       | X-Cl              | X-I          |
| 1.  | Present Work                                                      | HP-T@Au-<br>Fe <sub>3</sub> O <sub>4</sub> NPs                                      | Cl      | K <sub>2</sub> CO <sub>3</sub>            | Neat                      | Yes       | RT-40 ºC                  | Yes                   | 82/2 h            | 91/2 h       |
| 2.  | Green Chem.<br>2019, <b>21</b> , 1718-<br>1734.                   | Fe <sub>3</sub> O <sub>4</sub> @SiO <sub>2</sub><br>@Im[Cl]Co(<br>III)-<br>melamine | Cl      | Mn<br>powder                              | EtOH                      | No        | Reflux                    | Yes                   | 82/3.6<br>h       | 91/1.3<br>h  |
| 3.  | J. Am. Chem.<br>Soc. 2019, <b>141</b> ,<br>1928–1940              | Pd@EVOH                                                                             | I/Br    | KOAc                                      | Toluene<br>or NMP         | No        | 95 °C                     | Yes                   |                   | 91/24<br>h   |
| 4.  | Org. Biomol.<br>Chem., 2019,<br>17, 8969–8976                     | Pd(II)–NHC<br>complex                                                               | Br/Cl   | K <sub>3</sub> PO <sub>4</sub> /<br>TBAB  | Water                     | No        | 110 °C                    | Yes                   | 70/12<br>h        |              |
| 5.  | Green Chem.,<br>2018, <b>20</b> , 1506-<br>1514                   | Pd-Ni NPs                                                                           | I/Br/Cl | K <sub>2</sub> CO <sub>3</sub>            | H <sub>2</sub> O/Et<br>OH | No        | (MW)<br>120 °C            | Yes                   | 82/10<br>min      | 88/10<br>min |
| 6.  | J. Am. Chem.<br>Soc. 2018, <b>140</b> ,<br>16929–16935            | CuCl                                                                                | Br      | Cs <sub>2</sub> CO <sub>3</sub>           | DMSO/<br>THF              | No        | 60 °C                     | No                    |                   | 82/4 h       |
| 7.  | ACS<br>Sustainable<br>Chem. Eng.<br>2018, <b>6</b> ,<br>8223–8229 | Au NPS                                                                              | I/Br/Cl | K <sub>2</sub> CO <sub>3</sub>            | Water                     | Yes       | RT                        | Yes                   | 60/6 h            | 89/1 h       |
| 8.  | Chemistry<br>Select 2019, <b>4</b> ,<br>6913 –6916                | NiBr <sub>2</sub> (PPh <sub>3</sub> ) <sub>2</sub>                                  | I/Br/Cl | TBAB<br>Zn<br>powder,<br>BMIM.O<br>Tf     | DMA                       | No        | 120°C                     | No                    | 50/4 h            | 75/4 h       |
| 9.  | Green Chem.,<br>2017, <b>19</b> , 1353–<br>1361                   | Co-<br>MS@MNPs/<br>CS                                                               | I/Br/Cl | K <sub>3</sub> PO <sub>4</sub>            | PEG                       | No        | 80 °C                     | Yes                   | 71/1 h            | 88/1 h       |
| 10. | New J. Chem.,<br>2017, <b>41</b> , 3172<br>3176                   | Pd <sub>2</sub> (dba) <sub>3</sub>                                                  | Br      | P(tBu) <sub>3</sub> -<br>HBF <sub>4</sub> | Toluene                   |           | 95 °C                     |                       | 83                |              |



Fig. S1B <sup>13</sup>C NMR spectra (CDCl<sub>3</sub>, 75 MHz, ppm) of derivative 2.







Fig. S1D Elemental Analysis of derivative 2.



Fig. S2 UV-vis absorption spectra of derivative 2 ( $5\mu$ M) (A) showing variation in H<sub>2</sub>O/THF upto 40% water fraction indicating the AIEE behavior (B) showing bathochromic shift upon addition of water (40% water fraction) to THF solution of derivative 2.



Fig. S3 Fluorescence spectra of derivative 2 (5 $\mu$ M) showing variation in H<sub>2</sub>O/THF upto 40% water fraction indicating the AIEE behaviour and showing bathochromic shift upon addition of water (40% water fraction) to THF solution of derivative 2.



