Electronic Supplementary Information

Environmentally responsible, safe, and chemoselective catalytic hydrogenation of olefins: ppm levels of Pd catalysis in recyclable water at room temperature

Balaram S. Takale,^{1*} Ruchita R. Thakore,¹ Eugene S. Gao,^{1, 2} Fabrice Gallou,² and Bruce H. Lipshutz^{1*}

¹Department of Chemistry & Biochemistry, University of California, Santa Barbara, CA 93106, USA. ²Department of Chemistry, Harvey Mudd College, Claremont, CA 91711, USA. ²Novartis Pharma AG, Basel CH-4002, Switzerland.

Table of Contents

1. General information	S2
2. Experimental procedures	S3-S6
2.1 Screening of surfactants using H_2 in a balloon	
2.2 General catalytic procedure for hydrogenation using H_2	
balloon	
2.3 General catalytic procedure for hydrogenation using	
triethylsilane	
2.4 Large scale recycling and reuse procedure	
2.5 Large scale recycling on the same substrate	
3. Analytical data	S7-S21
4. References	S21-S23
5. Copies of ¹ H NMR and ¹³ C NMR spectra	S24-S59

1. General information

Chemicals or reagents were procured from Sigma-Aldrich, Combi-Blocks, Alfa Aesar, or Acros Organics and used without further purification. Pd/C (1 wt %) was purchased from Sigma-Aldrich (catalog number: 205672). Hydrogen gas was supplied by Praxair. TPGS-750-M was generously supplied by PHT International. The desired 2 wt % of TPGS-750-M solution in HPLC water was prepared by dissolving 2 g of TPGS-750-M solid in 98 g of HPLC water and stored under argon. IKA hot plates with a circular aluminum or copper reaction block with pre-drilled holes for 1dram vials were used. The vials from Chemglass (catalog number: CG-4909-04) were used as reaction vials. ¹H and ¹³C NMR spectra were recorded on either a Varian Unity Inova 400 MHz (400 MHz for ¹H, 100 MHz for ¹³C), a Varian Unity Inova 500 MHz (500 MHz for ¹H, 125 MHz for ¹³C) or on a Varian Unity Inova 600 MHz spectrometer (600 MHz for ¹H); DMSO-*d*₆, CD₃OD, CD₃CN and CDCl₃ were used as solvent. Residual peaks for CHCl₃ in CDCl₃ (1 H = 7.26 ppm, 13 C = 77.20 ppm), $(CH_3)_2SO$ in $(CD_3)_2SO$ (1 H = 2.50 ppm, ¹³C = 39.52 ppm), CH₃CN in CD₃CN (¹H = 1.98 ppm, ${}^{13}C = 0.49$ and 117.47 ppm) or MeOH in MeOD (${}^{1}H = 4.78$ ppm, ${}^{13}C =$ 49.00 ppm) have been assigned. The chemical shifts are reported in ppm, the coupling constants J value are given in Hz. The peak patterns are indicated as follows: bs, broad singlet; s, singlet; d, doublet; t, triplet; q, quartet; p, pentet; m, multiplet. Thin layer chromatography (TLC) was performed using Silica Gel 60 F254 plates (Merck, 0.25 mm thick). Flash chromatography was done in glass columns using Silica Gel 60 (EMD, 40-63 µm). GCMS data were recorded on a 5975C Mass Selective Detector, coupled with a 7890A Gas Chromatograph (Agilent Technologies).

2. Experimental procedures

2.1 Screening of surfactants using H₂ in a balloon; preparation of 2

In a 1-dram screw cap open top vial containing a Teflon-coated magnetic stir bar, 1 wt % Pd/C (500 ppm Pd, 1.3 mg) stiripentol (0.25 mmol, 58.6 mg) and 2 wt % TPGS-750-M/H₂O (0.5 mL) were added. The reaction vial was closed and a TFE-lined silicone SURE-LINK septum was punctured with a needle (18 G) attached with a pre-filled balloon of hydrogen gas. The headspace of the vial was replaced with H₂ by unscrewing the cap under positive H₂ flow for *ca.* 5 sec. Finally, the reaction mixture was stirred at rt for 10 h. The GC-MS at this stage of the reaction in aqueous TPGS-750-M showed complete conversion of starting material. The reaction mixture was filtered through a short plug of silica and washed with EtOAc. Removal of the organic solvent led to 98% yield of the spectroscopically pure material, **2** (note: use of 3 wt% or 5 wt% Pd/C instead of 1 wt% Pd/C resulted in similar chemical yield).

2.2 General catalytic procedure for hydrogenation using H₂ balloon

In a 1-dram screw cap open top vial containing a Teflon-coated magnetic stir bar, 1 wt % Pd/C (500, 1000 or 2000 ppm Pd basis, 1.3 mg, 2.6 mg or 5.3 mg), alkene (0.25 mmol) and 2 wt % TPGS-750-M/H₂O (0.5 mL) were added. The reaction vial was closed and a TFE lined silicone SURE-LINK septa was punctured with needle (18 G) attached with pre-filled balloon of hydrogen gas. The headspace of the vial was replaced with H₂ by unscrewing the cap under a positive H₂ flow for *ca.* 5 sec. Finally, the reaction mixture was stirred at rt or 45 °C until completion (monitored by GC-MS or NMR). The reaction mass was either filtered through short plug of silica and washed with EtOAc or extracted with EtOAc/MTBE. Removal of organic solvent led to spectroscopically pure material. In some cases (< 10%), residual impurities were removed using a short flash column.

2.3 General catalytic procedure for hydrogenation using Et₃SiH

In a 1-dram screw cap closed top vial containing a Teflon-coated magnetic stir bar, 1 wt % Pd/C (500, 1000 or 2000 ppm Pd basis, 1.3 mg, 2.6 mg or 5.3 mg), alkene (0.25 mmol), Et₃SiH (1.2 equiv), and 2 wt % TPGS-750-M/H₂O (0.5 mL) were added. The reaction vial was closed and stirred at rt or 45 °C until completion (monitored by GC-MS or NMR). The reaction mass was either filtered through short plug of silica and crude product was purified by short flash column to remove silane or its byproducts.

