Supplementary Information For

Electrochemical Esterification Reaction of Alkynes with Diols via Cleavage of Carbon-Carbon Triple Bonds without Catalyst and Oxidant

Pei-Long Wang, ^{a,b} Hui-Zhi Shen, ^a Hui-Hui Cheng, ^a Hui Gao*a and Pin-Hua Li*a,

^a Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education; Department of Chemistry, Huaibei Normal University, Huaibei, Anhui 235000, P. R. China.

^b Information College, Huaibei Normal University, Huaibei 235000, China.

Tabel of Contents

I. General Information St	2
II. Experimental procedures and data	\$3
1.General procedure for the electrochemical esterification reaction of alkynes with diols	S3
2.General procedure for cyclic voltammetry (CV)	S3
3. Characterization data for the products	S3
4. X-Ray crystal data of 3 j	S13
III. References	S24
NMR spectra of the products	S25

I. General Information

NMR spectra were recorded on Bruker-600 (600 MHz for ¹H; 151 MHz for ¹³C). ¹H NMR spectra were referenced relative to internal Si(Me)₄ (TMS) at δ 0.00 ppm or CDCl₃ at δ 7.26 ppm. ¹³C NMR spectra were recorded at ambient temperature on Bruker-600 (151 MHz) spectrometers and are referenced relative to CDCl₃ at δ 77.16 ppm. Data for ¹H, ¹³C NMR are recorded as follows: chemical shift (δ , ppm), multiplicity (s = singlet, d = doublet, t = triplet, m = multiplet, q = quartet, quint = quintet, br = broad), integration, and coupling constant (Hz). High resolution mass spectra were recorded on P-SIMS-Gly of BrukerDaltonics Inc. using ESI-TOF (electrospray ionization-time of flight). n-Bu₄NPF₆ was purchased from Bidepharm, and MeCN was purchased from Shanghai Titan Scientific Co., Ltd. Diphenylacetylene, prop-1-yn-1-ylbenzene and all the terminal alkyns were purchased from Energy Chemical. 1-Ethyl-4-(p-tolylethynyl)benzene, but-1-yn-1-ylbenzene, pent-1-yn-1-ylbenzene were purchased from Alfa Aesar. Hex-1-yn-1-ylbenzene was purchased from Shanghai Macklin Biochemical Co., Ltd. Other alkynes were synthesized through the known methods.¹⁻¹² Ethylene glycol was purchased from Energy Chemical. 1,3-Propanediol and 1,4-butanediol were purchased from Shanghai Aladin Biochemical Technology Co., Ltd. 2,2-Dimethyl-1,3-propanediol was purchased from Shanghai Macklin Biochemical Co., Ltd. Diethylene glycol and diethylene glycol monomethyl ether were purchased from Tianjin Heowns Biochemical Technology Co. Ltd.

IV. Experimental procedures and data

1. General procedure for the electrochemical esterification reaction of alkynes with diols

To an undivided cell (10 mL columnar round-bottom flask with a 24# mouth) fitted with a graphite rod anode (6 mm diameter, 120mm length) and a piece of Pt (1 cm × 1cm × 0.02 cm) cathode, the solid reagents alkyne (0.6 mmol) , n-Bu₄NPF₆ (0.6 mmol) were added. The vessel was evacuated and backfilled with N₂ (3 times). Then, the liquid reagents diol (27 mmol), MeCN (5 mL) were added in sequence via syringe. The electrolysis was carried out with constant current (18 mA) at 80 °C for 12 h. After that, the reaction mixture was cooled to room temperature and filtered through a plug of silica (eluted with 80 mL EtOAc). The filtrate was washed with water for two times (2 × 80 mL). Then the organic layer was washed with brine and dried over Na₂SO₄. The solvent was evaporated to dryness under reduced pressure and the residue was purified by column chromatography on silica gel to give product **3**.

2. General procedure for cyclic voltammetry (CV):

Cyclic voltammetry was performed in a three electrode cell connected to a schlenk line at room temperature. The working electrode was a glassy carbon electrode, and the counter electrode was a platinum electrode. The reference was an Ag wire. 10 mL of CH_3CN containing 0.1 M *n*-Bu₄NPF₆ were poured into the electrochemical cell in all experiments. The scan rate is 0.1 V/s, ranging from 0 V to 3 V. The test concentrations of **1a**, **2a** and **1j** are 1 mM.

3. Characterization data for the products

2-hydroxyethyl benzoate (3a)

Following general procedure, alkyne **1a** and alcohol **2a** were used to afford the desired product (151.5 mg, 76% yield).

Alkyne 1k and alcohol 2a were used to afford the desired product (51.2 mg, 51% yield).

Alkyne 11 and alcohol 2a were used to afford the desired product (56.0 mg, 56% yield). Alkyne 1m and alcohol 2a were used to afford the desired product (62.7 mg, 63% yield). Alkyne 1n and alcohol 2a were used to afford the desired product (60.3 mg, 60% yield). Alkyne 1o and alcohol 2a were used to afford the desired product (61.5 mg, 62% yield). Alkyne 1p and alcohol 2a were used to afford the desired product (71.2 mg, 71% yield). Alkyne 1q and alcohol 2a were used to afford the desired product (64.3 mg, 65% yield). Alkyne 1q and alcohol 2a were used to afford the desired product (60.1 mg, 60% yield). Alkyne 1r and alcohol 2a were used to afford the desired product (60.1 mg, 60% yield). Alkyne 4a and alcohol 2a were used to afford the desired product (48.6 mg, 49% yield). Alkyne 4i and alcohol 2a were used to afford the desired product (52mg, 52% yield). Alkyne 4j and alcohol 2a were used to afford the desired product (58.5 mg, 59% yield). Alkyne 4a and alcohol 2a were used to afford the desired product (47.7 mg, 48% yield). Alkyne 5a and alcohol 2a were used to afford the desired product (29.2 mg, 29% yield). Alkyne 5a and alcohol 2a were used to afford the desired product (29.2 mg, 29% yield).

Benzil 8 and alcohol 2a were used to afford the desired product (84.3 mg, 43% yield).

Pale yellow oil, (eluent:petroleum ether/ethyl acetate = 2:1).

¹**H NMR** (600 MHz, CDCl₃) δ 8.06-8.05 (m, 2H), 7.58-7.55 (m, 1H), 7.45-7.43 (m, 2H), 4.47-4,45 (m, 2H), 3.96-3.95 (m, 2H), 2.05 (brs, 1H).

¹³C NMR (151 MHz, CDCl₃) δ 167.1, 133.3, 130.0, 129.8, 128.6, 66.8, 61.5.

