Supporting Information

Endogenous *X*-C=O species enable catalyst-free formylation prerequisite for CO₂ reductive upgrading

Hongguo Wu, Wenshuai Dai, Shunmugavel Saravanamurugan, Hu Li*, Song Yang*

Experimental details

Materials

Anhydrous propylene carbonate (PPC, 99.7%), y-valerolactone (GVL, 98%), Nmethyl formamide (NMF, 99%), formamide (FMA, \geq 99.5%), dimethyl sulfoxide-d₆ (DMSO-d₆, 99.9 atom % D), N,N-dimethylformamide-d₇ (DMF-d₇, 99.5 atom % D), N,N-dimethylacetamide-d₉ (DMA-d₉, 99 atom % D), acetonitrile-d₃ (CAN-d₃, 99.8 atom % D), phenylsilane (PhSiH₃, 97%), 1,1,1,3,5,5,5-heptamethyltrisiloxane (\geq 98%), triethoxysilane (97%), diphenylsilane (Ph₂SiH₂, 97%), 1,1,3,3-tetramethyldisiloxane (98%), polymethylhydrosiloxane (PMHS), 4-bromobenzene-1,2-diamine (97%), ophenylenediamine (98%), 2-aminophenol (98%), 4-fluoro-1,2-phenylenediamine (≥98%), 4,5-dimethylbenzene-1,2-diamine (>98%), 4,5-dichloro-1,2-benzenediamine (98%), 4-nitro-o-phenylenediamine (97%), 2-aminobenzenethiol (96%), sodium bicarbonate-¹³C (Na₂CO₃-¹³C), 2-benzenediamine (95%), and benzimidazole (>98%) were purchased from Aladdin Industrial Inc. (Shanghai). N,N-Dimethyl formamide (DMF, 99.8%), N-methyl pyrrolidone (NMP, >99%), dimethyl sulfoxide (DMSO, 99.8%), anhydrous N,N-dimethylacetamide (DMA, 99.8%), formic acid (HCOOH, 99%), acetone-d₆ (DMK-d₆, 99.9 atom % D), methanol-d₄ (MeOH-d₄, 99.8 atom % D), tetrahydrofuran-d₈ (THF-d₈, 99.5 atom % D), chloroform-d₁ (TCM-d₁, 99.8 atom % D), triethylsilane (Et₃SiH, 99%), acetone (DMK, \geq 99.0%), and concentrated hydrochloric acid (HCl, 33%) were provided by Innochem Inc. (Beijing). Dichloromethane (DCM, \geq 99.5%), 2-methyltetrahydrofuran (MTHF, \geq 99.5%), acetonitrile (MeCN, \geq 99.0%), and methanol (MeOH, \geq 99.5%) were obtained from J&K Scientific Ltd. (Beijing). Chloroform (TCM, ≥99.0%) was purchased from Acros Inc. (Shanghai). Diphenylsilane-d₂ (Ph₂SiD₂, 97 atom% D) was bought from Sigma-Aldrich Co. LLC.

 $^{13}CO_2$ was prepared by addition of 15 mL HCl (1.8 M) into 15 mL Na₂CO₃- ^{13}C (1.0 M) aqueous solution at 50 °C stirring for 30 min, and collected with a balloon.

Methyl 5-(dimethylamino)-2-methyl-5-oxopentanoate (DMO) was (Rhodiasolv[®] PolarClean) was available from Solvay Novecare (Cranbury, US).^{S1} In the present

Туре	Structure	NMR data (ppm)
¹ H NMR	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	H^{1-2} 2.92 (s), H^{3-4} 2.27 (t), H^{5-6} 1.75 (dq), H^{7} 2.49, H^{8} 1.09 (d), H^{9} 3.57 (s)
¹³ C NMR	$\begin{array}{cccccccccc} H & O & H & H & O & H \\ H & I & I & J & J \\ H & C^{1} & C^{2} & C^{4} & C^{5} & C^{7} & C^{9} & H \\ H & I & I & H & C^{8} & H \\ H & H & H & H & H \end{array}$	C ¹ 36.4, C ² 34.6, C ³ 171.2, C ⁴ 38.1, C ⁵ 28.7, C ⁶ 29.8, C ⁷ 176.2, C ⁸ 16.7, C ⁹ 21.3

study, DMO was prepared using a reported method,^{S2} and its ¹H and ¹³C NMR data in DMSO-d₆ are provided below:

Reaction procedures

Synthesis of HCOOH

The reaction was carried out in a quartz glass tube (10 mL) coupled with a magnetic stirrer and a sealed cap that was inserted by a hollow steel needle. After loading the samples, the tube was transferred into a stainless steel autoclave and sealed. In a typical procedure, 1 mmol PhSiH₃ and 2 mL solvent were added into the tube, which was then put into the stainless steel reactor. After sealing up and evacuating, CO₂ was charged into the reactor up to the desired pressure (1-4 MPa) or with a balloon. Afterward, the reactor was heated at a specified temperature (30-80 °C) for a certain reaction time. Upon completion, the reactor was flushed with tap water until cooling down to ambient temperature. Finally, HCOOH could be liberated by following two post-treatment methods, including: (1) after release of CO₂, 2 mL hydrochloric acid aqueous solution (0.3 M) or 3% acetic acid aqueous solution was added, followed by heating at 30 °C for 0.5 h; (2) without release of CO₂, in situ injection of 1 mL H₂O, followed by heating at 100 °C for 15 min. Along with liquid HCOOH, phenylsilanetriol was obtained as white precipitate.