2.4 Large scale recycling and reuse procedure

Initial reaction:

In a 250 mL 3-necked round bottom flask containing a Teflon-coated magnetic stir bar, 1 wt % Pd/C (500 ppm Pd basis, 265 mg), alkene (50 mmol) and 2 wt % TPGS-750-M/H₂O (100 mL) were added. The flask was attached with a 2-way stopcock consisting of a pre-filled balloon with hydrogen gas. The headspace of the flask was replaced with H₂ gas by puncturing the rubber septum attached to one neck of the flask for *ca.* 1 min. Finally, the reaction mixture was stirred at rt for 4 h (monitored by GC-MS or NMR). The reaction was stopped, and the balloon was removed to allow for attachment of the distillation assembly. The water was steam distilled at 100±2 °C in a separate flask, prior to vacuum distillation of the product at 10 torr to distill at 115-118 °C giving 91% yield (6.4 g) of the desired product. The Pd/C and surfactant residue left in the distilling flask was used for the subsequent recycle.

1st recycle: To the above Pd/C residue, previously distilled water was added and stirred for 20 min. Hexene-3-ol (50 mmol) was added, and similar process mentioned above was followed and the reaction mixture was stirred at rt for 5 h to result in 92% yield (4.7 g) of the desired alcohol **49** (distilled at 25 torr, 82-84 °C).

 2^{nd} recycle: To above Pd/C residue, distilled water from 1st recycle was added and stirred for 20 min. Hexenone (50 mmol) was added, and a similar protocol mentioned in the initial reaction is followed and the reaction mixture was stirred at rt for 12 h to get 89% yield (6.3 g) of the desired product 50 (distilled at 126-128 °C).

 \mathcal{F}^{d} recycle: To above Pd/C residue, previously distilled water from the 2nd recycle was added and stirred for 20 min. Fresh 1 wt % Pd/C (100 ppm), ethyl 3,3-dimethylacrylate (50 mmol), and Et₃SiH (1. 5 equiv) were added to the flask. Finally, the reaction mixture was stirred at 45 °C for 20 h to result in 90% yield (5.8 g) of the desired product, which was carefully distilled at 134 °C (after distilling the water).

2.5 Large scale recycling on the same substrate

In a 100 mL 3-necked round bottom flask containing a Teflon-coated magnetic stir bar, 1 wt % Pd/C (500 ppm Pd basis, 132.5 mg), 4-*t*-butylstyrene (25 mmol, 4.0 g) and 2 wt % TPGS-750-M/H₂O (50 mL) were added. The flask was attached with a 2way stopcock consisting of a pre-filled balloon with hydrogen gas. The headspace of the flask was replaced with H₂ gas by puncturing the rubber septum attached to one neck of the flask for *ca.* 1 min. Finally, the reaction mixture was stirred at rt for 3 h (monitored by GC-MS or NMR). The reaction was stopped, and the balloon was removed to allow for attachment of the distillation assembly. The water was steam distilled at 100±2 °C in a separate flask, prior to vacuum distillation of the product at 40 torr to distill at 113-116 °C giving 90% yield (3.6 g) of the desired product. The Pd/C and surfactant residue left in the distilling flask was used for the subsequent recycle.

1st recycle: To the above Pd/C residue, previously distilled water was added and stirred for 20 min. 4-*t*-butylstyrene (25 mmol, 4.0 g) was added, and similar process mentioned above was followed to result in 93% yield (3.8 g) of the desired 4-ethyl-*t*-butylbenzene **6**.

 2^{nd} *recycle*: By following procedure mentioned in recycle 1, 91% yield (3.7 g) of the desired product 4-ethyl-*t*-butylbenzene **6** was obtained.

 $\mathcal{3}^{d}$ *recycle*. By following procedure mentioned in recycle 1, 85% yield (3.4 g) of the desired product 4-ethyl-*t*-butylbenzene **6** was obtained.

 4^{rt} recycle: By following procedure mentioned in recycle 1, 75% yield (3.0 g) of the desired product 4-ethyl-*t*-butylbenzene **6** was obtained.

3. Analytical data

Yield 99%, 40 mg; eluent for column chromatography: Hexanes : EtOAc (9:1) ¹H NMR^[1] (500 MHz, CDCl₃) δ 7.12 (d, *J* = 8.5, 2H), 6.91 (d, *J* = 8.5, 2H), 2.57 (q, *J* = 7.6, 2H), 2.21 (s, 3H), 1.15 (t, *J* = 7.6, 3H).

Yield 99%, 40 mg; eluent for column chromatography: Hexanes : EtOAc (9.5:0.5) ¹**H NMR**^[2] (500 MHz, CDCl₃) δ 7.24 (d, *J* = 8.2, 2H), 7.07 (d, *J* = 8.0, 2H), 2.55 (q, *J* = 7.6, 2H), 1.24 (s, 9H), 1.16 (t, *J* = 7.6, 3H).

Yield 93%, 52 mg; eluent for column chromatography: Hexanes : EtOAc (9:1) ¹H NMR (500 MHz, CDCl₃) δ 7.75 (s, 1H), 7.72 (d, *J* = 7.8, 1H), 7.61 (d, *J* = 7.6, 1H), 7.56 (d, *J* = 8.7, 1H), 7.40 (t, *J* = 7.6, 1H), 7.31 (t, *J* = 7.7, 1H), 7.27 (d, *J* = 8.5, 1H), 7.23 (d, *J* = 7.1, 1H), 7.05 (s, 1H), 2.76 (q, *J* = 7.6, 2H), 1.34 (t, *J* = 7.6, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 156.23, 154.88, 144.84, 130.48, 129.30, 128.80, 128.26, 124.43, 124.17, 122.90, 122.43, 120.86, 111.16, 101.18, 28.95, 15.60. HRMS C₁₆H₁₄O MS-ESI [M+] *m/z* calcd: 222.1045; found: 222.1048.

