Supplementary Information For:

High Elasticity, Chemically Recyclable, Thermoplastics From Bio-based Monomers: Carbon Dioxide, Limonene Oxide and ε-Decalactone

Leticia Peña de Carrodeguas, Thomas T. D. Chen, Georgina L. Gregory, Gregory S. Sulley and Charlotte K. Williams*

Chemistry Research Laboratory, Oxford Chemistry, 12 Mansfield Road, Oxford, OX1 3TA, UK.

charlotte.williams@chem.ox.ac.uk

Table of contents

1.	General Methods3
2.	Procedures4
	Synthesis of [PPN] ₂ [PDL]4
	Synthesis of PA-PDL-PA ((i) and (ii) in Scheme S1)4
	PA-PDL-PA end group deprotonation and cation exchange ((iii) and (iv) in Scheme S1)4
	Ring-opening copolymerization of LO and CO_2 using [PPN] ₂ [PDL] as initiator5
	End group analysis by ³¹ P{ ¹ H} NMR spectroscopy5
3.	SEC Data showing the bimodal molar mass distribution from chloride and diol initiators6
4.	NMR Characterization Data7
5.	Size Exclusion Chromatography (SEC) Data8
6.	Polymer Chain End-Group Analysis10
7.	Differential Scanning Calorimetry (DSC) Data11
8.	Thermal Gravimetric Analysis (TGA) Data11
9.	Mechanical Properties of the Block Polymers13
10.	Depolymerization Experiments and Data16
11.	Degradation of PDL19
12.	References

Experimental Section

1. General Methods

NMR: spectra were obtained using a Bruker AV 400 instrument.

Size Exclusion Chromatography (SEC): obtained using a Shimadzu LC-20AD instrument, with HPLC grade THF as the eluent, flowing at 1.0 mL/min, at 30 °C and using monodisperse polystyrene standards for instrument calibration.

Differential Scanning Calorimetry (DSC): Recorded for precipitated polymer samples on a Mettler Toledo DSC3 Star calorimeter, under a N₂ flow (80 mL min⁻¹). Samples were heated, at a rate of 10 °C min⁻¹, from -80 to +170 °C. Glass transition temperatures (T_g) were determined from the midpoint of the transition in the second heating curve.

Dynamic Mechanical Thermal Analysis (DMTA): Recorded on TA instruments RSA-G2 Solids Analyser, at 1 Hz frequency and 5 °C min⁻¹ heating rate.

Thermal Gravimetric Analysis (TGA): Measured on Mettler-Toledo Ltd TGA/DSC 1 system. Powder polymer samples were heated from 30 to 500 °C, at a rate of 10 °C min⁻¹, under N₂ flow (100 mL min⁻¹).

Tensile mechanical tests: carried out using an EZ-LX Universal Testing Instrument (Shimadzu). Dumbbell shaped specimens were cut using a Zwick ZCP020 cutting press, equipped with a cutting device for ISO 527-2, type 5B. Uniaxial extension experiments (10 mm min⁻¹ cross-head speed) were run according to ISO 527.

Materials

All solvents and reagents were purchased and used as obtained from commercial sources (Sigma Aldrich), unless stated otherwise. The synthesis of $[H_2L]$ macrocyclic ligand, was carried out in air and performed according to literature procedures.¹ The synthesis of the catalyst, $[LZn_2(Ph)_2]$ (1) and $[AI^{MeMe}]$ (2), were carried out under inert conditions according to literature procedures.^{2, 3} Bis(triphenylphosphine)iminium iodide (PPNI) was synthesised according to its literature procedure.⁴ Limonene oxide (LO) was purified by first stirring over NaH, followed by addition of MeI, and fractional distillation at 40 °C (1 mbar). This procedure was repeated twice more (three distillations in total), and the LO was stored under a nitrogen atmosphere. ε -Decalactone (DL) was dried over CaH₂, distilled under reduced pressure twice and stored under a nitrogen. Research-grade CO₂ was dried through two drying columns (VICI, Model number: P600-1) in series before use.