Synthesis of N-containing benzoheterocyclic compounds

For the synthesis of benzimidazoles, benzothiazole or benzoxazole, similar reaction procedures to the HCOOH synthesis were adopted except the addition of 0.5 mmol of relevant *o*-phenylenediamines, 2-aminobenzenethiol or 2-aminophenol. It is worth noting that no additional post-treatment was required for the synthesis of these N-containing benzoheterocyclic compounds.

Product analysis

For determining the concentration of HCOOH after reaction, the resulting mixture was transferred to a volumetric flask (25 mL) with addition of water to gain a constant volume, which was then analysed quantitatively by HPLC (Agilent 1260) based on the standard curves [HCOOH yield = (mole of HCOOH) / (mole of used total H⁻) × 100%]. Representative HPLC chromatogram of standard HCOOH aqueous solution (Figure S5) and HCOOH standard curve (Figure S6) are supplied.

Regarding the commercially available *N*-containing benzoheterocyclics, their concentrations were determined by GC (Agilent 7890B) and GC-MS (Agilent 6890N GC/5973 MS) after dilution with 5 mL methanol using 10 mg naphthalene as the internal standard (the product yield was calculated relative to the used total H⁻).

For both cases, ¹H NMR (diluted with DMSO-d₆) was used to quantitatively analyse unpurified products in the reaction mixtures using 1,3,5-trimethoxybenzene as the internal standard. For the structural identification of products, HRMS (ESI) analysis was measured on a Q Exactive LC-MS/MS (Thermo Scientific) instrument. ¹H and ¹³C NMR analysis were recorded in DMSO-d₆ on Bruker NMR spectrometers at 400 MHz and 101 MHz respectively, JOEL ECX-500M spectrometers at 500 MHz and 125 MHz using tetramethylsilane (TMS) as the internal standard. All the experiments were repeated thrice, and the average results are presented.

Isotopic labeling experiments

¹H and ¹³C NMR spectra of the reaction mixtures were used in the experiments at the given reaction conditions using normal Ph₂SiH₂ or deuterium counterpart

(Ph₂SiD₂) with ¹³CO₂ or ¹²CO₂. Analyses were performed after dilution with the deuterated solvent DMSO-d₆ on a JEOL-ECX 500 NMR spectrometer.

Computational methods

All structure optimization and energy calculations were performed using density functional theory (DFT) employing the B3LYP functional implemented in the Gaussian 09 program package. Pople's all-electron basis set 6-311G (d,p) was used for all atoms.^{S3-S5}

Calculation of pressurized CO₂-H₂O system pH values

As demonstrated in previous literature,^{S6} the expected pH of the binary CO₂-H₂O system can be expressed as a function of temperature (*T*) and pressure (*P*):

$$pH = 8.00 \times 10^{-6} \times T^2 + 0.00209 \times T - 0.216 \times \ln(P_{CO2}) + 3.92$$

The pH values shown in Figure 3A were obtained by plugging the specific temperature and pressure into the equation.

R ₃ SiH							
	R ₃ SiH	Ö	H₂O	0	- H ₂		
CO ₂	Solvent R ₃ S	i∕ <mark>o∕́H</mark>		HO H +	R₃SiOH		
					R₃SiH		
				H ₂ +	R ₃ SiOSiR ₃		
Calvant	Abbroviation	Acidity	Basicity	Polarity	НСООН	(0 a) / - *	(0 ar)
Solvent	Abbreviation	$(\alpha)^{a}$	(β) <i>a</i>	$(\pi^{*})^{a}$	yield (%)	$(p - \alpha) / \pi^{n}$	(ρ - α)
CHCl ₃	TCM	0.44	0	0.58	0.2	-0.76	-0.44
CH_2Cl_2	DCM	0.13	0.1	0.82	0.2	-0.04	-0.03
CH ₃ CN	ACN	0.19	0.4	0.66	0.4	0.32	0.21
CH ₃ OH	МеОН	0.93	0.66	0.58	0.4	-0.47	-0.27
H ₂ O	Water	1.17	0.14	1.09	0	-0.95	-1.03
Acetone	DMK	0.08	0.48	0.71	0.3	0.56	0.40
2-Methyltetrahydrofuran	MTHF	0	0.45	0.53	1	0.85	0.45
Propylene carbonate	PPC	0	0.4	0.83	2	0.48	0.40
γ-Valerolactone	GVL	0	0.6	0.83	3	0.72	0.60
N-Methyl-2-pyrrolidone	NMP	0	0.72	0.92	59	0.78	0.72
N,N-Dimethylformamide	DMF	0	0.69	0.88	72	0.78	0.69
N-Methyl formamide	NMF	0.62	0.8	0.9	43	0.20	0.18
Formamide	FMA	0.71	0.48	0.97	0	-0.24	-0.23
N,N-Dimethylacetamide	DMA	0	0.76	0.85	91	0.89	0.76
<i>N</i> , <i>N</i> -Dimethylacetamide ^{<i>b</i>}	DMA	0	0.76	0.85	73	0.89	0.76