Yield 90%, 29 mg; eluent for column chromatography: Hexanes : EtOAc (9.5:0.5) ¹**H NMR**^[3] (500 MHz, CDCl₃) δ 7.58 (d, *J* = 8.3, 2H), 7.31 (d, *J* = 8.1, 2H), 2.72 (q, *J* = 7.6, 2H), 1.27 (t, *J* = 7.6, 3H).

¹³**C NMR** (126 MHz, CDCl₃) δ 149.80, 132.18, 128.67, 119.19, 109.51, 29.07, 15.02.

Yield 91%, 28 mg; eluent for column chromatography: Hexanes : EtOAc (9:1) ¹H NMR^[4] (500 MHz, CDCl₃) δ 2.36 (t, *J* = 7.4, 2H), 1.93 (hept, *J* = 7.6, 1H), 1.87 – 1.79 (m, 2H), 1.69 (q, *J* = 7.4, 2H), 1.66 – 1.55 (m, 4H), 1.21 – 1.01 (m, 2H). ¹³C NMR (126 MHz, CDCl₃) δ 120.01, 39.19, 32.12, 31.47, 25.05, 16.42.

Yield 82%, 34 mg; eluent for column chromatography: Hexanes : EtOAc (4:6) ¹H NMR^[5] (500 MHz, CDCl₃) δ 7.34 – 7.27 (m, 2H), 7.26 – 7.17 (m, 3H), 3.10 (dd, *J* = 13.5, 6.5, 1H), 2.79 (h, *J* = 6.9, 1H), 2.69 (dd, *J* = 13.5, 8.0, 1H), 1.20 (d, *J* = 7.0, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 182.36, 139.03, 129.01, 128.43, 126.44, 41.22, 39.30, 16.49.

Yield 100%, 67 mg; eluent for column chromatography: Hexanes : EtOAc (8:2) ¹**H NMR** (500 MHz, CDCl₃) δ 8.00 (d, *J* = 8.9, 2H), 7.34 – 7.28 (m, 2H), 7.23 (d, *J* = 6.6, 3H), 6.92 (d, *J* = 8.9, 2H), 4.03 (t, *J* = 6.3, 2H), 3.90 (s, 3H), 2.84 (t, *J* = 7.6, 2H), 2.19 – 2.11 (m, 2H).

¹³**C NMR** (126 MHz, CDCl₃) δ 166.90, 162.82, 141.25, 131.59, 128.50, 128.48,

126.04, 122.49, 114.10, 67.04, 51.85, 32.06, 30.66.

HRMS C₁₇H₁₈O₃ MS-ESI [M+] *m/z* calcd: 270.1256; found: 270.1259.

Yield 100%, 32 mg; passed from short plug of silica and washed with hexanes : diethyl ether (9:1)

¹**H NMR**^[3] (500 MHz, CDCl₃) δ 4.14 (q, *J* = 7.1, 2H), 2.18 (d, *J* = 6.7, 2H), 2.15 – 2.06 (m, 1H), 1.26 (t, *J* = 7.1, 3H), 0.96 (d, *J* = 6.6, 6H).

¹³**C NMR** (126 MHz, CDCl₃) δ 173.20, 60.06, 43.50, 25.71, 22.38, 14.27.

Yield 100%, 36 mg; passed from short plug of silica and washed with hexanes : diethyl ether (8:2)

¹**H NMR** (500 MHz, CDCl₃) δ 4.90 – 4.80 (m, 2H), 4.43 (t, *J* = 6.3, 2H), 4.13 (qd, *J* = 7.1, 2.1, 2H), 3.42 – 3.31 (m, 1H), 2.72 (d, *J* = 7.9, 2H), 1.25 (t, *J* = 7.1, 3H).

¹³**C NMR** (126 MHz, CDCl₃) δ 171.70, 60.58, 37.99, 31.44, 14.18. **HRMS** C₇H₁₂O₃ H GC-Cl [M+H] *m/z* calcd: 145.0865; found: 145.0863.

Yield 93%, 45 mg; eluent for column chromatography: Hexanes : EtOAc (9.5:0.5) ¹**H NMR**^[6] (500 MHz, CDCl₃) δ 7.25 – 7.18 (m, 2H), 7.13 (dd, *J* = 15.3, 6.6, 3H), 4.00 (q, *J* = 7.2, 2H), 3.21 (h, *J* = 7.0, 1H), 2.57 – 2.41 (m, 2H), 1.23 (d, *J* = 7.0, 3H), 1.11 (t, *J* = 7.1, 3H).

Yield 100%, 59 mg; eluent for column chromatography: Hexanes : EtOAc (8:2) ¹H NMR (500 MHz, CDCl₃) δ 7.29 (q, *J* = 6.3, 4.7, 2H), 7.23 (dd, *J* = 8.1, 2.1, 3H), 3.78 (s, 3H), 3.65 (d, *J* = 10.6, 1H), 3.59 – 3.51 (m, 1H), 3.48 (s, 3H), 1.34 (d, *J* = 6.9, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 168.82, 168.34, 142.98, 128.49, 127.34, 126.91, 59.11, 52.54, 52.24, 40.10, 20.02.

HRMS: C₁₃H₁₆O₄ Na MS-ESI [M+Na] *m/z* calcd: 259.0946; found: 259.0947.