HRMS (ESI) calcd. for $C_9H_{10}NaO_3^+$ ([M+Na]⁺): 189.0522, found: 189.0526.

2-hydroxyethyl 4-methylbenzoate (3b)

Following general procedure, alkyne **1b** and alcohol **2a** were used to afford the desired product (109.1 mg, 50% yield).

Alkyne 1k and alcohol 2a were used to afford the desired product (53.9 mg, 50% yield).

Alkyne 1s and alcohol 2a were used to afford the desired product (54.9 mg, 51% yield).

Alkyne 1t and alcohol 2a were used to afford the desired product (56.5 mg, 52% yield).

Alkyne 4b and alcohol 2a were used to afford the desired product (63 mg, 58% yield).

Alkyne **5b** and alcohol **2a** were used to afford the desired product (49.8 mg, 46% yield).

Pale yellow oil, (eluent:petroleum ether/ethyl acetate = 2:1).

¹**H NMR** (600 MHz, CDCl₃) δ 7.95 (d, J = 8.2 Hz, 2H), 7.24 (d, J = 7.9 Hz, 2H), 4.46-4.44 (m, 2H), 3.96-3.95 (m, 2H), 2.41 (s, 3H), 2.10 (brs, 1H). ¹³**C NMR** (151 MHz, CDCl₃) δ 167.2, 144.1, 129.9, 129.3, 127.2, 66.7, 61.7, 21.8. **HRMS** (ESI) calcd. for C₁₀H₁₂NaO₃⁺ ([M+Na]⁺): 203.0679, found: 203.0683.

2-hydroxyethyl 3-methylbenzoate (3c)

Following general procedure, alkyne **1c** and alcohol **2a** were used to afford the desired product (132.0 mg, 61% yield).

Alkyne 11 and alcohol 2a were used to afford the desired product (60.7 mg, 56% yield).

Alkyne 1u and alcohol 2a were used to afford the desired product (42.2 mg, 39% yield).

Alkyne 4c and alcohol 2a were used to afford the desired product (54.2 mg, 50% yield).

Alkyne 5c and alcohol 2a were used to afford the desired product (33.8 mg, 31% yield).

Pale yellow oil, (eluent:petroleum ether/ethyl acetate = 2:1).

¹**H NMR** (600 MHz, CDCl₃) δ 7.87-7.85 (m, 2H), 7.38 (d, *J* = 7.6 Hz, 1H), 7.33 (t, *J* = 7.6 Hz, 1H), 4.47-4.45 (m, 2H), 3.97-3.95 (m, 2H), 2.40 (s, 3H), 2.14 (brs, 1H).

¹³C NMR (151 MHz, CDCl₃) δ 167.3, 138.4, 134.1, 130.3, 129.9, 128.5, 127.0, 66.8, 61.6, 21.4. HRMS (ESI) calcd. for C₁₀H₁₂NaO₃⁺ ([M+Na]⁺): 203.0679, found: 203.0682.

2-hydroxyethyl 2-methylbenzoate (3d)

Following general procedure, alkyne **1d** and alcohol **2a** were used to afford the desired product (122.4 mg, 57% yield).

Alkyne 1v and alcohol 2a were used to afford the desired product (54.9 mg, 51% yield).

Alkyne 4d and alcohol 2a were used to afford the desired product (56.6 mg, 52% yield).

Alkyne 5d and alcohol 2a were used to afford the desired product (45.6 mg, 42% yield).

Pale yellow oil, (eluent:petroleum ether/ethyl acetate = 2:1).

¹H NMR (600 MHz, CDCl₃) δ 7.95-7.93 (m, 1H), 7.41 (t, *J* = 7.4 Hz, 1H), 7.27-7.24 (m, 2H), 4.44-4.43 (m, 2H), 3.96-3.95 (m, 2H), 2.61 (s, 3H), 2.25 (brs, 1H).
¹³C NMR (151 MHz, CDCl₃) δ 168.0, 140.4, 132.3, 131.9, 130.7, 129.3, 125.9, 66.5, 61.5, 21.9.
HRMS (ESI) calcd. for C₁₀H₁₂NaO₃⁺ ([M+Na]⁺): 203.0679, found: 203.0677.

2-hydroxyethyl 4-(*tert*-butyl)benzoate (3e)

Following general procedure, alkyne **1e** and alcohol **2a** were used to afford the desired product (169.7 mg, 64% yield).

Alkyne 1m and alcohol 2a were used to afford the desired product (94.8 mg, 71% yield).

Alkyne 4e and alcohol 2a were used to afford the desired product (83.6 mg, 63% yield).

Alkyne 5f and alcohol 2a were used to afford the desired product (83.4 mg, 63% yield).

Pale yellow oil, (eluent:petroleum ether/ethyl acetate = 2:1).

¹**H NMR** (600 MHz, CDCl₃) δ 7.98 (d, *J* = 8.5 Hz, 2H), 7.45 (d, *J* = 8.5 Hz, 2H), 4.46-4.44 (m, 2H), 3.95-3.94 (m, 2H), 2.24 (brs, 1H), 1.33 (s, 9H).

¹³C NMR (151 MHz, CDCl₃) δ 167.2, 157.1, 129.7, 127.2, 125.5, 66.7, 61.6, 35.2, 31.2. HRMS (ESI) calcd. for C₁₃H₁₉O₃⁺ ([M+H]⁺): 223.1329, found: 223.1329.

2-hydroxyethyl 4-(trimethylsilyl)benzoate (**3f**)

Following general procedure, alkyne **1f** and alcohol **2a** were used to afford the desired product (212.3 mg, 74% yield).

Alkyne 1n and alcohol 2a were used to afford the desired product (114.7 mg, 80% yield).

Alkyne 5g and alcohol 2a were used to afford the desired product (50.4 mg, 35% yield).

Pale yellow oil, (eluent:petroleum ether/ethyl acetate = 2:1).

¹**H NMR** (600 MHz, CDCl₃) δ 8.01 (d, *J* = 8.0 Hz, 2H), 7.60 (d, *J* = 8.0 Hz, 2H), 4.47-4.46 (m, 2H), 3.96-3.95 (m, 2H), 2.20 (brs, 1H), 0.29 (s, 9H).

¹³C NMR (151 MHz, CDCl₃) δ 167.3, 147.4, 133.5, 130.1, 128.7, 66.8, 61.6, -1.2. HRMS (ESI) calcd. for C₁₂H₁₈NaO₃Si⁺ ([M+Na]⁺): 261.0917, found: 261.0914.