2. Procedures Synthesis of [PPN]₂[PDL]

Scheme S1. Reaction conditions for the synthesis of $[PPN]_2[PDL]$: Part (a) Synthesis of PA-PDL-PA (i) **1**, CHD, DL, 2 h, 100 °C toluene. (ii) PA, 16 h, 100 °C, molar ratio: [1]/[CHD]/[PA]/[DL] = 1/4/100/350-1000. Part (b) end group modification of PA-PDL-PA (iii) NaOH, 2 h, 25 °C, chloroform. (iv) PPNI, 2 h, 40 °C. Molar ratio: [diacid end group]/[NaOH]/[PPNI] = 1/1/1.

Synthesis of PA-PDL-PA ((i) and (ii) in Scheme S1)

Under anaerobic conditions, $[LZn_2Ph_2]$, **1**, (40 mg, 40 µmol, 1.0 equiv.), CHD (21 mg, 0.2 mmol, 4 equiv.), DL (2.8 - 8.2 g, 17 - 47 mmol, 350 - 1000 equiv.) were added to a vial, with toluene (7.5 mL), and the solution was heated to 100 °C, with stirring for 2.0 h. After the formation of PDL, PA (0.7 g, 47 mmol, 100 equiv.) was added and the reaction was heated at 100 °C, for 16 h. The reaction was monitored by aliquot removal and subsequent analysis using ³¹P{¹H} NMR spectroscopy end-group titration (see below) to ensure all PDL hydroxyl end groups were converted to di-acids. The reaction was then quenched, by exposure to air, and the excess PA was removed by extraction with hot water. The crude sample, dissolved in toluene, was dried (Na₂SO₄), before being purified by pouring the solution into cold MeOH (-78 °C) to induce polymer precipitation. The product polymer was collected, dried and analysed by ¹H NMR spectroscopy and SEC analysis (THF as eluent, 1 mL min⁻¹, 30 °C).

PA-PDL-PA end group deprotonation and cation exchange ((iii) and (iv) in Scheme S1)

The di-acid terminated PDL was then dissolved in $CHCl_3$ and titrated with NaOH (1M), using phenolphthalein as the indicator. Once the base addition was complete, the reaction was stirred for an additional 2 h at 25 °C to form Na-PDL-Na. PPNI (equimolar to the amount of NaOH added) was then added and the solution was stirred at 40 °C, for 2 h. The sample was purified by precipitation into

a cold methanol solution (-78 °C) three times; the product polymer was dried under vacuum and analysed by ¹H NMR spectroscopy and SEC analysis (THF as eluent, 1 mL min⁻¹, 30 °C).

Ring-opening copolymerization of LO and CO₂ using [PPN]₂[PDL] as initiator

Under anaerobic conditions, $[AI^{MeMe}]$ catalyst, **2**, (0.1 g, 0.2 mmol, 1.0 equiv.), $[PPN]_2[PDL]$ (0.25 equiv.) and LO (41 mL, 25 mmol, 125 equiv.) were added to a 25 mL stainless steel Parr reaction vessel. The reactor was heated to 45 °C and pressurised to 20 bar CO₂ and allowed to react under static CO₂ pressure for 24 h. Thereafter, the vessel was cooled and de-pressurised. The resulting crude polymer was purified by repeat precipitation of a methylene chloride solution into pentane.

End group analysis by ³¹P{¹H} NMR spectroscopy

A literature procedure for hydroxyl end group analysis using ³¹P {¹H} NMR spectroscopy was followed.⁵ A mixture of a stock solution (40 μ L), excess 2-chloro-4,4,5,5-tetramethyl dioxaphospholane (40 μ L) and the polymer sample (20 mg) was added to an NMR tube and shaken. The mixture was allowed to react for 6 h before spectra were measured. The stock solution consists of bisphenol A (400 mg) and of [Cr(acac)₃] (5.5 mg), in pyridine (10 mL).

Depolymerization of PLC

In a nitrogen filled glovebox, a sample of triblock polymer (100 mg) was dissolved in anhydrous toluene (5 mL), before catalyst **1** (1.6 mM) was added. The vial, equipped with a magnetic stirrer bar, was sealed and placed in an oil bath, pre-heated to 80 °C. At specific time intervals, the vial was quenched to 0 °C, in an ice-water bath, before being taken into a nitrogen filled glovebox and an aliquot removed for NMR spectroscopy and SEC analysis.