Yield 100%, 73 mg; eluent for column chromatography: Hexanes : EtOAc (8:2) ¹**H NMR** (500 MHz, CDCl₃) δ 7.60 (s, 1H), 7.34 (s, 1H), 7.19 (t, *J* = 8.1, 1H), 6.99 (d, *J* = 7.9, 1H), 6.69 – 6.62 (m, 1H), 3.78 (s, 3H), 2.35 (t, *J* = 7.6, 2H), 1.71 (p, *J* = 7.5, 2H), 1.42 – 1.18 (m, 14H), 0.89 (t, *J* = 6.9, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 171.77, 160.13, 139.34, 129.58, 111.93, 110.04, 105.51, 55.24, 37.84, 31.89, 29.58, 29.50, 29.41, 29.31, 29.29, 25.65, 22.68, 14.11.
HRMS C₁₈H₂₉NO₂Na ESI-MS [M+Na] *m/z* calcd: 314.2096; found: 314.2103.

Yield 95%, 67 mg; eluent for column chromatography: Hexanes : EtOAc (8:2) ¹H NMR (500 MHz, CDCl₃) δ 7.21 (d, *J* = 8.0, 2H), 7.04 (d, *J* = 8.2, 2H), 2.67 (q, *J* = 7.6, 2H), 2.49 (ddd, *J* = 12.6, 7.9, 4.6, 1H), 1.43 (s, 10H), 1.25 (t, *J* = 7.6, 3H), 1.14 (dt, *J* = 7.8, 3.9, 2H), 0.91 (dq, *J* = 7.3, 3.7, 2H).

¹³**C NMR** (126 MHz, CDCl₃) δ 176.58, 143.74, 136.80, 128.39, 127.99, 82.92, 28.47, 27.90, 15.45, 15.37, 10.66.

HRMS C₁₇H₂₃NO₃ Na MS-ESI [M+Na] *m/z* calcd: 312.1576; found: 312.1571.

Yield 93%, 58 mg; eluent for column chromatography: Hexanes : EtOAc (9.5:0.5) ¹**H NMR (**500 MHz, CDCl₃) δ 6.89 (d, *J* = 7.6, 1H), 6.82 (t, *J* = 7.5, 1H), 6.64 (t, *J* = 8.1, 1H), 6.54 (d, *J* = 7.9, 1H), 2.33 (t, *J* = 7.7, 2H), 1.37 (h, *J* = 7.3, 2H), 0.79 (d, *J* = 2.7, 9H), 0.72 (td, *J* = 7.4, 2.6, 3H), 0.00 (d, *J* = 2.7, 6H).

¹³**C NMR** (126 MHz, CDCl₃) δ 157.71, 137.48, 134.37, 130.72, 125.03, 122.51, 36.89, 29.95, 27.47, 22.41, 18.27, 0.01.

HRMS C₁₅H₂₆OSi MS-ESI [M+] *m/z* calcd: 250.1753; found: 250.1759.

Yield 92%, 118 mg; eluent for column chromatography: Hexanes : EtOAc (2:8) ¹H NMR (500 MHz, CDCl₃) δ 7.79 – 7.70 (m, 4H), 7.63 (d, *J* = 7.0, 4H), 7.53 – 7.48 (m, 2H), 7.45 (td, *J* = 7.5, 2.2, 4H), 7.43 – 7.39 (m, 2H), 7.36 (t, *J* = 7.2, 4H), 3.67 (t, *J* = 5.8, 2H), 2.34 – 2.24 (m, 2H), 1.78 (s, 2H), 1.72 – 1.63 (m, 2H), 1.02 (s, 9H). ¹³C NMR (126 MHz, CDCl₃) δ 135.54, 133.83, 131.67, 130.86, 130.78, 129.61, 128.68, 128.59, 127.75, 127.66, 63.14, 33.62, 33.51, 29.86, 29.29, 18.27, 18.24. HRMS C₃₂H₃₇O₂PSi Na MS-ESI [M+Na] *m/z* calcd: 535.2198; found: 535.2200.

Yield 81%, 34 mg; eluent for column chromatography: Hexanes : EtOAc (8:2) ¹**H NMR**^[7] (500 MHz, CDCl₃) δ 7.91 (d, *J* = 8.2, 2H), 7.66 (t, *J* = 7.4, 1H), 7.58 (t, *J* = 7.5, 2H), 3.12 (q, *J* = 7.4, 2H), 1.27 (t, *J* = 7.4, 3H).

Yield 89%, 69 mg; eluent for column chromatography: Hexanes : EtOAc (8:2) ¹**H NMR**^[8] (500 MHz, CDCl₃) δ 7.27 (d, *J* = 4.9, 4H), 7.25 – 7.19 (m, 4H), 7.16 (tt, *J* = 6.8, 3.3, 2H), 3.18 (dd, *J* = 13.5, 9.8, 1H), 2.99 (dd, *J* = 13.5, 6.9, 1H), 2.71 (dd, *J* = 9.8, 6.9, 1H), 1.13 (d, *J* = 4.3, 12H).

¹³**C NMR** (126 MHz, CDCl₃) δ 141.75, 128.89, 128.41, 128.33, 128.03, 125.75, 125.39, 83.40, 38.85, 24.58, 24.51.

Yield 88%, 47 mg; eluent for column chromatography: Hexanes : EtOAc (9:1) ¹**H NMR**^[9] (500 MHz, CDCl₃) δ 1.33 (p, *J* = 8.1, 7.1, 2H), 1.21 (d, *J* = 14.7, 6H), 1.17 (s, 12H), 0.80 (t, *J* = 6.7, 3H), 0.70 (t, *J* = 7.7, 2H).

¹³C NMR (126 MHz, CDCl₃) δ 82.79, 32.08, 31.63, 24.79, 23.95, 22.57, 14.06.

Yield 81%, 64 mg; eluent for column chromatography: Hexanes : EtOAc (9:1) ¹H NMR (500 MHz, CDCl₃) δ 3.56 (t, *J* = 6.7, 2H), 1.49 (dt, *J* = 13.9, 6.6, 2H), 1.39 (p, *J* = 7.4, 2H), 1.20 (s, 12H), 0.85 (s, 9H), 0.74 (t, *J* = 7.7, 2H), 0.00 (s, 6H). ¹³C NMR (126 MHz, CDCl₃) δ 82.86, 63.15, 35.48, 25.99, 24.80, 20.22, 18.37, -5.26. HRMS C₁₂H₂₆BO₃Si MS-CI [M-C₂H₅] *m/z* calcd: 257.1747; found: 257.1741.

