Supplementary Information

Tuning selectivity of CO₂ hydrogenation by modulating the strong metal–support interaction over Ir/TiO₂ catalysts

Yaru Zhang,^{a,b} Zhen Zhang,^c Xiaofeng Yang,^a Ruifeng Wang,^a Hongmin Duan,^a Zheng Shen,^a Lin Li,^a Yang Su,^a Runze Yang,^c Yongping Zhang,^c Xiong Su,^{*a} Yanqiang Huang,^{*a} and Tao Zhang^d

^a CAS Key Laboratory of Science and Technology on Applied Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
^b University of Chinese Academy of Sciences, Beijing 100049, China
^c China Astronaut Research and Training Center, Beijing 100094, China
^d State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China

*To whom correspondence should be addressed. E-mail: <u>yqhuang@dicp.ac.cn</u> (Y. Huang) and <u>suxiong@dicp.ac.cn</u> (X. Su).

Supplementary Figures

Fig. S1. Evolution of catalytic performance versus time and reaction temperature, over the (a) Ir/TiO_2 -200 and (b) Ir/TiO_2 -700 catalysts. Reaction conditions: atmospheric pressure, space velocity = 9000 mL h⁻¹ gcat⁻¹, H₂/CO₂/N₂ = 70/20/10.

Fig. S2. Arrhenius plots for CO production over the Ir/TiO_2 -x catalysts.

Fig. S3. N_2 adsorption-desorption isotherms for the series Ir/TiO₂-x catalysts.

Fig. S4. XRD patterns of the series Ir/TiO₂-*x* catalysts.

Supplementary Tables

	5							
Entry	Catalyst	H ₂ /	Р	Т	Reaction rate	S _{CH4}	S _{CO}	Def
		CO_2	(MPa)	(°C)	$(mol_{CO2} g_{metal}{}^{-1} h^{-1})$	(%)	(%)	Kel.
1	2.45 wt% Ir/TiO ₂ -200	3.5	0.1	280	0.159	100	0	This
2	2.45 wt% Ir/TiO ₂ -700	3.5	0.1	280	0.146	0	100	I IIIS
3	2.45 wt% Ir/TiO ₂ -200	3.5	0.1	400	0.769	87.4	12.6	WOLK
4	0.1 wt% Ir ₁ /TiO ₂	1	0.1	350	0.043	0	~100	1
5	0.7 wt% Ir/Ce	4	1.0	300	0.422	trace	> 99	2
6	20 wt% Ir/Ce	4	1.0	300	0.045	88	12	2
7	6 wt% Rh/TiO ₂	1	0.1	200	0.028	98	2	3
8	2.56 wt% Ru(NC)/CeO ₂	4	0.1	190	0.264	> 98	< 2	4
9	5 wt% Ru/r-TiO ₂	4	0.1	200	0.73	100	0	5
10	0.5 wt% Pd/Al ₂ O ₃	3	0.1	300	0.128	~10	~90	6
11	0.1 wt% Pt/TiO ₂	1	0.1	250	0.024	< 2	> 98	7
12	4 wt% AuMo/SiO ₂	2	0.81	300	0.525	0	100	8
13	10 wt% Co/r-TiO ₂	4	3.0	400	0.549	99.8	0.2	0
14	10 wt% Co/a-TiO ₂	4	3.0	400	0.091	10.5	89.5	9
15	5 wt% Ni/a-TiO ₂	4	0.1	360	0.127	0	100	10
16	5 wt% Ni/a-TiO ₂ -NH ₃	4	0.1	360	1.481	96.9	3.1	10

Table S1. Comparison of the catalytic performance for CO_2 hydrogenation over different catalysts.

A comparison of the catalytic performance for CO_2 hydrogenation in this work with that of state-of-the-art catalysts as well as catalysts without precious metals is shown in Table S1.

As compared with other reported Ir-based catalysts (Entry 4–6), Ir/TiO₂-200 in this work exhibits a much higher activity for CO₂ methanation, and Ir/TiO₂-700 catalyst exhibits at least comparable activity for reverse water-gas shift reaction.

For Sabatier reaction (Entry 7–9), the activity of Ir/TiO_2 -200 in this work is inferior to that of Ru-based catalysts, but at least a comparable value with that of Rh-based catalysts. As for reverse water-gas shift reaction (Entry 10–12), Ir/TiO_2 -700 exhibits comparable or higher activity with the reported catalysts.

When it comes to Co-based (Entry 13, 14) or Ni-based (15, 16) catalysts for CO_2 hydrogenation, a higher reaction temperature or pressure is usually employed to initiate CO_2 activation. For CO_2 methanation, the Ir/TiO₂-200 catalyst shows a higher activity than Co-based catalysts, but lower than that of Ni-based catalysts. For reverse water-gas shift reaction, the Ir/TiO₂-700 catalyst shows a higher activity than both Co-based catalysts.

