Supplementary Information for

A Simple Method for Producing Bio-Based Anode Materials for Lithium-Ion Batteries

William J. Sagues,^{a,b,c} Junghoon Yang,^d Nicholas Monroe,^a Sang-Don Han,^d Todd Vinzant,^c Matthew Yung,^c Hasan Jameel,^a Mark Nimlos,^c & Sunkyu Park^{a*}

Author Information:

^aDepartment of Forest Biomaterials, North Carolina State University, 2820 Faucette Dr., Raleigh, NC 27695, USA

^bDepartment of Biological & Agricultural Engineering, North Carolina State University, 3110 Faucette Dr., Raleigh, NC 27695, USA

^cNational Renewable Energy Laboratory, FTLB Lab, 16253 Denver West Parkway, Golden, CO 80401, USA

^dMaterials and Chemical Science and Technology Directorate, National Renewable Energy Laboratory, 15013 Denver West Parkway, Golden, CO 80401, USA

Correspondence and requests for materials should be addressed to Sunkyu Park: <u>sunkyu park@ncsu.edu</u>

This file includes:

Figures S1 - S4

Table S1

Figure S1. ABA stacking of sp2 hybridized graphene sheets in graphite with the 002 and 100 reflections highlighted. Equation 1: Scherrer equation used to estimate graphite crystallite size (L) from the full width at half height (B) of diffraction peaks at particular 2-theta angles. Equation 2: inverse relationship between Raman spectra D and G peak intensity ratio and graphite crystallite size (L). Equation 3: degree of graphitization as determined by D and G peak intensities.

Figure S2. Biographite mass yields of various biomaterials treated under baseline conditions, reported as percent of starting mass. Lignin refers to organosolv lignin.

Figure S3. Scanning electron micrograph of commercial synthetic graphite

Figure S4. Energy dispersive x-ray spectroscopy data of softwood-derived biographite after iron removal via HCl washing.

Table S1. Summary of electrochemical performance of biographite (this work) and other graphite material	s
reported in previous studies	

Sample	Voltage window (V)	1 st CE (%)	1 st delithiation capacity (mAhg ⁻¹)	Rate capability (mAhg ⁻¹)	Capacity Retention (%)	Reference
Biographite	0.005-1.5	84.0	335 (at 0.1C)	40 (at 4C) 15 (at 8C)	89 (100 cycles at 0.5C)	This work
Natural graphite	0.001-2.5	80.0	314 (at 0.1C)	~25 (at 1.2C)	52 (30 cycles at 0.1C)	[1]
PVC-coated natural graphite	0.001-2.5	87.0	330 (at 0.1C)	~120 (at 1.2C)	101 (30 cycles at 0.1C)	[1]
Natural graphite	0.00-2.0	83.9	253 (at 0.5C)	-	-	[2]
Na ₂ CO ₃ coated natural graphite	0.00-2.0	86.2	316 (at 0.5C)	-	-	[2]
Artificial graphite	0.00-2.0	53.0	310 (at 30 mAg ⁻¹)	-	-	[3]
Natural graphite	0.01-2.0	94.5	352.6 (at 0.2C)	~330 (at 5C)	84 (50 cycles at 0.5C)	[4]
H ₃ PO ₄ -treated natural graphite	0.01-2.0	92.5	352.5 (at 0.2C)	~338 (at 5C)	94 (50 cycles at 0.5C)	[4]

References

1. Zhang, H.-L., Li, F.; Liu, C. & Cheng, H.-M. Poly(vinyl chloride) (PVC) Coated Idea Revisited: Influence of Carbonization Procedures on PVC-Coated Natural Graphite as Anode Materials for Lithium Ion Batteries. *J. Phys. Chem. C* **112**. 7767–7772 (2008).

2. Komaba, S., Watanabe, M., Groult, H. & Kumagai, N. Alkali carbonate-coated graphite electrode for lithium-ion batteries. *Carbon* **46**, 1184-1193 (2008).

3. Yoon, S., Kim, H. & Oh, S. M. Surface modification of graphite by coke coating for reduction of initial irreversible capacity in lithium secondary batteries. *J. Power Sources* **94**, 68-73 (2001).

4. Park, M.-S., Lee, J., Lee, J.-W., Kim, K. J., Jo, Y.-N., Woo, S.-G. & Kim, Y.-J. Tuning the surface chemistry of natural graphite anode by H_3PO_4 and H_3BO_3 treatments for improving electrochemical and thermal properties. *Carbon* **62**, 278-287 (2013).