Yield 79%, 67 mg; eluent for column chromatography: Hexanes : EtOAc (9:1) ¹**H NMR** (500 MHz, CDCl₃) δ 7.28 – 7.20 (m, 4H), 7.16 – 7.10 (m, 3H), 7.00 (dd, *J* = 8.3, 2.2, 1H), 4.03 (q, *J* = 7.1, 2H), 3.82 (t, *J* = 7.8, 1H), 2.31 – 2.23 (m, 2H), 2.20 – 2.15 (m, 2H), 1.16 (t, *J* = 7.1, 4H).

¹³**C NMR** (126 MHz, CDCl₃) δ 173.07, 144.61, 142.81, 132.49, 130.46, 129.79, 128.81, 127.76, 127.27, 126.86, 60.48, 49.63, 32.52, 30.28, 14.22.

HRMS C₁₈H₁₈O₂Cl₂ C₂H₅ GC-CI [M+ C₂H₅] *m/z* calcd: 365.1075; found: 365.1070.

Yield 83%, 47 mg; eluent for column chromatography: Hexanes : EtOAc (8:2) ¹**H NMR**^[10] (500 MHz, CDCl₃) δ 7.69 (d, *J* = 8.6, 2H), 7.56 (d, *J* = 1.8, 1H), 7.30 (dd, *J* = 8.3, 1.8, 1H), 7.18 – 7.10 (m, 2H), 3.92 (s, 3H), 3.04 (t, *J* = 7.6, 2H), 2.84 (t, *J* = 7.6, 2H), 2.16 (s, 3H).

¹³**C NMR** (126 MHz, CDCl₃) δ 208.03, 157.32, 136.16, 133.13, 129.09, 128.95, 127.55, 126.99, 126.27, 118.84, 105.66, 55.29, 45.20, 30.13, 29.73.

Yield 94%, 46 mg; passed from short plug of silica and washed with hexanes : diethyl ether (8:2)

¹**H NMR** (500 MHz, CDCl₃) δ 5.57 (ddt, *J* = 4.4, 2.8, 1.4, 1H), 2.75 (s, 1H), 2.54 (ddd, *J* = 17.7, 8.2, 6.4, 1H), 2.41 (ddd, *J* = 17.7, 8.2, 6.2, 1H), 2.16 – 1.99 (m, 2H), 1.75 (ddd, *J* = 13.3, 10.6, 6.6, 1H), 1.68 – 1.50 (m, 5H), 1.14 (dd, *J* = 13.2, 6.0, 1H), 0.96 – 0.90 (m, 6H), 0.89 (s, 3H).

¹³**C NMR** (126 MHz, CDCl₃) δ 213.55, 130.23, 123.38, 63.38, 47.79, 32.36, 30.70, 27.92, 27.76, 23.43, 22.66, 16.81, 13.77.

HRMS C₁₃H₂₂O C₂H₅ GC-CI [M+ C₂H₅] *m/z* calcd: 223.2062; found: 223.2051.

Yield 100%, 39 mg; passed from short plug of silica and washed with hexanes : diethyl ether (8:2)

¹**H NMR**^[11] (500 MHz, CDCl₃) δ 2.42 – 2.29 (m, 2H), 2.16 – 2.00 (m, 2H), 1.86 (dp, J = 11.6, 3.2, 1H), 1.67 – 1.51 (m, 2H), 1.50 – 1.37 (m, 1H), 1.30 (qd, J = 13.0, 3.4, 1H), 1.01 (d, J = 6.5, 3H), 0.93 – 0.81 (m, 6H).

¹³**C NMR** (126 MHz, CDCl₃) δ 213.72, 46.58, 45.38, 44.90, 35.09, 32.75, 28.89, 19.60, 19.34, 14.35.

Yield 99%, 43 mg; passed from short plug of silica and washed with hexanes : diethyl ether (6:4)

¹**H NMR** (500 MHz, CDCl₃; *cis:trans* (1:1)) δ 3.81 – 3.77 (m, 1H), 3.75 – 3.70 (m, 1H), 2.22 (s, 1H), 2.14 (s, 1H), 1.89 – 1.72 (m, 6H), 1.65 (tdd, *J* = 9.4, 6.6, 4.0, 2H), 1.60 – 1.48 (m, 4H), 1.21 (s, 6H), 1.18 (d, *J* = 3.6, 6H), 1.12 (s, 6H), 0.91 (q, *J* = 7.4, 6H). ¹³**C NMR** (126 MHz, CDCl₃) δ 85.62, 84.62, 83.52, 83.48, 71.15, 70.68, 36.63, 36.44, 34.15, 33.78, 27.58, 27.45, 26.54, 26.49, 26.03, 25.07, 24.13, 24.03, 9.05, 8.87. **HRMS** C₁₀H₁₉O MS-CI [M-OH] *m/z* calcd: 155.1436; found: 155.1428.

Yield 99%, 39 mg; passed from short plug of silica and washed with hexanes : diethyl ether (8:2)

¹**H NMR** (500 MHz, CDCl₃; *cis:trans* (3:1)) δ 3.98 (ddd, J = 11.4, 4.5, 1.3, 1H), 3.77 – 3.62 (m, 1H, *trans* product), 3.40 (td, J = 12.4, 2.1, 1H), 3.35 – 3.24 (m, 1H), 1.82 –

1.74 (m, 1H), 1.64 – 1.50 (m, 4H), 1.28 – 1.08 (m, 3H), 1.06 (d, J = 7.1, 1H, *trans* product), 0.93 (d, J = 6.3, 3H), 0.90 (d, J = 6.7, 6H).