Degradation of PDL

p-toluenesulfonic acid.H₂O (PTSA) (10 mg, 0.05 mmol) was added to a solution of residual PDL (50 mg, from the depolymerization of PLC) in THF (5 mL) and heated with stirring to 60 °C. SEC analysis was done on aliquots were taken at regular intervals to track the degradation progress.

3. SEC Data showing the bimodal molar mass distribution from chloride and diol initiators

Fig. S1. SEC trace showing bimodal molar mass distributions resulting from the ROCOP of LO/CO_2 using 2 in the presence of PPNCI and PDL.

4. NMR Characterization Data

Fig. S2 ¹H NMR spectrum of PLC-*b*-PDL-*b*-PLC (in CDCl₃).

Fig. S3 ¹³C{¹H} ta NMR spectrum of PLC-*b*-PDL-*b*-PLC (in CDCl₃).

5. Size Exclusion Chromatography (SEC) Data

Fig. S4 SEC traces acquired during the synthesis of ABA(81, 48). Green trace shows the PDL precursor and blue trace shows ABA(81, 48).

Fig. S5 SEC traces acquired during the synthesis of ABA(86, 60). Green trace shows the PDL precursor and blue trace shows ABA (86,60).

Fig. S6 SEC traces acquired during the synthesis of ABA(85, 21). Green trace shows the PDL precursor and blue trace shows ABA(85,21).

Fig. S7 SEC traces acquired during the synthesis of ABA(51, 63). Green trace shows the PDL precursor and blue trace shows ABA(51,63).

Fig. S8 SEC traces acquired during the synthesis of ABA(115, 42). Green trace shows the PDL precursor and blue trace shows ABA(115,42).

6. Polymer Chain End-Group Analysis

Fig. S9 ³¹P{¹H} NMR spectra used in end group analysis for the synthesis of PLC-PDL-PLC.

7. Differential Scanning Calorimetry (DSC) Data

Fig. S10. DSC (second heating curve) of all triblock polymer samples, heated at a rate 10 °C min⁻¹.

Fig. S11 TGA data for ABA(81, 48).

Fig. S13 TGA data for ABA(51,63).

Fig. S14 TGA data for ABA(115,42).9. Mechanical Properties of the Block Polymers

Fig. S15 Digital photographs showing an attempt to solvent cast a blend of PLC and PDL (LHS) and a successful solvent cast of PLC-*b*-PDL-*b*-PLC (ABA (87,60)) forming a freestanding film (RHS).

Fig. S16 Cyclical tensile testing for ABA (81,48) (0-200 % strain, 10 cycles). Curves 1 -5 shown with a horizontal offset for clarity.

Fig. S17 3D scatter plot comparison of mechanical properties of ABA (87,60) and selected commercial and literature materials. Tensile toughness (U_T) = blue axis (zy plane) & triangle marker; elongation at break (ε_b) = green axis (xz plane) & square marker; stress at break (σ_b) = red axis (xy plane) & circle marker.

Table S1. Mechanical Properties of ABA (87,60) and Selected Commercial and Literature Comparisons.

	-			
Material	Elongation at	Stress at break	Tensile toughness	Ref.
	break (%)	(MPa)	(MJ m⁻³)	
ABA (87,60)	404	21	62.3	This work
PC	125	65	19.0	[6]
PLC	15	55	3.15	[6]
Toughened PLA	58	26	14	[7]
ABA-50	900	20	112	[8]
PLC-b-PHB (low MW)	4	44	n.d.	[0]
PLC-b-PHB (high MW)	18	38	n.d.	[9]

10. Depolymerization Experiments and Data

Fig. S18 ¹H NMR spectrum (CDCl₃) of aliquot from the depolymerization of ABA (87,60), using catalyst **1** in toluene, at 80 °C. Complete depolymerization of the PLC blocks is indicated by the absence of PLC signals (red square). Assignment of LO product peaks, alongside remaining PDL environments are shown. Tol = toluene solvent peaks.