2-hydroxyethyl 4-fluorobenzoate (3g)

Following general procedure, alkyne **1g** and alcohol **2a** were used to afford the desired product (148.5 mg, 67% yield).

Alkyne 10 and alcohol 2a were used to afford the desired product (70.2 mg, 64% yield).

Alkyne 1w and alcohol 2a were used to afford the desired product (67.3 mg, 61% yield).

Alkyne 5h and alcohol 2a were used to afford the desired product (35.8 mg, 32% yield).

Pale yellow oil, (eluent:petroleum ether/ethyl acetate = 2:1).

¹**H NMR** (600 MHz, CDCl₃) δ 8.06 (dd, *J* = 8.1, 5.7 Hz, 2H), 7.10 (t, *J* = 8.3 Hz, 2H), 4.45-4.44 (m, 2H), 3.95-3.94 (m, 2H), 2.31 (brs, 1H).

¹³C NMR (151 MHz, CDCl₃) δ 166.9, 166.1, 165.2, 132.4, 132.4, 126.3, 126.3, 115.8, 115.7, 66.9, 61.6. HRMS (EI) calcd. for C₉H₁₀FO₃⁺ ([M+H]⁺): 185.0608, found:185.0609.

2-hydroxyethyl 4-chlorobenzoate (3h)

Following general procedure, alkyne **1h** and alcohol **2a** were used to afford the desired product (114.6 mg, 48% yield).

Alkyne 1p and alcohol 2a were used to afford the desired product (92.0 mg, 76% yield).

Alkyne 1x and alcohol 2a were used to afford the desired product (84.6 mg, 70% yield).

Alkyne 4f and alcohol 2a were used to afford the desired product (86.5 mg, 72% yield).

Alkyne 5i and alcohol 2a were used to afford the desired product (49.4 mg, 41% yield).

White solid, (eluent:petroleum ether/ethyl acetate = 2:1).

¹**H NMR** (600 MHz, CDCl₃) δ 7.98 (d, *J* = 8.3 Hz, 2H), 7.41 (d, *J* = 8.3 Hz, 2H), 4.46-4.45 (m, 2H), 3.95 (s, 2H), 2.20 (brs, 1H).

¹³C NMR (151 MHz, CDCl₃) δ 166.2, 139.8, 131.2, 128.9, 128.5, 67.0, 61.5. HRMS (EI) calcd. for C₉H₁₀ClO₃⁺ ([M+H]⁺): 201.0313, found: 201.0316.

2-hydroxyethyl 2-chlorobenzoate (3i)

Following general procedure, alkyne 1i and alcohol 2a were used to afford the desired product (126.9 mg, 53% yield).

Alkyne 1q and alcohol 2a were used to afford the desired product (80.9 mg, 67% yield).

Pale yellow oil, (eluent:petroleum ether/ethyl acetate = 2:1).

¹**H NMR** (600 MHz, CDCl₃) δ 7.85 (dd, *J* = 7.8, 1.5 Hz, 1H), 7.47-7.42 (m, 2H), 7.33 (td, *J* = 7.8, 1.4 Hz, 1H), 4.48-4.46 (m, 2H), 3.96-3.95 (m, 2H), 2.09 (brs, 1H).

¹³C NMR (151 MHz, CDCl₃) δ 166.1, 133.7, 132.9, 131.7, 131.2, 130.0, 126.8, 67.2, 61.2.

HRMS (ESI) calcd. for C₉H₉ClNaO₃⁺ ([M+Na]⁺): 223.0132, found: 223.0135.

2-hydroxyethyl methyl terephthalate (3j)

Following general procedure, alkyne **1j** and alcohol **2a** were used to afford the desired product (126.8 mg, 47% yield).

Alkyne 4h and alcohol 2a were used to afford the desired product (54.1 mg, 40% yield).

White solid, (eluent:petroleum ether/ethyl acetate = 1:1).

¹**H NMR** (600 MHz, CDCl₃) δ 8.12-8.08 (m, 4H), 4.49-4.48 (m, 2H), 3.98-3.97 (m, 2H), 3.94 (s, 3H), 2.19 (brs, 1H).

¹³C NMR (151 MHz, CDCl₃) δ 166.4, 166.2, 134.2, 133.8, 129.8, 129.7, 67.1, 61.4, 52.6. HRMS (ESI) calcd. for C₁₁H₁₂NaO₅⁺ ([M+Na]⁺): 247.0577, found: 247.0579.

2-hydroxyethyl 4-cyanobenzoate (3k)

Following general procedure, alkyne 1r and alcohol 2a were used to afford the desired product (86.5 mg, 75% yield).

Alkyne 1t and alcohol 2a were used to afford the desired product (77.6 mg, 68% yield). Alkyne 1u and alcohol 2a were used to afford the desired product (50.8 mg, 44% yield). Alkyne 1v and alcohol 2a were used to afford the desired product (71.8 mg, 58% yield). Alkyne 1w and alcohol 2a were used to afford the desired product (66.3 mg, 63% yield). Alkyne 1x and alcohol 2a were used to afford the desired product (72.2 mg, 63% yield). Pale yellow oil, (eluent:petroleum ether/ethyl acetate = 2:1). ¹H NMR (600 MHz, CDCl₃) δ 8.15 (d, *J* = 8.4 Hz, 2H), 7.74 (d, *J* = 8.5 Hz, 2H), 4.50-4.48 (m, 2H), 3.97 (s, 2H), 2.13 (brs, 1H).

¹³C NMR (151 MHz, CDCl₃) δ 165.3, 133.9, 132.4, 130.3, 118.0, 116.7, 67.4, 61.2.

HRMS (ESI) calcd. for $C_{10}H_{10}NO_3^+$ ([M+H]⁺): 192.0655, found: 192.0657.

2-hydroxyethyl 4-ethylbenzoate (31)

Following general procedure, alkyne **1s** and alcohol **2a** were used to afford the desired product (50.6 mg, 43% yield).

Alkyne 5e and alcohol 2a were used to afford the desired product (49.9 mg, 43% yield).

Pale yellow oil, (eluent:petroleum ether/ethyl acetate = 2:1).

¹**H NMR** (600 MHz, CDCl₃) δ 7.97 (d, *J* = 8.1 Hz, 2H), 7.27 (d, *J* = 6.8 Hz, 2H), 4.46-4.45 (m, 2H),

3.96-3.94 (m, 2H), 2.71 (q, J = 7.6 Hz, 2H), 2.17 (brs, 1H), 1.26 (t, J = 7.6 Hz, 3H).

¹³C NMR (151 MHz, CDCl₃) δ 167.2, 150.3, 130.0, 128.1, 127.5, 66.7, 61.7, 29.1, 15.3.