Table S1. Effect of various solvents on the synthesis of HCOOH from CO_2 and PhSiH_3

Reaction conditions: 1 mmol PhSiH_3, 2 mL solvent, 3 MPa CO_2, 50 °C, 4 h $\,$

^{*a*} The Kamlet–Taft parameters (α , β , and π^*) were obtained from the references.^{S7-S9}

^b 5 wt% water was added.

E t.m	Call strate	I I., due -:'leu -	Yield/
Entry	Substrate	Hydrosnane	%
1	Ph, H Si H H	Phenylsilane	91
2	O ⁻ Si H	Triethoxysilane	6
3	- $si-O$ $(si-O)$ $si-O$ n $i-$	Polymethylhydrosiloxane (PMHS)	6
4	$\overset{ H / }{\overset{ Si_{O}}{\overset{Si}{\overset{Si}}{\overset{Si}{Si}}{\overset{Si}{Si}}{\overset{Si}{\overset{Si}{s}}{\overset{Si}{si}}{\overset{Si}{si}}{\overset{Si}{si}}{\overset{Si}{si}}{si}}{si}}}}}}}}}}}}}}}}}}}}}}}$	Heptamethyltrisiloxane	0
5	Ph、_Ph Si H	Diphenylsilane	25

Table S2. Synthesis of HCOOH using different hydrosilanes in DMA

Reaction conditions: 1 mmol hydrosilane, 3 MPa CO₂, 2 mL DMA, 50 °C, 4 h.

Experiment	Maniatian	Yield 1	Yield 2	Average	Deviation
Experiment	variation	(%)	(%)	yield (%)	(%)
High T	70 °C	53.4	56.8	55.1	-30.7
Low T	30 °C	55.8	52.6	54.2	-40.4
High P	4 MPa	92.4	91.4	91.9	1.0
Low P	2 MPa	78.1	82.5	80.3	-11.8
Long t	6 h	85.8	88.6	87.2	-4.2
Short t	2 h	82.5	85.1	83.8	-7.9
High C	1.25 mmol	87.2	89	88.1	-3.2
Low C	0.75 mmol	85.4	83	84.2	-7.5

Table S3. Experiments conducted for sensitivity assessment of HCOOH synthesis from CO₂

Optimal reaction conditions (Best yield: 91%): 1 mmol PhSiH₃, 3 MPa CO₂, 50 °C, 4 h Average yield (%) = (Yield 1+Yield 2) / 2

Deviation (%) = (Average yield - Best yield) / Best yield \times 100%

Scheme S1. Illustration of representative CO₂-derived products in the reaction system

Figure S1. ¹H NMR spectra of different hydrosilanes in DMA-d₉

Figure S2. Effect of PhSiH₃ dosage on the synthesis of HCOOH from CO₂ in DMA Reaction conditions: 1 mmol PhSiH₃, 3 MPa CO₂, 2 mL solvent, 50 °C, 4 h

Figure S3. ¹H NMR spectra of the reaction mixtures after reductive insertion of PhSiH₃ with ¹³CO₂ or ¹²CO₂ Reaction conditions: 0.25 mmol PhSiH₃, CO₂ balloon, 1 mL DMSO-d₆, 50 °C, 8 h

Figure S4. ¹H NMR spectra of the mixtures obtained after reaction of PhSiH₃ with CO₂ in DMA (A), and subsequent treatment with MeOH (B).
Reaction conditions: (A) 1 mmol PhSiH₃, 3 MPa CO₂, 2 mL DMA, 50 °C, 4 h; (B) 2 mL MeOH (0.3 M HCl), 30 °C, 0.5 h. Diluted with DMSO-d₆ for NMR analysis.

Figure S5. HPLC spectrum of standard HCOOH aqueous solution (Retention time: 14.594 min for HCOOH, and 19.434 min for H_2O)

Figure S6. The standard curve of HCOOH

¹H NMR (400 MHz, DMSO) δ ppm: 8.56 (s, 1H), 8.51 (d, J = 2.2 Hz, 1H), 8.12 (dd, J = 8.9, 2.3 Hz, 1H), 7.77 (d, J = 8.9 Hz, 1H). ¹³C NMR (101 MHz, DMSO) δ ppm: 147.25 (s), 143.06 (s), 118.09 (s), 115.38 (s), 113.24 (s). HRMS: Calculated for C₇H₆N₃O₂, [M+H] 164.0455, Found: 164.0457.