Fig. S4 UV-vis spectra of derivative 2 in  $H_2O/THF$  (4:6; v/v) mixture upon increasing temperature from room temperature to 75 °C, indicating the formation of *J*- aggregates.



Fig. S5 UV-vis spectra of derivative 2 (5  $\mu$ M) upon addition of (A) Au<sup>3+</sup> ions (0-25 equiv.), indicate the formation of Au NPs. (B) Fe<sup>3+</sup> ions (20 equiv.) indicate the interaction between Fe<sup>3+</sup> ions and derivative 2.



**Fig. S6** DLS studies of **HP-T**@Au-Fe<sub>3</sub>O<sub>4</sub> nanohybrid material indicated the presence of particles having size in the range of 1.5-2.0 nm.

![](_page_11_Figure_2.jpeg)

Fig. S7 Thermogravimetric analysis (TGA) of derivative 2 and supramolecular ensemble HP-T@Au-Fe<sub>3</sub>O<sub>4</sub>.

![](_page_12_Figure_0.jpeg)

**Fig. S8** Hysteresis loop of **HP-T**@Au-Fe<sub>3</sub>O<sub>4</sub> nanohybrid material at room temperature. Inset showing expanded curve.

**Table S3.** Showing the coercivity, magnetization values obtained from Hysteresis loop of polymer capsulated Au-Fe<sub>3</sub>O<sub>4</sub> nanohybrid material at room temperature;  $25^{\circ}$ C.

| Parameter                                   | Value  | Parameter definition                               |
|---------------------------------------------|--------|----------------------------------------------------|
| H <sub>c</sub> (Oe)                         | 8.760  | Coercive Field: Field at which M/H<br>changes sign |
| $M_r$ (emu g <sup>-1</sup> )                | 0.339  | Remanent Magnetization: M at H=0                   |
| M <sub>s</sub> (emu g <sup>-1</sup> ) 27.65 |        | Saturation Magnetization: maximum<br>M measured    |
| S                                           | 0.0122 | Squareness = $M_r/M_s$                             |

![](_page_13_Figure_0.jpeg)

**Fig. S9** Overlay <sup>1</sup>H NMR spectra of (a) **HP-T** after reaction of derivative **2** with AuCl<sub>3</sub> and FeCl<sub>3</sub> in CDCl<sub>3</sub> and (b) derivative **2** 

![](_page_13_Figure_2.jpeg)

Fig. S10 GPC Chromatogram of oligomeric species HP-T.

![](_page_14_Figure_0.jpeg)

Fig. S11 UV-vis spectra of HP-T (5  $\mu$ M) in H<sub>2</sub>O/THF (4:6, v/v) mixture.

![](_page_14_Figure_2.jpeg)

**Fig. S12 (A)** Fluoresence spectra of oxidized species, **HP-T**, in H<sub>2</sub>O/THF (4:6) upon addition of bare Au-Fe<sub>3</sub>O<sub>4</sub> nanoparticles,  $\lambda_{ex}$ =290 nm. (B) Spectral overlap of absorption spectrum of Au-Fe<sub>3</sub>O<sub>4</sub> NPs and fluorescence spectrum of **HP-T** in H<sub>2</sub>O/THF (4:6) mixture showing energy transfer from **HP-T** to Au-Fe<sub>3</sub>O<sub>4</sub> NPs.

| Entry | Solvent              | Yield/Time |
|-------|----------------------|------------|
| 1.    | H <sub>2</sub> O/THF | 93/20 min. |
| 2.    | Dioxane              | 93/20 min. |
| 3.    | Toluene              | 80/45 min. |

**Table S4.** Kumada coupling between aryl chloride (1 mmol), *p*-tolylmagnesium bromide (4 mmol) catalysed by **HP-T**@ Au-Fe<sub>3</sub>O<sub>4</sub> nanohybrid material in different solvents.