HRMS (ESI) calcd. for $C_{11}H_{14}NaO_3^+$ ([M+H]⁺): 217.0835, found: 217.0835.

3-hydroxypropyl benzoate (3m)

Following general procedure, alkyne **1a** and alcohol **2b** were used to afford the desired product (139.4 mg, 64% yield).

Alkyne 1r and alcohol 2b were used to afford the desired product (54.1 mg, 50% yield).

Alkyne 4a and alcohol 2b were used to afford the desired product (58.4 mg, 54% yield).

Pale yellow oil, (eluent:petroleum ether/ethyl acetate = 2:1).

¹**H NMR** (600 MHz, CDCl₃) δ 8.03 (d, *J* = 7.3 Hz, 2H), 7.56 (t, *J* = 7.4 Hz, 1H), 7.44 (t, *J* = 7.8 Hz, 2H), 4.48 (t, *J* = 6.1 Hz, 2H), 3.77 (t, *J* = 6.1 Hz, 2H), 2.11-1.99 (m, 3H).

¹³C NMR (151 MHz, CDCl₃) δ 167.2, 133.2, 130.2, 129.7, 128.5, 61.9, 59.3, 32.0.

HRMS (ESI) calcd. for C₁₀H₁₂NaO₃⁺ ([M+Na]⁺): 203.0679, found: 203.0679.

4-hydroxybutyl benzoate (3n)

Following general procedure, alkyne **1a** and alcohol **2c** were used to afford the desired product (118.2 mg, 51% yield).

Alkyne 1r and alcohol 2c were used to afford the desired product (34.9 mg, 30% yield).

Alkyne 4a and alcohol 2c were used to afford the desired product (50.8 mg, 44% yield).

Pale yellow oil, (eluent:petroleum ether/ethyl acetate = 2:1).

¹**H NMR** (600 MHz, CDCl₃) δ 8.04 (d, *J* = 7.4 Hz, 2H), 7.55 (t, *J* = 7.4 Hz, 1H), 7.43 (t, *J* = 7.7 Hz, 2H), 4.36 (t, *J* = 6.5 Hz, 2H), 3.72 (t, *J* = 6.5 Hz, 2H), 1.89-1.85 (m, 2H), 1.75-1.71 (m, 2H), 1.65 (brs, 1H).

¹³C NMR (151 MHz, CDCl₃) δ 166.8, 133.0, 130.5, 129.7, 128.5, 64.9, 62.5, 29.4, 25.4.

HRMS (ESI) calcd. for $C_{11}H_{14}NaO_3^+$ ([M+Na]⁺): 217.0835, found: 217.0828.

3-hydroxy-2,2-dimethylpropyl benzoate (30)

Following general procedure, alkyne **1a** and alcohol **2d** were used to afford the desired product (201.1 mg, 80% yield).

Alkyne 1r and alcohol 2d were used to afford the desired product (29.5 mg, 25% yield).

Alkyne 4d and alcohol 2a were used to afford the desired product (87.9 mg, 70% yield).

Pale yellow oil, (eluent:petroleum ether/ethyl acetate = 2:1).

¹**H NMR** (600 MHz, CDCl₃) δ 8.04 (d, *J* = 7.9 Hz, 2H), 7.57 (t, *J* = 7.3 Hz, 1H), 7.44 (t, *J* = 7.7 Hz, 2H), 4.18 (s, 2H), 3.39 (s, 2H), 2.41 (brs, 1H), 1.01 (s, 6H).

¹³C NMR (151 MHz, CDCl₃) δ 167.3, 133.3, 130.1, 129.8, 128.6, 69.9, 68.3, 36.9, 21.7.

HRMS (ESI) calcd. for $C_{12}H_{16}NaO_3^+$ ([M+Na]⁺): 231.0992, found: 231.0992.

2-(2-hydroxyethoxy)ethyl benzoate (**3p**)

Following general procedure, alkyne **1a** and alcohol **2c** were used to afford the desired product (78.2 mg, 31% yield).

Pale yellow oil, (eluent:petroleum ether/ethyl acetate = 2:1).

¹**H NMR** (600 MHz, CDCl₃) δ 8.05 (dd, *J* = 8.2, 1.1 Hz, 2H), 7.57-7.54 (m, 1H), 7.44 (t, J = 7.8 Hz, 2H), 4.49 (t, *J* = 4.8 Hz, 2H), 3.84 (t, *J* = 4.8 Hz, 2H), 3.75 (t, *J* = 4.8 Hz, 2H), 3.65 (t, *J* = 4.8 Hz, 2H), 2.23 (brs, 1H).

¹³C NMR (151 MHz, CDCl₃) δ 166.7, 133.2, 130.1, 129.8, 128.5, 72.5, 69.4, 64.1, 61.9.

HRMS (ESI) calcd. for C₁₁H₁₄NaO₄⁺ ([M+Na]⁺): 233.0784, found: 233.0789.

2-(2-methoxy)ethyl benzoate (**3q**)

Following general procedure, alkyne **1a** and alcohol **2d** were used to afford the desired product (107.0 mg, 40% yield).

Pale yellow oil, (eluent:petroleum ether/ethyl acetate = 2:1).

¹**H NMR** (600 MHz, CDCl₃) δ 8.06 (dd, J = 8.3, 1.2 Hz, 2H), 7.57-7.54 (m, 1H), 7.45-7.42 (m, 2H), 4.49-4.48 (m, 2H), 3.85-3.83 (m, 2H), 3.71-3.69 (m, 2H), 3.57-3.56 (m, 2H), 3.38 (s, 3H).

¹³C NMR (151 MHz, CDCl3) δ 166.7, 133.1, 130.3, 129.8, 128.5, 72.1, 70.7, 69.4, 64.3, 59.2.

HRMS (ESI) calcd. for C₁₂H₁₆NaO₄⁺ ([M+Na]⁺): 247.0941, found: 247.0944.

2-hydroxyethyl 4-methoxybenzoate (3r)

Following general procedure, alkyne **4g** and alcohol **2a** were used to afford the desired product (49 mg, 42% yield).

Colorless oil, (eluent:petroleum ether/ethyl acetate = 2:1).

¹**H NMR** (600 MHz, CDCl₃) δ 8.02-7.99 (m, 2H), 6.93-6.90 (m, 2H), 4.44-4.42 (m, 2H), 3.95-3.93 (m,

2H), 3.86 (s, 3H), 2.09 (brs, 1H).

¹³C NMR (151 MHz, CDCl₃) δ 166.9, 163.7, 131.9, 122.4, 113.8, 66.6, 61.7, 55.6.