¹³**C NMR** (126 MHz, CDCl₃) δ 75.65, 70.06, 68.06, 62.32, 45.79, 44.19, 41.17, 38.13, 34.80, 32.45, 30.38, 24.92, 24.37, 24.29, 23.26, 22.39, 22.34, 18.89.

HRMS C₁₀H₂₀O H MS-CI [M+H] *m/z* calcd: 157.1592; found: 157.1594.

Yield 99%, 48 mg; eluent for column chromatography: Hexanes : EtOAc (9.5:0.5) ¹**H NMR** (500 MHz, CDCl₃) δ 6.39 (s, 1H), 6.35 (s, 1H), 5.94 (s, 2H), 3.91 (s, 3H), 2.55 – 2.47 (m, 2H), 1.62 (q, *J* = 7.5, 2H), 0.94 (t, *J* = 7.4, 3H).

¹³**C NMR** (126 MHz, CDCl₃) δ 148.67, 143.35, 137.38, 133.10, 107.55, 102.46, 101.11, 56.54, 38.17, 24.77, 13.72.

HRMS C₁₁H₁₄O₃ MS-ESI [M] *m*/*z* calcd: 194.0943; found: 193.0934.

Yield 91%, 71 mg; eluent for column chromatography: Hexanes : EtOAc (7:3) ¹H NMR (500 MHz, CDCl₃) δ 7.22 (d, *J* = 8.6, 1H), 6.73 (dd, *J* = 8.7, 2.5, 1H), 6.66 (s, 1H), 3.92 (t, *J* = 6.6, 2H), 3.76 (d, *J* = 8.4, 1H), 2.94 – 2.81 (m, 2H), 2.39 – 2.31 (m, 1H), 2.25 – 2.09 (m, 2H), 1.97 (dt, *J* = 12.3, 2.9, 1H), 1.94 – 1.86 (m, 1H), 1.82 (h, *J* = 6.9, 2H), 1.72 (dddd, *J* = 12.4, 9.7, 6.6, 3.8, 1H), 1.65 (s, 1H), 1.57 – 1.28 (m, 6H), 1.25 – 1.18 (m, 1H), 1.05 (td, *J* = 7.4, 1.5, 3H), 0.81 (d, *J* = 1.5, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 157.02, 137.92, 132.48, 126.29, 114.54, 112.05, 81.92, 69.47, 50.07, 43.99, 43.29, 38.90, 36.76, 30.60, 29.83, 27.31, 26.36, 23.16, 22.68, 11.10, 10.58.

HRMS C₂₁H₃₀O₂ MS-ESI [M+] *m/z* calcd: 314.2246; found: 314.2251.

Yield 99%, 58 mg; eluent for column chromatography: Hexanes : EtOAc (8:2) ¹H NMR (500 MHz, CDCl₃) δ 6.75 (dd, *J* = 7.9, 1.8, 2H), 6.68 (d, *J* = 7.9, 1H), 5.92 (s, 2H), 3.22 (d, *J* = 10.6, 1H), 2.90 – 2.80 (m, 1H), 2.64 – 2.50 (m, 1H), 1.87 – 1.73 (m, 1H), 1.60 (s, 1H), 1.58 – 1.51 (m, 1H), 0.97 – 0.86 (m, 9H).

¹³**C NMR** (126 MHz, CDCl₃) δ 147.57, 145.56, 136.31, 121.14, 108.95, 108.17, 100.73, 79.17, 34.95, 33.60, 33.05, 25.68.

HRMS C₁₄H₂₀O₃ MS-ESI [M+] *m/z* calcd: 236.1413; found: 236.1407.

Yield 87%, 30 mg; passed from short plug of silica and washed with hexanes : diethyl ether (8:2)

¹**H NMR** (500 MHz, CDCl₃; *cis:trans* (6:4)) δ 2.36 – 2.29 (m, 1H), 2.15 (dpd, J = 9.4, 7.2, 2.2, 1H), 1.95 (dddt, J = 12.6, 10.7, 4.9, 2.6, 2H), 1.89 (dt, J = 5.7, 2.8, 1H), 1.87 – 1.82 (m, 1H), 1.77 (ddd, J = 7.0, 3.9, 1.9, 1H), 1.48 – 1.38 (m, 1H), 1.34 (d, J = 9.9, 0.59H; *trans* product), 1.20 (s, 3H), 1.03 (s, 3H), 1.02 (d, J = 7.3, 3H), 0.88 (d, J = 8.6, 1H).

¹³**C NMR** (126 MHz, CDCl₃) δ 48.10, 47.65, 41.38, 40.91, 39.49, 38.82, 35.95, 33.95, 29.35, 28.31, 26.84, 26.54, 24.61, 23.94, 23.83, 23.21, 23.04, 22.89, 21.60, 20.08.

HRMS: C₁₀H₁₇ MS-CI [M-H] *m/z* calcd: 137.1330; found: 137.1324.

Yield 80%, 22 mg; passed from short plug of silica and washed with hexanes : diethyl ether (8:2)

¹**H NMR**^[12] (500 MHz, CDCl₃; *endo:exo* (85:15)) δ 2.13 (t, *J* = 4.3, 1H), 2.00 (s, 1H), 1.91 (dtdd, *J* = 12.4, 5.4, 4.0, 1.7, 1H), 1.76 (tdd, *J* = 11.6, 4.7, 3.1, 1H), 1.56 (d, *J* = 0.9, 1H), 1.50 – 1.45 (m, 1H), 1.35 (dt, *J* = 9.3, 1.9, 1H), 1.27 (dd, *J* = 9.1, 2.2, 1H), 1.13 – 1.07 (m, 1H), 0.95 (d, *J* = 7.0, 3H), 0.88 (d, *J* = 6.8, 0.52H (CH₃ of endo product)), 0.55 (ddd, *J* = 11.9, 5.2, 2.4, 1H).

¹³C NMR (126 MHz, CDCl₃) δ 41.73, 40.32, 38.47, 37.69, 34.09, 30.24, 22.07, 17.45.