**Table S5.** Kumada Coupling between chlorobenzene **3a** (1 mmol), *p*-tolylmagnesium bromide **4** (4 mmol) using various amount of catalytic system.

| Entry | HP-<br>T@AuFe <sub>3</sub> O <sub>4</sub><br>(mmol) | Time   | Yield<br>(%) | TON <sup>a</sup> | TOF<br>(h <sup>-1</sup> ) <sup>a</sup> |
|-------|-----------------------------------------------------|--------|--------------|------------------|----------------------------------------|
| 1.    | 6 mmol                                              | 15 min | 94%          | 522.22           | 2088.88                                |
| 2.    | 5 mmol                                              | 20 min | 93%          | 620              | 1878.78                                |
| 3.    | 4 mmol                                              | 30 min | 89%          | 741.66           | 1483.33                                |
| 4.    | 2 mmol                                              | 1 h    | 84%          | 1400             | 1400                                   |
| 5.    | 1 mmol                                              | 3 h    | 78%          | 2600             | 866.66                                 |
| 6.    | 0.5 mmol                                            | 6 h    | 72%          | 4800             | 800                                    |

a) w.r.t Au<sup>3+</sup> ions (mmol) in HP-T@ Au-Fe<sub>3</sub>O<sub>4</sub> nanohybrid material

i) Calculations of turnover number (TON) and turnover frequencies (TOF) of the catalyst.

TON = <u>no. of moles of product formed</u> x % yield of the product Moles of catalyst used

### **TOF = TON/ time of reaction**

ii) To calculate moles of Au NPs and  $Fe_3O_4$  NPs in **HP-T**@ Au-Fe\_3O\_4 nanohybrid material (5 mmol).

0.005 M = \_\_\_\_\_\_ given weight (X) Molecular weight of Au/Fe<sub>3</sub>O<sub>4</sub> NPs

1 mol of AuCl<sub>3</sub> used to form 1 mol of Au NPs in nanohybrid material

196.966 g of Au NPs required = 303.33 g of AuCl<sub>3</sub> (X) g of Au NPs required =  $\underline{196.966}$  x (X) g of AuCl<sub>3</sub> 303.33

3 mol of FeCl<sub>3</sub> used to form 1 mol of Fe<sub>3</sub>O<sub>4</sub> NPs in nanohybrid material 231.495 g of Fe<sub>3</sub>O<sub>4</sub> NPs required = 3 x 162.20 g of FeCl<sub>3</sub> (X) g of Fe<sub>3</sub>O<sub>4</sub> NPs required =  $3 \times 162.20 \times (X)$  g of FeCl<sub>3</sub> 231.495

**Table S6.** ICP-MS studies of **HP-T**@ Au-Fe<sub>3</sub>O<sub>4</sub> nanohybrid material.

| Sample | Au      | Fe      | Pd  |  |
|--------|---------|---------|-----|--|
|        | ppb     | ppb     | ppb |  |
| H2     | 3841.49 | 1071.72 | ND  |  |

## ND MEANS LESS THAN 1 PPT

**Table S7.** ICP-MS studies of whole reaction mixture (including HP-T@ Au-Fe<sub>3</sub>O<sub>4</sub> nanohybrid material, chlorobenzene and *p*-tolymagnessium bromide) and reaction mixture (including chlorobenzene and *p*-tolymagnessium bromide

| Sample Code | Pd  |
|-------------|-----|
|             | PPB |
| R-N         | ND  |
| R-Mx        | ND  |

## ND MEANS LESS THAN 1 PPT

[5a]<sup>1</sup>. [4-methyl-1,1'-biphenyl]: (Colorless solid, 93% yield). <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>, ppm)  $\delta = 7.57$  (d, J = 10 Hz, 2H), 7.49 (d, J = 10 Hz, 2H), 7.41 (t, J = 7.5 Hz, 2H), 7.31 (t, J = 7.5 Hz, 1H), 7.25 (d, J = 5 Hz, 2H), 2.39 (s, 3H).

[**5b**]<sup>2</sup>. [4,4'-dimethyl-1,1'-biphenyl]: (Colorless solid, 90% yield). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>, ppm)  $\delta$  = 7.47 (d, *J* = 8 Hz, 4H), 7.23 (d, *J* = 8 Hz, 4H), 2.38 (s, 6H).

[5c]<sup>1</sup>. [4-methoxy-4'-methyl-1,1'-biphenyl]: (Colorless solid, 94% yield). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>, ppm) δ = 7.48 (d, J = 8 Hz, 2H), 7.40 (d, J = 8 Hz, 2H), 7.16 (d, J = 8 Hz, 2H), 6.60 (d, J = 8 Hz, 2H), 3.69 (s, 3H), 2.31 (s, 3H).