HRMS (ESI) calcd. for $C_{10}H_{12}NaO_4^+$ ([M+Na]⁺): 219.0628, found: 219.0628.

3-hydroxypropyl 4-(*tert*-butyl)benzoate (3s)

Following general procedure, alkyne **5f** and alcohol **2b** were used to afford the desired product (73.8 mg, 52% yield).

Yellow oil, (eluent:petroleum ether/ethyl acetate = 2:1).

¹**H NMR** (600 MHz, CDCl₃) δ 7.96 (d, *J* = 8.5 Hz, 2H), 7.45 (d, *J* = 8.4 Hz, 2H), 4.48 (t, *J* = 6.1 Hz,

2H), 3.76 (t, J = 6.0 Hz, 2H), 2.08 (brs, 1H), 2.02-1.98 (m, 2H), 1.34 (s, 9H).

¹³C NMR (151 MHz, CDCl₃) δ 167.2, 156.9, 129.6, 127.4, 125.5, , 61.7, 59.3, 35.2, 32.1, 31.2.

HRMS (ESI) calcd. for $C_{14}H_{20}NaO_3^+$ ([M+Na]⁺): 259.1305, found: 259.1303.

4-hydroxybutyl 4-(*tert*-butyl)benzoate (**3t**)

Following general procedure, alkyne **5f** and alcohol **2c** were used to afford the desired product (86.8 mg, 58% yield).

Yellow oil, (eluent:petroleum ether/ethyl acetate = 2:1).

¹H NMR (600 MHz, CDCl₃) δ 7.96 (d, J = 8.5 Hz, 2H), 7.45 (d, J = 8.5 Hz, 2H), 4.35 (t, J = 6.5 Hz, 2H), 3.72 (t, J = 6.5 Hz, 2H), 1.88-1.84 (m, 2H), 1.75-1.67 (m, 3H), 1.33 (s, 9H). ¹³C NMR (151 MHz, CDCl₃) δ 166.9, 156.7, 129.6, 127.7, 125.5, 64.7, 62.6, 35.2, 31.3, 29.4, 25.4. HRMS (ESI) calcd. for C₁₅H₂₂NaO₃⁺ ([M+Na]⁺): 273.1461, found: 273.1462.

3-hydroxy-2,2-dimethylpropyl 4-(*tert*-butyl)benzoate (**3u**)

Following general procedure, alkyne **5f** and alcohol **2d** were used to afford the desired product (76.1 mg, 48% yield).

Pale yellow oil, (eluent:petroleum ether/ethyl acetate = 2:1).

¹**H NMR** (600 MHz, CDCl₃) δ 7.97 (d, *J* = 8.4 Hz, 2H), 7.46 (d, *J* = 8.4 Hz, 2H), 4.17 (s, 2H), 3.37 (s, 2H), 2.41 (brs, 1H), 1.34 (s, 9H), 1.00 (s, 6H).

¹³C NMR (151 MHz, CDCl₃) δ 167.3, 157.0, 129.7, 127.3, 125.6, 69.7, 68.4, 37.0, 35.3, 31.2, 21.7.

HRMS (ESI) calcd. for $C_{16}H_{25}O_3^+$ ([M+H]⁺): 265.1798, found: 265.1795.

4. X-Ray crystal data of **3j** (CCDC 2031057)

Table S1. Crystal data and structure refinement for 111.

Identification code	111
Empirical formula	C44 H48 020
Formula weight	896.82

Temperature	293(2) K		
Wavelength	0.71073 A		
Crystal system, space group	Monoclinic, P 1 21 1		
Unit cell dimensions	a = 8.3520(9) A alpha = 90 deg. b = 5.7066(6) A beta = 91.450(3) deg. c = 22.623(2) A gamma = 90 deg.		
Volume	1077.90(19) A ³		
Z, Calculated density	1, 1.382 Mg/m ³		
Absorption coefficient	0.110 mm ⁻¹		
F (000)	472		
Crystal size	0.25 x 0.21 x 0.14 mm		
Theta range for data collection	0.900 to 27.550 deg.		
Limiting indices	$-10 \le h \le 10, -7 \le k \le 7, -29 \le 1 \le 29$		
Reflections collected / unique	16076 / 4909 [R(int) = 0.0296]		
Completeness to theta = 25.242	99.2 %		
Absorption correction	Semi-empirical from equivalents		
Max. and min. transmission	0.7456 and 0.6422		
Refinement method	Full-matrix least-squares on F ²		
Data / restraints / parameters	4909 / 1 / 293		
Goodness-of-fit on F^2	0. 961		
Final R indices [I>2sigma(I)]	R1 = 0.0450, wR2 = 0.1350		
R indices (all data)	R1 = 0.0594, $wR2 = 0.1507$		
Absolute structure parameter	0.0(3)		
Extinction coefficient	n/a		
Largest diff. peak and hole	0.256 and -0.194 e.A^-3		

	Х	У	Z	U(eq)
O(4)	-2031(2)	728(4)	-1384(1)	48(1)
0(1)	-6176(3)	3342(4)	-3939(1)	56(1)
0(5)	144(2)	4141(5)	-840(1)	65(1)
0(2)	-5774(4)	-221(5)	-4315(1)	72(1)
0(3)	-1632(3)	-3000(4)	-1657(1)	69(1)
C(1)	-6955(4)	4036(7)	-4491(1)	64(1)
C (3)	-4787(3)	618(5)	-3341(1)	39(1)
C (9)	-2195(3)	-1077(5)	-1751(1)	44(1)
C(2)	-5633(3)	1154(6)	-3916(1)	45(1)
C(4)	-4730(3)	2214(5)	-2878(1)	42(1)
C(6)	-3129(3)	-453(5)	-2297(1)	38(1)
C(7)	-3198(3)	-2071 (5)	-2758(1)	49(1)
C(11)	-935(4)	2664(7)	-543(1)	57(1)
C(10)	-1133(3)	337 (6)	-834(1)	53(1)
C(5)	-3900(3)	1698(5)	-2356(1)	43(1)
C (8)	-4033(3)	-1532(5)	-3277(1)	48(1)
0(9)	2996(3)	-151(5)	-1393(1)	58(1)
0(6)	-1144(3)	3321(4)	-3902(1)	62(1)
0(7)	-781(4)	-137(5)	-4332(1)	83(1)
0(10)	3043(3)	2645(7)	-323(1)	85(1)
C(19)	981(4)	-1738(6)	-3329(1)	55(1)
0(8)	3443(4)	-3707(5)	-1764(1)	86(1)
C(12)	-1938(5)	4133 (8)	-4440(1)	70(1)
C(21)	3945(4)	-733(7)	-869(1)	63(1)
C(22)	4341 (4)	1550(9)	-571(2)	74(1)
C(13)	-609(4)	1125(6)	-3911(1)	51(1)
C(14)	247 (3)	431 (5)	-3354(1)	45(1)
C(20)	2846(3)	-1790(6)	-1807(1)	51(1)
C(17)	1922(3)	-966(5)	-2336(1)	43(1)
C(16)	1177(3)	1209(5)	-2356(1)	46(1)
C(15)	339(3)	1907 (5)	-2861(1)	46(1)
C(18)	1809(4)	-2441(5)	-2824(1)	54(1)

Table S2. Atomic coordinates ($x \ 10^{\circ}4$) and equivalent isotropic displacement parameters (A² $x \ 10^{\circ}3$) for 111. U(eq) is defined as one third of the trace of the orthogonalized

Uij tensor.