¹H NMR (400 MHz, DMSO) δ ppm: 8.29 (s, 1H), 7.66 (d, J = 1.9 Hz, 1H), 7.60 (d, J = 8.6 Hz, 1H), 7.22 (dd, J = 8.6, 2.0 Hz, 1H). ¹³C NMR (101 MHz, DMSO) δ ppm: 143.93 (s), 126.65 (s), 122.53 (s). HRMS: Calculated for C₇H₅ClN₂, [M+H] 153.0214, Found: 153.0217.

¹H NMR (400 MHz, DMSO) δ ppm: 12.22 (s, 1H), 8.06 (s, 1H), 7.35 (s, 2H), 2.30 (s, 6H). ¹³C NMR (101 MHz, DMSO) δ ppm: 141.44 (s), 20.44 (s). HRMS: Calculated for C₉H₁₁N₂, [M+H] 147.0917, Found: 147.0919.

¹H NMR (400 MHz, DMSO) δ ppm: 12.59 (s, 1H), 8.26 (s, 1H), 7.59 (dd, J = 8.7, 4.9 Hz, 1H), 7.40 (dd, J = 9.5, 2.4 Hz, 1H), 7.20 – 6.84 (m, 1H). ¹³C NMR (101 MHz, DMSO) δ ppm: 160.09 (s), 157.76 (s), 143.83 (s), 110.40 (d, J = 25.6 Hz). HRMS: Calculated for C₇H₆FN₂, [M+H] 137.0510, Found: 137.0509.

¹H NMR (400 MHz, DMSO) δ ppm: 8.28 (s, 1H), 7.80 (d, J = 1.7 Hz, 1H), 7.56 (d, J = 8.5 Hz, 1H), 7.33 (dd, J = 8.5, 1.8 Hz, 1H). ¹³C NMR (101 MHz, DMSO) δ ppm: 143.78 (s), 125.14 (s), 118.66 (s), 117.33 (s), 114.50 (s). HRMS: Calculated for C₇H₆BrN₂, [M+H] 196.9709, Found: 196.9714.

¹H NMR (400 MHz, DMSO) δ ppm: 8.35 (s, 1H), 7.87 (s, 2H). ¹³C NMR (101 MHz, DMSO) δ ppm: 145.23 (s), 124.75 (s), 117.18 (s). HRMS: Calculated for C₇H₅Cl₂N₂, [M+H] 186.9824, Found: 186.9829.

¹H NMR (400 MHz, DMSO) δ ppm: 12.34 (s, 1H), 8.13 (s, 1H), 7.47 (d, J = 8.1 Hz, 1H), 7.37 (s, 1H), 7.01 (d, J = 8.1 Hz, 1H), 2.41 (s, 3H). ¹³C NMR (101 MHz, DMSO) δ ppm: 142.05 (s), 131.27 (s), 123.61 (s), 21.71 (s). HRMS: Calculated for C₈H₉N₂, [M+H] 133.0760, Found: 133.0760.

¹H NMR (400 MHz, DMSO) δ ppm: 8.23 (s, 1H), 7.60 (dd, J = 5.3, 3.3 Hz, 2H), 7.19 (dd, J = 6.0, 3.2 Hz, 2H). HRMS: Calculated for C₇H₇N₂, [M+H] 119.0604, Found: 119.0604.

¹H NMR (400 MHz, DMSO) δ ppm: 8.56 (s, 1H), 8.52 (d, J = 2.2 Hz, 1H), 8.13 (dd, J = 8.9, 2.3 Hz, 1H), 7.78 (d, J = 8.9 Hz, 1H). ¹³C NMR (101 MHz, DMSO) δ ppm: 155.78 (s), 153.76 (s), 134.32 (s), 126.51 (s), 125.83 (s), 123.66 (s), 122.65 (s). HRMS: Calculated for C₇H₆NS, [M+H] 136.0215, Found: 136.0221.

¹H NMR (400 MHz, DMSO) δ ppm: 8.73 (s, 1H), 7.79 (d, J = 7.1 Hz, 1H), 7.66 (dd, J = 12.2, 6.3 Hz, 1H), 7.35 (dd, J = 13.4, 6.6 Hz, 2H). ¹³C NMR (101 MHz, DMSO) δ ppm: 154.40 (s), 149.89 (s), 140.23 (s), 125.82 (s), 124.83 (s), 120.51 (s), 111.36 (s).

<u>NMR</u> spectra of the isolated products

S23

HR-MS spectra of some representative products formed in the reaction mixture

 $m/z \; 253 \; [M{+}Na] \quad C_{13}H_{10}D_2O_2NaSi$

$\begin{array}{ll} m/z \; 230 \; [M^+] & C_{13} H_{10} D_2 O_2 Si \\ & \begin{array}{c} \mbox{2019110830 \#111} & \mbox{RT: } 1.07 \; \mbox{AV: 1} \; \mbox{NL: } 2.71\text{E6} \\ & \mbox{T: } \mbox{FTMS + p } \text{ESI Full ms } [100.0000-1000.0000] \end{array}$

$m/z \; 213 \; [M^+] \quad C_8{}^{13} CH_{12} O_4 Si$

2019110827 #67 RT: 0.64 AV: 1 NL: 7.50E5 T: FTMS + p ESI Full ms [100.0000-1000.0000]