Yield 99%, 117 mg; eluent for column chromatography: Hexanes : EtOAc (9.5:0.5) ¹**H NMR** (500 MHz, CDCl₃) δ 3.64 (t, *J* = 6.7, 2H), 2.60 (t, *J* = 6.8, 2H), 2.20 (s, 3H), 2.16 (s, 3H), 2.12 (s, 3H), 1.89 – 1.75 (m, 4H), 1.66 – 1.53 (m, 3H), 1.52 – 1.36 (m, 5H), 1.36 – 1.28 (m, 6H), 1.26 (s, 4H), 1.17 (dtd, *J* = 9.1, 6.5, 6.0, 2.1, 3H), 1.10 (t, *J* = 7.4, 6H), 0.89 (dd, *J* = 11.8, 6.6, 12H).

¹³**C NMR** (126 MHz, CDCl₃) δ 147.64, 127.87, 125.82, 122.76, 117.45, 74.73, 74.61, 40.13, 40.09, 39.41, 37.62, 37.53, 37.49, 37.45, 37.42, 37.37, 37.32, 32.83, 32.81, 32.72, 32.70, 31.35, 31.31, 28.01, 24.85, 24.83, 24.48, 24.46, 23.91, 23.55, 22.74, 22.65, 21.07, 21.05, 20.69, 19.77, 19.71, 19.65, 12.73, 11.87, 11.80, 10.75. **HRMS** C₃₂H₅₆O₂ MS-ESI [M+] *m/z* calcd: 472.4280; found: 472.4274.

Yield 93%, 71 mg; eluent for column chromatography: Hexanes : EtOAc (1:1) ¹**H NMR**^[13] (500 MHz, CDCl₃) δ 6.79 (d, *J* = 8.0, 1H), 6.74 (d, *J* = 1.8, 1H), 6.70 (dd, *J* = 8.0, 1.8, 1H), 5.56 (s, 1H), 5.51 (d, *J* = 4.6, 1H), 4.29 (d, *J* = 5.7, 2H), 3.81 (s, 3H), 2.16 – 2.09 (m, 2H), 1.58 (p, *J* = 7.5, 2H), 1.43 (dq, *J* = 13.2, 6.6, 1H), 1.28 – 1.22 (m, 2H), 1.22 – 1.17 (m, 4H), 1.07 (dd, *J* = 8.4, 5.4, 2H), 0.78 (d, *J* = 6.6, 6H).

Yield 99%, 40 mg; eluent for column chromatography: Hexanes : EtOAc (9:1) ¹**H NMR**^[2] (500 MHz, CDCl₃) δ 7.29 (t, *J* = 7.7, 2H), 7.21 (t, *J* = 7.3, 1H), 7.17 (d, *J* = 7.4, 2H), 3.01 (dd, *J* = 13.6, 6.8, 1H), 2.85 (h, *J* = 7.0, 1H), 2.58 (dd, *J* = 13.6, 7.7, 1H), 2.10 (s, 3H), 1.11 (d, *J* = 6.9, 3H).

Yield 91%, 51 mg; eluent for column chromatography: Hexanes : EtOAc (9:1) ¹**H NMR** (500 MHz, CDCl₃) δ 7.98 (d, *J* = 6.7, 1H), 7.94 (s, 1H), 7.54 (d, *J* = 7.1, 2H), 7.36 (d, *J* = 5.7, 2H), 7.28 (t, *J* = 7.8, 1H), 7.22 (d, *J* = 7.5, 1H), 2.65 (s, 3H), 2.61 (q, *J* = 7.5, 2H), 1.13 (t, *J* = 7.5, 3H).

¹³C NMR (126 MHz, CDCl₃) δ 198.11, 142.42, 141.56, 140.54, 137.02, 133.86, 129.89, 129.16, 128.75, 128.38, 128.00, 126.74, 125.76, 26.74, 26.15, 15.62.
HRMS C₁₆H₁₆O MS-ESI [M+] *m/z* calcd: 224.1201; found: 224.1207.

Yield 82%, 42 mg; eluent for column chromatography: Hexanes : EtOAc (9:1) ¹H NMR (500 MHz, CDCl₃) δ 10.02 (s, 1H), 8.04 (d, *J* = 7.8, 1H), 7.64 (t, *J* = 7.5, 1H), 7.48 (dd, *J* = 17.9, 7.6, 2H), 7.32 (s, 4H), 2.75 (q, *J* = 7.6, 2H), 1.32 (t, *J* = 7.6, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 192.66, 146.06, 144.35, 133.78, 133.52, 130.79, 130.12, 127.97, 127.53, 28.58, 15.49.

HRMS C₁₅H₁₄O MS-ESI [M+] *m/z* calcd: 210.1045; found: 210.1044.

Yield 83%, 57 mg; eluent for column chromatography: Hexanes : EtOAc (8:2) ¹H NMR (600 MHz, CDCl₃) δ 10.06 (s, 1H), 8.18 (s, 1H), 8.10 (s, 1H), 8.02 (d, *J* = 8.5, 1H), 7.24 (dd, *J* = 8.6, 1.8, 1H), 2.76 (q, *J* = 7.6, 2H), 1.68 (s, 9H), 1.27 (t, *J* = 7.6, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 185.93, 141.05, 136.69, 134.34, 126.39, 126.33, 120.88, 114.89, 85.48, 28.88, 28.09, 16.19.

HRMS C₁₆H₁₉NO₃ Na MS-ESI [M+Na] *m/z* calcd: 296.1263; found: 296.1267.

