Electronic supplementary information (ESI)

"Barking" up the right tree: biorefinery from waste stream to cyclic carbonate with immobilization of CO_2 for non-isocyanate polyurethanes

Heyu Chen,^{1,2} Prashant Chauhan,² Ning Yan^{1,2*}

1. Graduate Department of Forestry, John H. Daniels Faculty of Architecture, Landscape, and Design, University of Toronto, 33 Willcocks Street, Toronto, ON, Canada, M5S 3B3.

2. Department of Chemical Engineering & Applied Chemistry, Faculty of Applied Science & Engineering, University of Toronto, 200 College Street, Toronto, ON, Canada, M5S 3E5.

*E-mail: ning.yan@utoronto.ca; Tel: +1 416-946-8070

Table of Contents

1. Supplementary Tables

Table S1. Characteristics of the oxypropylation reaction and properties of HABO.

Table S2. Characteristics and properties of the functionalized bark oils.

Table S3 Chemical composition of tree bark from Western Red Cedar (all values were reported based upon the original bark weight).

Table S4. TGA data of the crosslinked NIPU samples.

2. Supplementary Figures

Fig. S1. The change of temperature and pressure as a function of time for the bark oxypropylation process.

Fig. S2. FT-IR spectra (from bottom to top): bark raw material, HABO, oxypropylated bark and PO homopolymer.

Fig. S3. ¹H-NMR spectra of samples that were consecutively retrieved during the work-up for removing residual epichlorohydrin: right after synthesis (top), 1 h (middle), 2 h (bottom).

Fig. S4. FT-IR spectra of NIPUs cured by various amine-based crosslinkers at different carbonate-amine molar ratios, and arrows in color purple are pointing at 1792 cm⁻¹ which is an indication of the residual cyclic carbonate.

Fig. S5. DSC thermograms. The middle value of the three values shown in each figure is the calculated glass transition temperature (Tg).

1. Supplementary Tables

rable 51. Characteristics of the oxypropyration reaction and properties of Thabo.				
	НАВО			
Bark conversion rate (wt.%)	80			
PO consumption $(wt.\%)^1$	87			
Highest pressure reached (psi) ²	470			
Highest temperature reached (°C)	251			
PO homopolymer content $(wt.\%)^3$	53			
Oxypropylated bark macromolecules (wt.%) ³	47			

Table S1. Characteri	istics of the oxyp	ropylation reaction	on and pro	operties of HABO.
----------------------	--------------------	---------------------	------------	-------------------

1. This value is estimated based on the final pressure after 2 h reaction, which is assumed to be only determined by unreacted vaporized PO;

2. This pressure value is also contributed by the N_2 , which was used to fill the vessel initially (N_2 contributed about 88.5 psi at 251 °C);

3. HABO was subjected to an extraction using hexane under reflux to assess the ratio between the insoluble oxypropylated bark macromolecules and the soluble PO homopolymers.

Table S2. Characteristics and properties of the functionalized bark oils.

	HABO	Epox-HABO	Carb-HABO
Hydroxyl value (mg KOH) ¹	448.6	/	/
Epoxide equivalent weight (g/equiv) ²	/	236.6	/
Carbonate content $(wt.\%)^3$	/	/	21.4
CO_2 fixed (wt.%) ³	/	/	15.7
Viscosity (Pa·s) ⁴	7	8	1500

1. Based upon the phthalic anhydride method as described in Method section,

2. Based upon ASTM D1652-11;

3. Detected by ¹H-NMR spectroscopy assuming no side reactions;

4. Measured with rheometer, shear rate = 1 s^{-1} , temperature = 25 °C.

Table S3 Chemical composition of tree bark	om Western Red	d Cedar (all values	s were reported
based upon the original bark weight).			

Item	Extractives (Condensed tannin etc.) (wt.%) ¹	Klason Lignin (wt.%) ²	Holocellulose (wt.%) ³	α-cellulose (wt.%) ⁴	Hemicellulose (wt.%) ⁵	Ash content (wt.%) ⁶
Bark	34.2 ± 2.2	15.0 ± 0.1	43.3 ± 0.3^{4}	34.4 ± 0.5	8.9	3.3 ± 0.3

1. Experiment was carried out on bark raw materials according to ASTM D1109-84. Standard Test Method for 1 % Sodium Hydroxide Solubility of Wood;

2. Experiment was carried out on 1% NaOH extractives-free bark according to *Effland*, *M.J.*, 1977. Modified procedure to determine acid-insoluble lignin in wood and pulp. Tappi; (United States) 60:10.

3. Experiment was carried out on 1% NaOH extractives-free bark according to *Wise, L., Murphy, M., Adieco, A.D.,* 1946. A chlorite holocellulose, its fractionation and bearing on summative wood analysis and studies on the hemicelluloses. Pap. Trade J. 122, 35–43.

4. Experiment was conducted on obtained holocellulose according to *Browning*, *B.*, 1967. Methods of wood chemistry. Interscience / Wiley, New York.

5. This result was obtained by subtracting the α-cellulose amount from holocellulose amount;

6. Experiment was conducted according to ASTM D 1102-84. Standard Test Method for Ash in Wood.

	T _{onset} (°C)	T _{5%} (°C)	T _{30%} (°C)	Ts (°C)	Residue @700 °C (%)
EDA1-1	224.0	221.4	282.4	126.4	15
EDA2-1	222.2	223.2	283.3	127.0	16
EDA1-2	196.6	201.4	264.4	117.2	18
HMDA1-1	193.5	210.6	304.2	130.7	16
IPDA1-1	220.9	230.0	310.9	136.5	14
DETA1-1	216.7	213.7	302.4	130.8	14
TAEA1-1	222.0	226.3	301.3	132.9	15

Table S4. TGA data of the crosslinked NIPU samples.

2. Supplementary Figures

Fig. S1. The change of temperature and pressure as a function of time for the bark oxypropylation process.

Fig. S2. FT-IR spectra (from bottom to top): bark raw material, HABO, oxypropylated bark and PO homopolymer.

Fig. S3. ¹H-NMR spectra of samples that were consecutively retrieved during the work-up for removing residual epichlorohydrin: right after synthesis (top), 1 h (middle), 2 h (bottom).

Fig. S4. FT-IR spectra of NIPUs cured by various amine-based crosslinkers at different carbonate-amine molar ratios, and arrows in color purple are pointing at 1792 cm⁻¹ which is an indication of the residual cyclic carbonate.

Fig. S5. DSC thermograms. The middle value of the three values shown in each figure is the calculated glass transition temperature (Tg).