Structural coordinates of reaction intermediates and transition states:

DMA

TS-1-DMA			
С	-1.85157400	-0.32617500	-0.33578000
С	-2.46880700	-1.37441600	0.34966800
С	-3.80714600	-1.30328600	0.72247400
С	-4.55215900	-0.17293800	0.41443400
С	-3.95437100	0.88374500	-0.26409500
С	-2.61849800	0.80490300	-0.63317700
Н	-1.89524500	-2.26188500	0.60346700
Н	-4.26599700	-2.12850800	1.25632200
Н	-5.59503900	-0.11114700	0.70551400
Н	-4.52993800	1.77148400	-0.50248900
Н	-2.16653400	1.64576800	-1.15241500
Si	-0.06824600	-0.53803600	-0.93565900
Н	0.25568300	-1.85004700	-0.30857200
Н	0.11900200	1.14590500	-0.80810600
Н	-0.12695600	-0.61061700	-2.41448900
С	0.43275900	1.61331700	0.38657700
0	0.62926000	0.68561600	1.16364800
0	0.45698500	2.80127500	0.31726600
0	1.90224300	-0.31534400	-1.17217600
С	3.63841033	-2.00568541	-0.56103593
Н	4.47663958	-2.06708884	0.13513648
Н	2.86004926	-2.72875916	-0.32371173
Н	3.99275141	-2.13254588	-1.58260789
С	3.07325637	-0.58938550	-0.43615363
Ν	3.58962395	0.53700433	0.35473857
С	4.60511364	1.25877518	-0.42547135
Н	4.76306232	2.22634331	0.00320583
Н	5.52274369	0.70861564	-0.41207086
Н	4.26870054	1.36673699	-1.43545674
С	4.19410684	0.02880843	1.59459234
Н	4.40389554	0.84754037	2.25076816
Н	3.51472207	-0.64595328	2.07212032
Н	5.10370050	-0.48507296	1.36336674
TS-2-DMA			
С	2.05720900	0.11729600	-0.26708900
С	2.67365600	-0.26092100	-1.46159600
С	4.05837200	-0.27735900	-1.58633100

С	4.85320400	0.08790000	-0.50746500	
С	4.25681100	0.46853800	0.68962200	
С	2.87270300	0.48289900	0.80653800	
Н	2.06391100	-0.54608300	-2.31586900	
Н	4.51615900	-0.57319600	-2.52418200	
Н	5.93391700	0.07638500	-0.59914800	
Н	4.87356000	0.75512100	1.53488200	
Н	2.41628400	0.77970100	1.74437700	
Si	0.16840800	0.11787000	-0.20730800	
Н	0.14724500	-1.50783200	-0.33372900	
С	0.06012100	-1.95384000	1.12713000	
Ο	0.28335800	-0.93704300	1.74177000	
Ο	-0.20257900	-3.09573100	1.10016900	
Ο	-1.68773100	-0.22883100	0.25004300	
С	-3.43768013	1.61798406	-0.75440865	
Н	-4.38354725	1.58990544	-1.29744732	
Н	-3.57756267	1.93652149	0.27841828	
Н	-2.71383379	2.24566064	-1.26951098	
Ο	0.04287900	1.62777600	0.67890200	
С	-0.87923800	2.54907900	0.62574500	
Н	-0.64263300	3.38588600	1.29999700	
0	-1.87824800	2.54859600	-0.05949700	
Н	-0.21522700	0.44360300	-1.61615600	
С	-2.73721824	-0.03257560	-0.74577845	
Ν	-3.51188626	-1.25338578	-1.01113098	
С	-3.34494032	-1.64342010	-2.41857628	
Н	-2.51173325	-2.30877030	-2.50787963	
Н	-4.23195446	-2.13478490	-2.76014111	
Н	-3.16961480	-0.77060746	-3.01217468	
С	-4.93398167	-1.00034163	-0.73815973	
Н	-5.14861956	-1.23638574	0.28316967	
Н	-5.15401155	0.03093039	-0.91972208	
Н	-5.53444416	-1.61138104	-1.37923355	
TS-2-DMA2				
С	2.16873300	0.20760100	-0.24807800	
С	2.82309000	0.31909800	-1.47684100	
С	4.20700900	0.43248600	-1.55034200	
С	4.96252800	0.43820600	-0.38503400	
С	4.32828300	0.32924500	0.84763200	
С	2.94548400	0.21512600	0.91330900	
Н	2.24496400	0.32152300	-2.39793300	
H H	2.24496400 4.69417800	0.32152300 0.51950400	-2.39793300 -2.51553700	