0(4)-C(9)	1.328(4)
0(4) - C(10)	1.454(3)
0(1) - C(1)	1.449(3)
0(1) - C(2)	1.329(4)
0(5) - H(5)	0.8200
0(5) - C(11)	1,415(4)
0(2) - C(2)	1, 199(4)
0(3) - C(9)	1,210(4)
C(1) - H(1A)	0.9600
C(1) - H(1B)	0.9600
C(1) - H(1C)	0.9600
C(3) - C(2)	1.496(3)
C(3) - C(4)	1.390(4)
C(3) - C(8)	1.385(4)
C(9) - C(6)	1.487(4)
С(4)-Н(4)	0.9300
C (4) -C (5)	1.385(3)
C (6) –C (7)	1.393(4)
C (6) –C (5)	1.391(4)
C(7)-H(7)	0.9300
C (7) –C (8)	1.385(4)
С(11)-Н(11А)	0.9700
С(11)-Н(11В)	0.9700
С (11) –С (10)	1.489(5)
С (10) –Н (10А)	0.9700
С(10)-Н(10В)	0.9700
C (5) -H (5A)	0.9300
C (8) –H (8)	0.9300
0 (9) -C (21)	1.448(3)
0 (9) -C (20)	1.326(4)
0(6) - C(12)	1.447(4)
0(6) - C(13)	1.331(4)
0(7)-C(13)	1.200(4)
0(10)-H(10)	0.8200
0(10)-C(22)	1.382(4)
С(19)-Н(19)	0.9300
С (19) –С (14)	1.382(4)
С (19) –С (18)	1.380(4)
0(8)-C(20)	1.205(4)
С(12)-Н(12А)	0.9600
С(12)-Н(12В)	0.9600
С(12)-Н(12С)	0.9600
С (21) –Н (21А)	0.9700
С (21) –Н (21В)	0.9700
C (21) –C (22)	1.500(6)
	016

Table S3. Bond lengths [A] and angles [deg] for 111.

С (22) – Н (22А)	0.9700
С(22)-Н(22В)	0.9700
C(13)-C(14)	1.487(4)
C(14)-C(15)	1.398(4)
C (20) –C (17)	1.484(4)
C(17)-C(16)	1.388(4)
С(17)-С(18)	1.390(4)
С(16)-Н(16)	0.9300
C(16)-C(15)	1.383(4)
С(15)-Н(15)	0.9300
С(18)-Н(18)	0.9300
C(9) - O(4) - C(10)	117.3(2)
C(2) - O(1) - C(1)	115.8(2)
C(11) - 0(5) - H(5)	109.5
0(1) - C(1) - H(1A)	109.5
0(1) - C(1) - H(1B)	109.5
0(1) - C(1) - H(1C)	109.5
H(1A) - C(1) - H(1B)	109.5
H(1A) - C(1) - H(1C)	109.5
H(1B) - C(1) - H(1C)	109.5
C(4) - C(3) - C(2)	121.9(2)
C(8) - C(3) - C(2)	118.4(2)
C(8) - C(3) - C(4)	119.7(2)
0(4) - C(9) - C(6)	112.1(2)
0(3) - C(9) - 0(4)	124.1(3)
0(3) - C(9) - C(6)	123.7(3)
0(1) - C(2) - C(3)	112.3(2)
0(2) - C(2) - 0(1)	124.0(3)
0(2) - C(2) - C(3)	123.7(3)
C(3) - C(4) - H(4)	119.6
C(5) - C(4) - C(3)	120.7(3)
C(5) - C(4) - H(4)	119.6
C(7) - C(6) - C(9)	118.3(2)
C(5) - C(6) - C(9)	121.5(2)
C(5) - C(6) - C(7)	120.2(2)
C(6) - C(7) - H(7)	120.1
C(8) - C(7) - C(6)	119.9(3)
C(8) - C(7) - H(7)	120.1
0(5) - C(11) - H(11A)	109.0
0(5) - C(11) - H(11B)	109.0
0(5) - C(11) - C(10)	112.8(2)
H(11A) –C(11) –H(11B)	107.8
C(10) - C(11) - H(11A)	109.0
C(10) - C(11) - H(11B)	109.0
0(4) - C(10) - C(11)	106.9(2)
0(4) - C(10) - H(10A)	110. 3
0(4) - C(10) - H(10B)	110. 3
C(11) - C(10) - H(10A)	110.3
·/ - · · · · · · · · · · · · · · · · ·	