Fig. S19 Depolymerization data showing evaluation of molar mass and dispersity against time for ABA (87,60). Aliquots taken at various time-points were analysed by SEC (THF eluent, vs. PS standards).

Fig. S20 Proposed reactions occurring during depolymerization of PLC to LO, modified from Koning and coworkers.¹⁰ **A**: Epoxide ring-opening to preferentially yield zinc-alkoxide and polymer chain in 1,2-diaxial position. Preference for the bulky isopropenyl group to occupy an equatorial position has been supported computationally and effectively locks the ring structure.¹¹ Preferential axial attack at the epoxide leads to a di-axial ring-opened product regardless of whether *cis*- or *trans*-LO.¹² **B**: Back-biting of polymer chain-end to form the epoxide. The alkoxide is unable to attack at the carbonyl carbon and form the trans- 5-membered cyclic carbonate. NB. Mechanism only illustrated for trans-LO. **C**: Backbiting of the carbonate end-group generated on formation of trans-LO to form the cis-cyclic carbonate product. This is based on the computational study presented by Darensbourg et al. for poly(cyclo pentene carbonate) depolymerization.¹³ It is thought rapid decarboxylation prevents formation of the cis-cyclic carbonate by-product.

Figure S21. ¹H NMR spectrum comparison between final aliquot from depolymerisation experiment (performed in toluene) and limonene oxide (* = mesitylene used as internal standard). Insert: selected region of interest shows presence LO and PDL only. The integrals of these correspond to the expected block ratio (PDL:LO = 40:60) and suggest no further degradation of the LO has occurred during the depolymerisation.

11. Degradation of PDL

Figure S22. Degradation of PDL. Reaction conducted in THF with *p*-toluenesulfonic acid (0.01 M) at 60 °C: (A) Remaining M_n vs. Time profile (B) Stacked SEC traces showing a constant decrease in molar mass and increase in D.

12. References

- 1. M. R. Kember, P. D. Knight, P. T. R. Reung and C. K. Williams, *Angew. Chem. Int. Ed.*, 2009, **48**, 931-933.
- 2. Y. Zhu, C. Romain and C. K. Williams, *J. Am. Chem. Soc.*, 2015, **137**, 12179-12182.
- 3. L. P. Carrodeguas, J. Gonzalez-Fabra, F. Castro-Gomez, C. Bo and A. W. Kleij, *Chem. Eur. J.*, 2015, **21**, 6115-6122.
- 4. A. Schulz and A. Villinger, *Chem. Eur. J.*, 2015, **21**, 3649-3663.
- 5. A. Spyros, D. S. Argyropoulos and R. H. Marchessault, *Macromolecules*, 1997, **30**, 327-329.
- 6. O. Hauenstein, S. Agarwal and A. Greiner, *Nat. Commun.*, 2016, **7**.
- 7. P. A. Delgado and M. A. Hillmyer, *RSC Adv.*, 2014, **4**, 13266-13273.
- 8. G. S. Sulley, G. L. Gregory, T. T. D. Chen, L. Peña Carrodeguas, G. Trott, A. Santmarti, K.-Y. Lee, N. J. Terrill and C. K. Williams, *J. Am. Chem. Soc.*, 2020, **142**, 4367-4378.
- 9. S. Kernbichl, M. Reiter, J. Mock and B. Rieger, *Macromolecules*, 2019, **52**, 8476-8483.
- 10. C. L. Li, R. J. Sablong, R. A. T. M. van Benthem and C. E. Koning, *ACS Macro Lett.*, 2017, **6**, 684-688.
- 11. F. Auriemma, C. De Rosa, M. R. Di Caprio, R. Di Girolamo and G. W. Coates, *Macromolecules*, 2015, **48**, 2534-2550.
- 12. C. M. Byrne, S. D. Allen, E. B. Lobkovsky and G. W. Coates, *J. Am. Chem. Soc.*, 2004, **126**, 11404-11405.
- 13. D. J. Darensbourg, S.-H. Wei, A. D. Yeung and W. C. Ellis, *Macromolecules*, 2013, **46**, 5850-5855.