Н	4.91365400	0.33379400	1.76099300
Н	2.46025600	0.12891800	1.87941800
Si	0.28463600	0.08202400	-0.25766100
Н	0.32383300	-1.41086200	-0.89164800
С	0.32199100	-2.29156200	0.36532800
0	0.38397300	-1.47855300	1.26104500
0	0.25288800	-3.39667800	-0.00876400
0	-1.61735600	-0.45320000	-0.06147000
0	0.01917600	1.19966900	1.06246300
С	-0.90517800	2.10798900	1.25111000
Н	-0.72317400	2.66103200	2.18505700
0	-1.84655600	2.35551500	0.53461300
Н	-0.09131700	0.83184200	-1.49647000
С	-2.50920000	0.14595300	-0.69614000
Ν	-3.79469400	-0.07521300	-0.50415900
С	-4.25900900	-0.98109600	0.53414000
Н	-4.77906000	-0.41432500	1.31103500
Н	-4.94585000	-1.71295500	0.10312700
Н	-3.40394900	-1.49150600	0.96963100
С	-4.79728400	0.69512600	-1.21736300
Н	-4.84758716	1.70367488	-0.80913349
Н	-4.54327862	0.75022057	-2.27861603
Н	-5.77742034	0.22485558	-1.10609540
С	-2.14718094	1.17402347	-1.78407994
Н	-1.66806954	0.67545874	-2.60064928
Н	-3.03808717	1.65357566	-2.13224050
Н	-1.48385344	1.90734444	-1.37525602
TS-3-DMA			
С	2.01429300	-0.09650100	0.08548700
С	2.74562400	0.03952300	-1.09977700
С	4.12743700	0.18614200	-1.08976100
С	4.81417000	0.19526700	0.11719700
С	4.10958200	0.05718300	1.30637000
С	2.72669900	-0.08416600	1.28916400
Н	2.23140400	0.03037500	-2.05718000
Н	4.66574500	0.29213800	-2.02514500
Н	5.89256000	0.30858200	0.13114600
Н	4.63824300	0.05849300	2.25349000
Н	2.19078400	-0.18935800	2.22409600
Si	0.12061400	-0.19688300	-0.00544400
Н	0.23708700	-0.67053700	-1.54202600
С	0.20959500	-2.20581300	-1.35639900
0	0.19682600	-2.31269900	-0.14800100

0	0.20693600	-2.67080000	-2.42618300
0	-1.66248600	-0.55283500	-0.37480600
С	-2.41687289	2.21150133	0.18906940
Н	-1.72760510	2.52408247	-0.59482609
Н	-3.34954470	2.77690805	0.14955641
Н	-1.96494498	2.29717425	1.17607302
0	-0.09986400	-0.32560700	1.71668500
С	-1.03032200	-0.66964700	2.57513900
Н	-0.59103200	-0.87284300	3.56330400
0	-2.21802300	-0.74904800	2.38229000
0	-0.29753300	1.46975900	-0.28137600
С	0.39394900	2.60447600	-0.18483200
Н	1.41466700	2.47889800	0.20800600
0	-0.07229900	3.65965900	-0.50299500
С	-2.80663600	0.47003500	-0.02558400
Ν	-4.16815023	-0.06739057	0.10988839
С	-4.54185495	-0.10265602	1.53115583
Н	-5.36974497	0.55418371	1.69866608
Н	-4.81738001	-1.10023638	1.80285304
Н	-3.71045609	0.21241522	2.12647594
С	-5.10923447	0.79172046	-0.62304317
Н	-6.08046035	0.34273172	-0.61762021
Н	-5.15725045	1.75126054	-0.15200464
Н	-4.77499920	0.90650817	-1.63299890
TC 2 DMA3			
Т 5-5- ДМА2	2 12142600	0.08537000	0.00562100
C	-2.13143000	0.08337000	1.06668200
C C	-2.80840000	0.33788000	-1.00008300
C C	-4.23430400	0.24234000	-1.08191400
C C	-4.93090400	-0.10373700	1 2/372500
C C	-4.22303900	-0.35347800	1.24372300
Ч	-2.83707100	-0.20270100	1.23083200
н	-2.33332400	0.01440300	-1.98340100
н	-4.79900900	0.17812500	-1.99821000
П Ц	-0.01870800	-0.17812300	2 15411700
н	-4.75131200	-0.01904800	2.13411700
Si	-0.24175000	0.16553000	0.01065200
н	-0.24175000	1 23758200	-1 19447400
C	-0.32/37/00 -0.314/0/00	2 54567000	-0 30082800
0	-0.2177700	2.3+307900	0.75425800
0	-0.27550000	3 41810800	-1 16565500
0	1 58607200	0.65488100	-0 11293600
0	0.03430600	-0 41563600	1 62558000
<u> </u>	0.00450000	0.11202000	1.0400000

С	1.01508300	-1.06336500	2.21561400
Н	0.78475300	-1.22644900	3.27919200
0	2.03911100	-1.45583000	1.71581700
0	0.13621200	-1.20830000	-0.95895700
С	-0.52571900	-2.34928200	-1.16548700
Н	-1.54020900	-2.36195400	-0.73649500
0	-0.04857300	-3.26452100	-1.76698300
С	2.51776400	-0.12178800	-0.45095300
Ν	3.77961700	0.22421600	-0.35033000
С	4.18289400	1.48051900	0.26171700
Н	4.85087900	2.01887900	-0.41379200
Н	3.29974200	2.08122600	0.46164500
Н	4.70514400	1.27711700	1.20003000
С	4.83012700	-0.71998700	-0.69282500
Н	5.80581898	-0.23490473	-0.61785171
Н	4.79638595	-1.57279190	-0.01059558
Н	4.68544598	-1.07839336	-1.71080016
С	2.19709131	-1.50240541	-1.05316939
Н	1.62551737	-2.07347278	-0.35168147
Н	1.63344665	-1.37643232	-1.95391102
Н	3.10950498	-2.01657090	-1.27233859