Yield 89%, 50 mg; eluent for column chromatography: Hexanes : EtOAc (9.5:0.5) ¹**H NMR** (500 MHz, CDCl₃) δ 7.46 (d, *J* = 7.5, 2H), 7.33 (q, *J* = 6.9, 1H), 7.28 (d, *J* = 7.1, 1H), 7.23 (d, *J* = 8.1, 3H), 7.15 – 7.02 (m, 2H), 6.96 (t, *J* = 8.0, 1H), 2.69 (q, *J* = 7.7, 2H), 1.28 (t, *J* = 7.5, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 144.40, 139.99, 134.33, 130.09, 130.02, 129.99, 128.29, 126.68, 126.58, 126.56, 122.37, 122.34, 114.24, 114.07, 112.76, 112.58, 28.68, 15.52.
HRMS C₁₆H₁₅F MS-ESI [M+] *m/z* calcd: 226.1158; found: 226.1154.

Yield 90%, 221 mg; eluent for column chromatography: Hexanes : EtOAc (9.5:0.5) ¹**H NMR**^[14] (500 MHz, CDCl₃) δ 5.27 (dt, *J* = 9.5, 4.3, 1H), 4.30 (dd, *J* = 11.8, 3.9, 2H), 4.15 (dd, *J* = 11.8, 5.9, 2H), 2.31 (t, *J* = 7.4, 6H), 1.61 (s, 6H), 1.26 (s, 84H), 0.88 (t, *J* = 6.3, 9H).

¹³**C NMR** (126 MHz, CDCl₃) δ 173.22, 68.86, 62.07, 34.03, 31.93, 29.71, 29.67, 29.63, 29.51, 29.48, 29.37, 29.27, 29.12, 24.90, 24.86, 22.69, 14.09.

4. References

- Hu, Y.; Zhou, L.; Lu, W. Transition-Metal- and Halogen-Free Oxidation of Benzylic sp³ C–H Bonds to Carbonyl Groups Using Potassium Persulfate. *Synthesis* 2017, *49*, 4007-4016.
- [2] Zhang, D.; Iwai, T.; Sawamura, M. Iridium-Catalyzed Alkene-Selective Transfer Hydrogenation with 1,4-Dioxane as Hydrogen Donor. *Org Lett.* 2019, *21*, 5867-5872.
- [3] Sunada, Y.; Ogushi, H.; Yamamoto, T.; Uto, S.; Sawano, M.; Tahara, A.; Tanaka, H.; Shiota, Y.; Yoshizawa, K.; Nagashima, H. Disilaruthena- and Ferracyclic Complexes Containing Isocyanide Ligands as Effective Catalysts

for Hydrogenation of Unfunctionalized Sterically Hindered Alkenes. *J. Am. Chem. Soc.* **2018**, *140*, 4119-4134.

- [4] Ono, N.; Kamimura, A.; Miyake, H.; Hamamoto, I.; Kaji, A. New synthetic methods. Conjugate addition of alkyl groups to electron deficient olefins with nitroalkanes as alkyl anion equivalents. *J. Org. Chem.* **1985**, *50*, 3692-3698.
- [5] Cai, Z.; Li, S.; Gao, Y.; Fu, L.; Li, G. Weak, bidentate chelating group assisted cross-coupling of C(sp³)–H bonds in aliphatic acid derivatives with aryltrifluoroborates. *Chem. Commun.* **2018**, *54*, 12766-12769.
- [6] Guo, S.; Yang, P.; Zhou, J. Nickel-catalyzed asymmetric transfer hydrogenation of conjugated olefins. *Chem. Commun.* 2015, *51*, 12115-12117.
- [7] Doherty, S.; Knight, J. G.; Carroll, M. A.; Ellison, J. R.; Hobson, S. J.; Stevens, S.; Hardacre, C.; Goodrich, P. Efficient and selective hydrogen peroxidemediated oxidation of sulfides in batch and segmented and continuous flow using a peroxometalate-based polymer immobilised ionic liquid phase catalyst. *Green Chem.* **2015**, *17*, 1559–1571.
- Yin, Q.; Kemper, S.; Klare, H. F. T.; Oestreich, M. Boron Lewis Acid-Catalyzed Hydroboration of Alkenes with Pinacolborane: BArF₃ Does What B(C₆F₅)₃ Cannot Do*! Chem. Eur. J.* **2016**, *22*,13840 –13844.
- [9] Churches, Q. I.; Hooper, J. F.; Hutton, C. A. A General Method for Interconversion of Boronic Acid Protecting Groups: Trifluoroborates as Common Intermediates. *J. Org. Chem.* **2015**, *80*, 5428-5435.
- [10] Mannathan, S.; Cheng, C. -H. Nickel-Catalyzed Regio- and Stereoselective Reductive Coupling of Oxa- and Azabicyclic Alkenes with Enones and Electron-Rich Alkynes, *Adv. Synth. Catal.* **2014**, *356*, 2239–2246.
- [11] LeGay, C. M.; Gorobets, E.; Iftinca, M.; Ramachandran, R.; Altier, C.; Derksen,
 D. Natural-Product-Derived Transient Receptor Potential Melastatin 8 (TRPM8) Channel Modulators. *Org. Lett.* **2016**, *18*, 2746-2749.

- [12] Fisher, J.; Gradwell, M. J. Substituent effects on ¹H chemical shifts. I complete 1H chemical shift assignments of methy-substituted cyclic systems. *Magn. Reason. Chem.* **1992**, *30*, 338–346.
- [13] Wang, B.; Yang, F.; Shan, Y. -F.; Qiu, W. -W.; Tang, J. Highly efficient synthesis of capsaicin analogues by condensation of vanillylamine and acyl chlorides in a biphase H₂O/CHCl₃ system. *Tetrahedron* **2009**, *65*, 5409–5412.
- [14] Scharnagl, F. K.; Hertrich, M. F.; Ferretti, F.; Kreyenschulte, C.; Lund, H.; Jackstell, R.; Beller, M. Hydrogenation of terminal and internal olefins using a biowaste-derived heterogeneous cobalt catalyst. *Sci. Adv.* 2018, *4*, eaau 1248; DOI: 10.1126/sciadv.aau1248.

5. Copies of ¹HNMR and ¹³CNMR spectra

S34