[5d]<sup>3</sup>. [3,4'-dimethyl-1,1'-biphenyl]: (Colorless oil, 85% yield). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>, ppm)  $\delta$  = 7.66 (dd, *J* = 8 Hz, 1H), 7.50 (dd, *J* = 8 Hz and 4 Hz, 2H), 7.44 (d, *J* = 8 Hz, 2H), 7.10 (d, *J* = 4 Hz, 2H), 6.95 (t, *J* = 8 Hz, 1H), 2.26 (s, 6H).

[5e]<sup>4</sup>. [2-(p-tolyl)thiophene]: (Colorless solid, 84% yield). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>, ppm)  $\delta$  = 7.48-7.46 (m, 1H), 7.37-7.30 (m, 4H), 7.10-6.99 (m, 2H), 2.35 (s, 3H).

[5f]<sup>5</sup>. [2-(p-tolyl)naphthalene]: (Colorless oil, 87% yield). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>, ppm)  $\delta = 8.01$  (d, J = 8 Hz, 1H), 7.87-7.80 (m, 2H), 7.71 (t, J = 8 Hz, 2H), 7.60 (d, J = 8 Hz, 2H), 7.47-7.44 (m, 2H), 7.37-7.25 (m, 2H), 2.39 (s, 3H).

[5g]<sup>6</sup>. [4-methyl-4'-nitro-1,1'-biphenyl]: (Colorless solid, 70% yield). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>, ppm)  $\delta$  = 8.23 (d, *J* = 8 Hz, 2H), 7.66 (d, *J* = 12 Hz, 2H), 7.57 (d, *J* = 8 Hz, 2H), 7.41 (d, *J* = 4 Hz, 2H), 2.62 (s, 3H).

[5h]. [2-cyclohexylnaphthalene]: (Colorless oil, 81% yield). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>, ppm)  $\delta = 8.02$  (d, J = 8 Hz, 1H), 7.88 (m, 4H), 7.73-7.60 (m, 2H), 7.48-7.44 (m, 2H), 7.37-7.26 (m, 2H), 1.30-1.26 (m, 5H), 0.87-0.83 (m, 6H).

**[8a].** [methyl cinnamate]: (Colorless solid, 82% yield). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>, ppm)  $\delta = 7.63$  (d, J = 16 Hz, 1H), 7.42-6.88 (m, 5H), 6.38 (d, J = 16 Hz, 1H), 3.71(s, 3H).

**[8b].** [methyl (E)-3-(p-tolyl)acrylate]: (Colorless solid, 80% yield). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>, ppm)  $\delta$  = 7.67 (d, *J* = 16 Hz, 1H), 7.42 (d, *J* = 8 Hz, 2H), 7.19 (d, *J* = 8 Hz, 2H), 6.40 (d, *J* = 16 Hz, 1H), 3.80(s, 3H), 2.37(s, 3H).

[8c]. [methyl (E)-3-(4-methoxyphenyl)acrylate]: (White solid, 79% yield). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>, ppm)  $\delta$  = 7.65 (d, *J* = 16 Hz, 1H), 7.48 (d, *J* = 8 Hz, 2H), 6.91 (d, *J* = 12 Hz, 2H), 6.32 (d, *J* = 16 Hz, 1H), 3.84(s, 3H), 3.80(s, 3H).

**[8d].** [methyl (E)-3-(m-tolyl)acrylate]: (Colorless solid, 75% yield). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>, ppm)  $\delta$  = 7.67 (d, *J* = 16 Hz, 1H), 7.33 (d, *J* = 4 Hz, 2H), 7.29-7.25 (m, 1H), 7.20 (d, *J* = 4 Hz, 1H), 6.43 (d, *J* = 16 Hz, 1H), 3.80(s, 3H), 2.37 (s, 3H).

[8e]. [methyl (E)-3-(2,6-dimethylphenyl)acrylate]: (Colorless solid, 72% yield). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>, ppm)  $\delta$  = 7.83 (d, *J* = 16 Hz, 1H), 7.08 (t, *J* = 12 Hz, 1H), 6.06 (d, *J* = 16 Hz, 1H), 3.79(s, 3H), 2.42 (s, 3H), 2.32 (s, 3H).