DMF

TS-1-DMF С -1.85157400 -0.32617500 -0.33578000С -2.46880700 -1.37441600 0.34966800 С -3.80714600 -1.303286000.72247400 С -4.55215900 -0.17293800 0.41443400 С -3.95437100 0.88374500 -0.26409500 С 0.80490300 -2.61849800 -0.63317700 0.60346700 Н -1.89524500 -2.26188500 Н -4.26599700 -2.12850800 1.25632200 Η -5.59503900 -0.11114700 0.70551400 Н -4.52993800 1.77148400 -0.50248900 Η -2.16653400 1.64576800 -1.15241500 Si -0.06824600-0.53803600 -0.93565900 Η 0.25568300 -1.85004700 -0.30857200 Η 0.11900200 1.14590500 -0.80810600 Н -0.12695600 -0.61061700 -2.41448900 0.43275900 1.61331700 0.38657700 С 0 0.62926000 0.68561600 1.16364800 0 0.45698500 2.80127500 0.31726600

0	1.90224300	-0.31534400	-1.17217600
С	3.06495131	-0.58744195	-0.44137364
Ν	4.05170997	0.49847496	-0.35197669
С	4.84980024	0.53814561	-1.58582359
Н	5.33047366	1.49045748	-1.66922123
Н	5.59021076	-0.23376197	-1.55665236
Н	4.20963887	0.38661722	-2.42970306
С	4.93748565	0.26229032	0.79716136
Н	5.52039736	1.13980669	0.98445515
Н	4.34826857	0.03446463	1.66076931
Н	5.58853905	-0.55931705	0.58270668
Н	3.16041155	-1.55723439	0.00054259

TS-2-DMF

С	2.05720900	0.11729600	-0.26708900
С	2.67365600	-0.26092100	-1.46159600
С	4.05837200	-0.27735900	-1.58633100
С	4.85320400	0.08790000	-0.50746500
С	4.25681100	0.46853800	0.68962200
С	2.87270300	0.48289900	0.80653800
Н	2.06391100	-0.54608300	-2.31586900
Н	4.51615900	-0.57319600	-2.52418200
Н	5.93391700	0.07638500	-0.59914800
Н	4.87356000	0.75512100	1.53488200
Н	2.41628400	0.77970100	1.74437700
Si	0.16840800	0.11787000	-0.20730800
Н	0.14724500	-1.50783200	-0.33372900
С	0.06012100	-1.95384000	1.12713000
0	0.28335800	-0.93704300	1.74177000
0	-0.20257900	-3.09573100	1.10016900
0	-1.68773100	-0.22883100	0.25004300
0	0.04287900	1.62777600	0.67890200
С	-0.87923800	2.54907900	0.62574500
Н	-0.64263300	3.38588600	1.29999700
0	-1.87824800	2.54859600	-0.05949700
Н	-0.21522700	0.44360300	-1.61615600
С	-2.80559000	-0.01979000	-0.81065400
Н	-2.93034612	1.00867134	-1.07824170
Ν	-3.35977746	-1.34467267	-1.12444082
С	-4.79347416	-1.36537935	-0.80042689
Н	-5.29086523	-0.58193400	-1.33307640
Н	-5.20961763	-2.30947983	-1.08397390
Н	-4.92351430	-1.21979643	0.25161644
С	-3.17675340	-1.62593664	-2.55562661

Н	-3.59662447	-2.58236279	-2.78769838	
Н	-3.66817119	-0.87104692	-3.13316455	
Н	-2.13224296	-1.62912968	-2.78776394	
TS-3-DMF				
С	2.01429300	-0.09650100	0.08548700	
С	2.74562400	0.03952300	-1.09977700	
С	4.12743700	0.18614200	-1.08976100	
С	4.81417000	0.19526700	0.11719700	
С	4.10958200	0.05718300	1.30637000	
С	2.72669900	-0.08416600	1.28916400	
Н	2.23140400	0.03037500	-2.05718000	
Н	4.66574500	0.29213800	-2.02514500	
Н	5.89256000	0.30858200	0.13114600	
Н	4.63824300	0.05849300	2.25349000	
Н	2.19078400	-0.18935800	2.22409600	
Si	0.12061400	-0.19688300	-0.00544400	
Н	0.23708700	-0.67053700	-1.54202600	
С	0.20959500	-2.20581300	-1.35639900	
0	0.19682600	-2.31269900	-0.14800100	
0	0.20693600	-2.67080000	-2.42618300	
0	-1.66248600	-0.55283500	-0.37480600	
0	-0.09986400	-0.32560700	1.71668500	
С	-1.03032200	-0.66964700	2.57513900	
Н	-0.59103200	-0.87284300	3.56330400	
0	-2.21802300	-0.74904800	2.38229000	
0	-0.29753300	1.46975900	-0.28137600	
С	0.39394900	2.60447600	-0.18483200	
Н	1.41466700	2.47889800	0.20800600	
0	-0.07229900	3.65965900	-0.50299500	
С	-2.68019087	0.35699306	-0.06417808	
Ν	-4.01075073	-0.25661943	0.05410192	
Н	-2.38966232	1.38022700	0.05194888	
С	-4.61644892	-0.37427537	-1.28013448	
Н	-5.67750643	-0.47214632	-1.18277829	
Н	-4.39003990	0.50061634	-1.85302492	
Н	-4.22268256	-1.23693686	-1.77577872	
С	-4.86370500	0.58348578	0.90709210	
Н	-5.62351069	1.04262469	0.30977578	
Н	-5.32059115	-0.02230588	1.66152666	
Н	-4.26787074	1.34164347	1.37085763	
TS-3-DMF2				
С	2.01429300	-0.09650100	0.08548700	