С (11) –С (10) –Н (10В)	110.3
Н (10А) –С (10) –Н (10В)	108.6
C(4) - C(5) - C(6)	119.3(2)
C(4) - C(5) - H(5A)	120.3
C(6) - C(5) - H(5A)	120.3
C(3) - C(8) - C(7)	120.2(2)
C(3) - C(8) - H(8)	119.9
C(7) - C(8) - H(8)	119.9
C(20) - O(9) - C(21)	117.1(3)
C(13) - O(6) - C(12)	115.9(3)
C(22) - O(10) - H(10)	109.5
С(14)-С(19)-Н(19)	119.8
С(18)–С(19)–Н(19)	119.8
C (18) –C (19) –C (14)	120.4(3)
0(6)-C(12)-H(12A)	109.5
0(6) - C(12) - H(12B)	109.5
0(6) - C(12) - H(12C)	109.5
H(12A)-C(12)-H(12B)	109.5
H(12A)-C(12)-H(12C)	109.5
H(12B)-C(12)-H(12C)	109.5
0(9)-C(21)-H(21A)	110.5
0(9)-C(21)-H(21B)	110.5
0(9) - C(21) - C(22)	106.2(3)
Н (21А) –С (21) –Н (21В)	108.7
C(22) - C(21) - H(21A)	110.5
C(22) - C(21) - H(21B)	110.5
0(10) - C(22) - C(21)	114.2(3)
0(10)-C(22)-H(22A)	108.7
0(10)-C(22)-H(22B)	108.7
С (21) – С (22) – Н (22А)	108.7
С (21) –С (22) –Н (22В)	108.7
Н (22А) –С (22) –Н (22В)	107.6
0(6) - C(13) - C(14)	113.1(2)
0(7) - C(13) - 0(6)	122.9(3)
0(7) - C(13) - C(14)	124.0(3)
C(19) - C(14) - C(13)	118.4(2)
C(19) - C(14) - C(15)	119.5(3)
C(15) - C(14) - C(13)	122.1(3)
0(9) - C(20) - C(17)	112.5(3)
0(8) - C(20) - 0(9)	123.5(3)
0(8) - C(20) - C(17)	124.0(3)
C(16) - C(17) - C(20)	122.2(2)
C(16) - C(17) - C(18)	119.6(3)
C(18) - C(17) - C(20)	118.2(3)
C(17) - C(16) - H(16)	119.9
U(15) - U(16) - U(17)	120.1(2)
U(15) - U(16) - H(16)	119.9
U(14) - U(15) - H(15)	120.0
U(16) - U(15) - U(14)	120.1(3)

C (16) -C (15) -H (15) C (19) -C (18) -C (17)	120. 0 120. 3 (3)
С(19)-С(18)-Н(18)	119.9
С(17)-С(18)-Н(18)	119.9

Symmetry transformations used to generate equivalent atoms:

	U11	U22	U33	U23	U13	U12
0(4)	54(1)	48(1)	42(1)	5(1)	-11(1)	5(1)
0(1)	78(1)	51(1)	39(1)	2(1)	-14(1)	1(1)
0(5)	57(1)	60(1)	75(2)	11(1)	-18(1)	2(1)
0(2)	108(2)	60(2)	47(1)	-12(1)	-15(1)	0(1)
0(3)	87(2)	42(1)	76(1)	12(1)	-23(1)	9(1)
C(1)	82(2)	68(2)	41(2)	9(2)	-15(1)	0(2)
C(3)	43(1)	36(1)	37(1)	1(1)	2(1)	-8(1)
C(9)	42(1)	39(1)	50(1)	9(1)	1(1)	-3(1)
C(2)	52(1)	47(2)	37(1)	0(1)	1(1)	-11(1)
C(4)	50(1)	35(1)	41(1)	-1(1)	-4(1)	2(1)
C(6)	37(1)	36(1)	43(1)	5(1)	1(1)	-6(1)
C(7)	53(2)	34(1)	60(2)	0(1)	-1(1)	0(1)
C(11)	56(2)	70(2)	44(1)	1(1)	-9(1)	3(2)
C(10)	49(2)	63(2)	46(1)	13(1)	-12(1)	-3(1)
C(5)	50(1)	37(2)	40(1)	-2(1)	-4(1)	1(1)
C (8)	58(2)	38(2)	48(1)	-8(1)	0(1)	-4(1)
0(9)	60(1)	60(1)	53(1)	-4(1)	-7(1)	10(1)
0(6)	84(2)	58(2)	45(1)	-4(1)	-8(1)	-4(1)
0(7)	119(2)	76(2)	52(1)	-21(1)	-14(1)	-4(2)
0(10)	69(1)	125(3)	61(1)	-20(2)	-15(1)	20(2)
C(19)	62(2)	50(2)	52(2)	-20(1)	4(1)	-6(1)
0(8)	110(2)	48(2)	99(2)	-2(1)	-24(2)	16(2)
C(12)	89(2)	71(2)	50(2)	4(2)	-10(2)	0(2)
C(21)	55(2)	74(2)	60(2)	6(2)	-6(1)	11(2)
C(22)	55(2)	105(3)	60(2)	-11(2)	-14(1)	11(2)
C(13)	59(2)	55(2)	40(1)	-7(1)	5(1)	-16(1)
C(14)	47(1)	44(2)	44(1)	-6(1)	7(1)	-13(1)
C(20)	47(1)	44(2)	62(2)	2(1)	4(1)	-5(1)
C(17)	42(1)	38(1)	51(1)	-4(1)	9(1)	-7(1)
C(16)	54(2)	40(2)	44(1)	-10(1)	4(1)	-4(1)
C(15)	54(2)	38(2)	45(1)	-6(1)	2(1)	-4(1)
C(18)	54(2)	40(2)	69(2)	-13(1)	5(1)	-1(1)

Table 4. Anisotropic displacement parameters (A² x 10³) for 111. The anisotropic displacement factor exponent takes the form: -2 pi² [h² a*² U11 + ... + 2 h k a* b* U12]

	Х	У	Z	U(eq)
H(5)	-301	4692	-1136	97
H(1A)	-6238	3786	-4810	96
H(1B)	-7236	5665	-4473	96
H(1C)	-7906	3117	-4556	96
H(4)	-5255	3645	-2918	51
H(7)	-2684	-3510	-2717	59
H(11A)	-1970	3429	-530	68
H(11B)	-549	2435	-140	68
H(10A)	-95	-342	-913	63
H(10B)	-1710	-724	-581	63
H(5A)	-3860	2778	-2048	51
H(8)	-4087	-2617	-3584	58
H(10)	2383	2980	-584	128
H(19)	917	-2730	-3655	66
H(12A)	-1228	3972	-4765	105
H(12B)	-2228	5751	-4396	105
H(12C)	-2885	3216	-4516	105
H(21A)	4917	-1544	-976	76
H(21B)	3342	-1733	-609	76
H(22A)	5148	1270	-263	88
H(22B)	4801	2599	-858	88
H(16)	1243	2198	-2029	55
H(15)	-164	3361	-2872	55
H(18)	2294	-3907	-2810	65

Table 5. Hydrogen coordinates (x 10^4) and isotropic displacement parameters (A^2 x 10^3) for 111.

Torsion angles [deg] for 111. Table S6.