[8f]. [ethyl (E)-3-(4-nitrophenyl)acrylate]: (Yellow solid, 78% yield). <sup>1</sup>H NMR (500 MHz, CDCl<sub>3</sub>, ppm)  $\delta = 8.37$  (d, J = 8 Hz, 1H), 8.25 (d, J = 8 Hz, 2H), 7.68 (d, J = 4 Hz, 2H), 6.57 (d, J = 12 Hz, 1H), 4.30 (q, J = 7.5 Hz, 2H), 1.36 (t, J = 7.5 Hz, 3H).

**[8g].** [butyl (E)-3-(m-tolyl)acrylate]: (Colorless solid, 77% yield). <sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>, ppm)  $\delta$  = 7.64 (d, *J* = 16 Hz, 1H), 7.30 (d, *J* = 8 Hz, 2H), 7.25-7.22 (m, 1H), 7.16 (d, *J* = 8 Hz, 1H), 6.42 (d, *J* = 16 Hz, 1H), 4.19 (t, *J* = 6 Hz, 2H), 2.34 (s, 3H), 1.71-1.64 (m, 2H), 1.47-1.40 (m, 2H), 0.95 (t, *J* = 6 Hz, 3H).

![](_page_20_Figure_0.jpeg)

Fig. S15 <sup>1</sup>H-NMR spectra (CDCl<sub>3</sub>, 500MHz, ppm) of compound 5a.

![](_page_20_Figure_2.jpeg)

Fig. S16 <sup>1</sup>H-NMR spectra (CDCl<sub>3</sub>, 400MHz, ppm) of compound 5b.

![](_page_21_Figure_0.jpeg)

![](_page_21_Figure_1.jpeg)

![](_page_22_Figure_0.jpeg)

Fig. S20 <sup>1</sup>H-NMR spectra (CDCl<sub>3</sub>, 400MHz, ppm) of compound 5f.

![](_page_23_Figure_0.jpeg)

Fig. S22 <sup>1</sup>H-NMR spectra (CDCl<sub>3</sub>, 400MHz, ppm) of compound 5h.

![](_page_24_Figure_0.jpeg)

Fig. S24 <sup>1</sup>H-NMR spectra (CDCl<sub>3</sub>, 400MHz, ppm) of compound 8b.

![](_page_25_Figure_0.jpeg)

Fig. S26 <sup>1</sup>H-NMR spectra (CDCl<sub>3</sub>, 400MHz, ppm) of compound 8d.

![](_page_26_Figure_0.jpeg)

![](_page_26_Figure_1.jpeg)

![](_page_27_Figure_0.jpeg)

Fig. S29 <sup>1</sup>H-NMR spectra (CDCl<sub>3</sub>, 400MHz, ppm) of compound 8g.

![](_page_28_Figure_0.jpeg)

Fig. S30 Recyclability of HP-T@Au-Fe<sub>3</sub>O<sub>4</sub> catalytic system for Kumada coupling reaction.

![](_page_28_Figure_2.jpeg)

Fig. S31 Recyclability of  $HP-T@Au-Fe_3O_4$  catalytic system for Heck coupling reaction.

## **Refrences:**

- 1. X. -Q. Zhang and Z. -X. Wang, J. Org. Chem., 2012, 77, 3658-3663.
- 2. M. Kuroboshi, Y. Waki and H. Tanaka, J. Org. Chem., 2003, 68, 3938-3942.
- 3. S. R. Dubbaka and P. Vogel, *Tetrahedron Lett.*, 2006, 47, 3345-3348.
- A. S. Guram, A. O. King, J. G. Allen, X. Wang, L. B. Schenkel, J. Chan, E. E. Bunel, M. M. Faul, R. D. Larsen, M. J. Martinelli and P. Reider, *J.Org. Lett.*, 2006, 8, 1787-1789.
- 5. M. Kuriyama, R. Shimazawa and R. Shirai, Tetrahedron, 2007, 63, 9393-9400.
- 6. K. Shudo, T. Ohta and T. Okatnoto, J. Am. Chem. Soc., 1981, 103, 645-653.