С	2.74562400	0.03952300	-1.09977700	
С	4.12743700	0.18614200	-1.08976100	
С	4.81417000	0.19526700	0.11719700	
С	4.10958200	0.05718300	1.30637000	
С	2.72669900	-0.08416600	1.28916400	
Н	2.23140400	0.03037500	-2.05718000	
Н	4.66574500	0.29213800	-2.02514500	
Н	5.89256000	0.30858200	0.13114600	
Н	4.63824300	0.05849300	2.25349000	
Н	2.19078400	-0.18935800	2.22409600	
Si	0.12061400	-0.19688300	-0.00544400	
Н	0.23708700	-0.67053700	-1.54202600	
С	0.20959500	-2.20581300	-1.35639900	
0	0.19682600	-2.31269900	-0.14800100	
0	0.20693600	-2.67080000	-2.42618300	
0	-1.66248600	-0.55283500	-0.37480600	
0	-0.09986400	-0.32560700	1.71668500	
С	-1.03032200	-0.66964700	2.57513900	
Н	-0.59103200	-0.87284300	3.56330400	
0	-2.21802300	-0.74904800	2.38229000	
0	-0.29753300	1.46975900	-0.28137600	
С	0.39394900	2.60447600	-0.18483200	
Н	1.41466700	2.47889800	0.20800600	
0	-0.07229900	3.65965900	-0.50299500	
С	-2.69118418	-1.55729940	-0.46367297	
Ν	-2.42639661	-3.00321781	-0.47404028	
Н	-3.68303568	-1.16885346	-0.56486769	
С	-2.87001019	-3.57343692	-1.75425790	
Н	-3.01820307	-4.62727448	-1.64305872	
Н	-3.78954399	-3.11321508	-2.05015224	
Н	-2.12518573	-3.39487844	-2.50142147	
С	-3.15925134	-3.64348388	0.62772344	
Н	-3.95201225	-4.24127788	0.22888451	
Н	-2.49112778	-4.26437616	1.18719075	
Н	-3.56805228	-2.89084137	1.26905881	

References:

- S1. N. T. Hassankiadeh, Z. Cui, J. Kim, D. W. Shin, S. Y. Lee, A. Sanguineti, V. Arcella, Y. M. Lee, E. Drioli, Microporous poly(vinylidene fluoride) hollow fiber membranes fabricated with PolarClean as water-soluble green diluent and additives. *J. Memb. Sci.*, 2015, 479, 204-212.
- S2. L. Cseri, G. Szekely, Towards cleaner PolarClean: efficient synthesis and extended applications of the polar aprotic solvent methyl 5-(dimethylamino)-2methyl-5-oxopentanoate. *Green Chem.*, 2019, 21, 4178-4188.
- R. Krishnan, J. S. Binkley, R. Seeger, J. A. Pople, J. Chem. Phys., 1980, 72, 650-654.
- S4. P. J. Stephens, F. J. Devlin, C. F. N. Chabalowski, M. J. Frisch, J. Chem. Phys., 1994, 98, 11623-11627.
- S5. A. D. McLean, G. S. Chandler, J. Chem. Phys., 1980, 72, 5639-5648.
- S6. G. P. van Walsum, Severity function describing the hydrolysis of xylan using carbonic acid. *Appl. Biochem. Biotechnol.*, 2001, **91-93**, 317-329.
- M. A. Rauf, A. A. Soliman, M. Khattab, Solvent effect on the spectral properties of Neutral Red. *Chem. Cent. J.*, 2008, 2, 19.
- S8. P. G. Jessop, D. A. Jessop, D. Fu, L. Phan, Solvatochromic parameters for solvents of interest in green chemistry. *Green Chem.*, 2012, 14, 1245-1259.
- V. I. Smirnov, V. G. Badelin, Enthalpies of solution of L-phenylalanine in aqueous solution of amides at 298.15 K. *Thermochim. Acta*, 2013, 551, 145-148.