Catalvat	E_a (CO ₂)	E_a (CO)	E_a (CH ₄)
Catalyst	(kJ mol ⁻¹)	(kJ mol ⁻¹)	(kJ mol ⁻¹)
Ir/TiO ₂ -200	42.5	_	39.6
Ir/TiO ₂ -300	40.5	_	42.0
Ir/TiO ₂ -400	45.4	50.7	44.1
Ir/TiO ₂ -500	40.5	41.9	58.4
Ir/TiO ₂ -600	44.1	41.1	110.6
Ir/TiO ₂ -700	47.1	41.1	233.9

Table S2. Apparent activation energies obtained from Arrhenius plots for the series Ir/TiO_2 -*x* catalysts.

Table S3. BET surface areas and pore volumes of the series Ir/TiO_2 catalysts pretreated at different temperatures (Ir/TiO_2 -*x* samples).

Catalyst	$S_{BET}\left(m^2 \ g^{-1}\right)$	$V_{pore} (cm^3 g^{-1})$
Ir/TiO ₂ -200	26	0.038
Ir/TiO ₂ -300	27	0.041
Ir/TiO ₂ -400	26	0.038
Ir/TiO ₂ -500	25	0.036
Ir/TiO ₂ -600	25	0.037
Ir/TiO ₂ -700	25	0.033

Oxide	Crystal form	M–O bond distance	Lattice spacing (nm)		
		(nm)	a, b axis	c axis	
IrO ₂	rutile	0.1958	0.4505	0.3158	
TiO ₂	rutile	0.1980	0.4594	0.2958	

Table S4. The crystal parameters of rutile-type IrO_2 and TiO_2 .

Table S5. H_2 consumption results of the Ir/TiO₂ catalyst.

Sample	H_{T} , theoretical	H _M , measured	- U /U		
	value ^[a] (μ mol g ⁻¹)	50–285 °C	285–800 °C	50–800 °C	Π_{M}/Π_{T}
Ir/TiO ₂	254.9	253.7	149.0	402.7	1.6

[a] The theoretical H_2 consumption (H_T) was estimated by the assumption of complete IrO₂ reduction with 2.45 wt% Ir loading.

	Ti ⁴⁺			Ti ³⁺		
Sample	Bind energy (eV)		Contont	Bind energy (eV)		Contont
	2p _{1/2}	2p _{3/2}	- Content -	2p _{1/2}	2p _{3/2}	Content
Ir/TiO ₂ -200	464.1	458.5	98.9%	463.3	457.8	1.1%
Ir/TiO ₂ -400	464.1	458.5	92.7%	463.2	457.7	7.3%
Ir/TiO ₂ -600	464.1	458.4	91.4%	463.2	457.7	8.6%
Ir/TiO ₂ -700	464.1	458.4	90.3%	463.2	457.7	9.7%

Table S6. Quantified XPS data for surface Ti on the series Ir/TiO₂-*x* catalysts.

References

- X. Chen, X. Su, H.-Y. Su, X. Liu, S. Miao, Y. Zhao, K. Sun, Y. Huang and T. Zhang, *ACS Catal.*, 2017, 7, 4613–4620.
- S. Li, Y. Xu, Y. Chen, W. Li, L. Lin, M. Li, Y. Deng, X. Wang, B. Ge, C. Yang, S. Yao, J. Xie, Y. Li, X. Liu and D. Ma, *Angew. Chem. Int. Ed.*, 2017, 56, 10761–10765.
- 3. J. C. Matsubu, S. Zhang, L. DeRita, N. S. Marinkovic, J. G. Chen, G. W. Graham, X. Pan and P. Christopher, *Nat. Chem.*, 2016, **9**, 120–127.
- Y. Guo, S. Mei, K. Yuan, D.-J. Wang, H.-C. Liu, C.-H. Yan and Y.-W. Zhang, ACS Catal., 2018, 8, 6203–6215.
- J. Xu, X. Su, H. Duan, B. Hou, Q. Lin, X. Liu, X. Pan, G. Pei, H. Geng, Y. Huang and T. Zhang, J. Catal., 2016, 333, 227–237.
- 6. J. H. Kwak, L. Kovarik and J. Szanyi, ACS Catal., 2013, **3**, 2094–2100.
- X. Chen, X. Su, H. Duan, B. Liang, Y. Huang and T. Zhang, *Catal. Today*, 2017, **281**, 312–318.
- R. Carrasquillo-Flores, I. Ro, M. D. Kumbhalkar, S. Burt, C. A. Carrero, A. C. Alba-Rubio, J. T. Miller, I. Hermans, G. W. Huber and J. A. Dumesic, *J. Am. Chem. Soc.*, 2015, 137, 10317–10325.
- W. Li, G. Zhang, X. Jiang, Y. Liu, J. Zhu, F. Ding, Z. Liu, X. Guo and C. Song, ACS Catal., 2019, 9, 2739–2751.
- J. Li, Y. Lin, X. Pan, D. Miao, D. Ding, Y. Cui, J. Dong and X. Bao, ACS Catal., 2019, 9, 6342–6348.