0(4) - C(9) - C(6) - C(7)	170.8(2)
0(4) - C(9) - C(6) - C(5)	-8.2(3)
0(5) - C(11) - C(10) - 0(4)	-70.9(3)
0(3) - C(9) - C(6) - C(7)	-8.2(4)
0(3) - C(9) - C(6) - C(5)	172.8(3)
C(1) - O(1) - C(2) - O(2)	-1.0(4)
C(1) - O(1) - C(2) - C(3)	177.5(2)
C(3) - C(4) - C(5) - C(6)	-0.5(4)
C(9) - O(4) - C(10) - C(11)	172.6(2)
C(9) - C(6) - C(7) - C(8)	-178.8(2)
C(9) - C(6) - C(5) - C(4)	178.8(2)
C(2) - C(3) - C(4) - C(5)	-178.2(2)
C(2) - C(3) - C(8) - C(7)	178.2(2)
C(4) - C(3) - C(2) - O(1)	5.3(3)
C(4) - C(3) - C(2) - O(2)	-176.2(3)
C(4) - C(3) - C(8) - C(7)	-1.3(4)
C(6) - C(7) - C(8) - C(3)	0.6(4)
C(7) - C(6) - C(5) - C(4)	-0.2(4)
C(10) - O(4) - C(9) - O(3)	-0.8(4)
C(10) - O(4) - C(9) - C(6)	-179.8(2)
C(5) - C(6) - C(7) - C(8)	0.2(4)
C(8) - C(3) - C(2) - O(1)	-174.2(2)
C(8) - C(3) - C(2) - O(2)	4.3(4)
C(8) - C(3) - C(4) - C(5)	1.3(4)
0 (9) -C (21) -C (22) -O (10)	69.7(4)
0 (9) -C (20) -C (17) -C (16)	-6.0(4)
0 (9) -C (20) -C (17) -C (18)	173.9(2)
0(6)-C(13)-C(14)-C(19)	-174.3(2)
0(6)-C(13)-C(14)-C(15)	5.1(4)
0(7)-C(13)-C(14)-C(19)	4.4(4)
0(7)-C(13)-C(14)-C(15)	-176.1(3)
C (19) -C (14) -C (15) -C (16)	0.8(4)
0 (8) -C (20) -C (17) -C (16)	176.4(3)
0 (8) -C (20) -C (17) -C (18)	-3.7(5)
C(12) - O(6) - C(13) - O(7)	-0.9(4)
C(12)-O(6)-C(13)-C(14)	177.9(3)
C(21) - O(9) - C(20) - O(8)	0.5(5)
C(21) - O(9) - C(20) - C(17)	-177.1(2)
C(13) - C(14) - C(15) - C(16)	-178.6(2)
C(14) - C(19) - C(18) - C(17)	-0.4(4)
C(20) - O(9) - C(21) - C(22)	163.2(3)
C (20) –C (17) –C (16) –C (15)	179.5(2)
C(20) - C(17) - C(18) - C(19)	-179.1(3)
C(17) - C(16) - C(15) - C(14)	-0.4(4)
C (16) –C (17) –C (18) –C (19)	0.9(4)

C (18) -C (19) -C (14) -C (13)	179.0(3)
C(18) - C(19) - C(14) - C(15)	-0.4(4)
C (18) -C (17) -C (16) -C (15)	-0.5(4)

Symmetry transformations used to generate equivalent atoms:

Table s7.	Hydrogen	bonds	for	111	[A	and	deg.]	
-----------	----------	-------	-----	-----	----	-----	-------	--

D-HA 0(5)H(5) 0(10)H(10)	0(3) 0(5)	[1565. 01] 1655. 01]	d (D-H) 0. 82 0. 82	d (H A) 2. 07 2. 05	d (D A) 2. 8540 (3) 2. 7955 (3)	< (DHA) 159 150
C(4)H(4) C(10)H(10B)	0(1) 0(10)	[] 2645.02]	0. 93 0. 97	2.42 2.53	2. 7372 (3) 3. 4596 (4)	100 160

III. References:

- 1. X. Qu, T. Li, P. Sun, Y. Zhu, H. Yang and J. Mao, Org. Biomol. Chem., 2011, 9, 6938.
- M. J. Mio, L. C. Kopel, J. B. Braun, T. L. Gadzikwa, K. L. Hull, R. G. Brisbois, C. J. Markworth and P. A. Grieco, *Org. Lett.*, 2002, 4, 3199.
- 3. J. A. Hyatt, Org. Prep. Proced. Int., 1991, 23, 460.
- 4. M. Sarmah, A. Dewan, A. J. Thakur and U. Bora. Tetrahedron Lett., 2016, 57, 914.
- 5. P. Chuentragool, K. Vongnam, P. Rashatasakhon, M. Sukwattanasinitt and S. Wacharasindhu, *Tetrahedron*, 2011, **67**, 8177.
- 6. L. Shi, W. Jia, X. Li and N. Jiao, Tetrahedron Lett., 2013, 54, 1951.
- 7. P.T. Herwig, V. Enkelmann, O. Schmelz and K. Müllen, Chem. Eur. J., 2000, 6, 1834.
- 8. L. Wang, P. Li and Y. Zhang, Chem. Commun., 2004, 514.
- 9. J. H. Kim, T. Song and Y. K. Chung, Org. Lett., 2017, 19, 1248.
- 10. L. Wang and P. Li, Synlett, 2006, 2261.
- Y. Nishihara, E. Inoue, D. Ogawa, Y. Okada, S. Noyori and K. Takagi, *Tetrahedron Lett.*, 2009, 50, 4643.
- 12. J.-H. Lee, G. C. E. Raja, Y. Son, J. Jang, J. Kim and S. Lee, Tetrahedron Lett., 2016, 57, 4824.

NMR spectra of the products

Figure S1. ¹H NMR of **3a**.

Figure S2. ¹³C NMR of **3a**.

Figure S4. ¹³C NMR of **3b**.

Figure S5. ¹H NMR of **3c**.

Figure S6. ¹³C NMR of **3c**.

Figure S7. ¹H NMR of **3d**.

Figure S8. ¹³C NMR of **3d**.

Figure S10. ¹³C NMR of **3e**.

Figure S11. ¹H NMR of **3f**.

Figure S12. ¹³C NMR of **3f**.

Figure S14. ¹³C NMR of **3**g.

Figure S16. ¹³C NMR of **3h**.

Figure S18. ¹³C NMR of **3i**.

Figure S20. ¹³C NMR of **3j**.

Figure S22. ¹³C NMR of **3**k.

Figure S24. ¹³C NMR of **31.**

Figure S26. ¹³C NMR of **3m**

Figure S28. ¹³C NMR of **3n**.

Figure S30. ¹³C NMR of **30**.

Figure S32. ¹³C NMR of **3p**.

Figure S34. ¹³C NMR of **3q**.

Figure S36. ¹³C NMR of **3r**.

Figure S38. ¹³C NMR of **3s**.

Figure S40. ¹³C NMR of **3t**.

Figure S42. ¹³C NMR of **3u**.