Separation of precious metals by split-anion extraction using water-saturated

ionic liquids

Viet Tu Nguyen, Sofía Riaño and Koen Binnemans*

Electronic supplementary information (ESI)

Fig. S1 Viscosity of ionic liquids as a function of temperature. Water contents in the ionic liquids are 4.25 wt% (pure [A336][C1]), 18.4 wt% (water-saturated [A336][C1]), 9.28 wt% (water-saturated [A336][Br]), and 8.46 wt% (water-saturated [A336][I]).

Fig. S2 Density of ionic liquids as a function of temperature. Water contents in the ionic liquids are 4.25 wt% (pure [A336][Cl]), 18.4 wt% (water-saturated [A336][Cl]), 9.28 wt% (water-saturated [A336][Br]), and 8.46 wt% (water-saturated [A336][I]).

Fresh [**A336**][**Cl**]: ¹H NMR (300 MHz, CDCl₃, δ/ppm): 0.88 (t, 9H, *J* = 4.53 Hz), 1.27-1.38 (m, 32H), 1.66-1.70 (m, 6H), 3.31 (s, 3H), 3.43 (t, 6H, *J* = 6.24 Hz). FTIR (v cm⁻¹): 3349, 2921, 2853, 1611, 1464, 1379, 1055, 896, 721.

Fresh [A336][Br]: ¹H NMR (300 MHz, CDCl₃, δ/ppm): 0.88 (t, 9H, *J* = 4.77 Hz), 1.26-1.36 (m, 32H), 1.63-1.67 (m, 6H), 3.33 (s, 3H), 3.46 (t, 6H, *J* = 5.16 Hz). FTIR (ν cm⁻¹): 3417, 2926, 2853, 1618, 1461, 1376, 1052, 891, 720.

Fresh [**A336**][**I**]: ¹H NMR (300 MHz, CDCl₃, δ/ppm): 0.88 (t, 9H, *J* = 4.80 Hz), 1.27-1.38 (m, 32H), 1.66-1.70 (m, 6H), 3.32 (s, 3H), 3.44 (t, 6H, *J* = 6.33 Hz). FTIR (v cm⁻¹): 3419, 2923, 2854, 1610, 1462, 1378, 1055, 893, 723.

Regenerated [A336][I]: ¹H NMR (300 MHz, CDCl₃, δ/ppm): 0.88 (t, 9H, *J* = 4.68 Hz), 1.27-1.38 (m, 32H), 1.66-1.70 (m, 6H), 3.33 (s, 3H), 3.45 (t, 6H, *J* = 6.33 Hz). FTIR (ν cm⁻¹): 3419, 2923, 2854, 1627, 1462, 1378, 1054, 893, 723.

Fig. S3 ¹H NMR spectrum of the pure ionic liquid [A336][Cl]

Fig. S4 ¹H NMR spectrum of the pure ionic liquid [A336][Br].

Fig. S5 ¹H NMR spectrum of the pure ionic liquid [A336][I].

Fig. S6 ¹H NMR spectrum of the regenerated ionic liquid [A336][I].

Fig. S7 ¹H NMR spectrum of the pure ionic liquid [A336][I] after stripping with NH₄OH.

Fig. S8 FTIR spectra of the fresh ionic liquids [A336][Cl], [A336][Br], and [A336][I].

Fig. S9 FTIR spectra of the fresh and the regenerated ionic liquid [A336][I].

Fig. S10 FTIR spectra of thiourea, fresh [A336][I], and thiourea-loaded [A336][I].

Extractant	Refractive index		Concentratio	Extraction		
	n ₂₀ HCl feed	n20 HCl raf	HClfeed	HCl _{raf}	HClorg	%E _{HCl}
[A336][Cl]	1.3337	1.3337	0.09	0.09	0.01	0.00
	1.3371	1.3368	0.50	0.46	0.04	7.41
	1.3409	1.3399	0.97	0.85	0.15	12.8
	1.3484	1.3458	1.91	1.58	0.42	17.2
	1.3632	1.3570	3.84	3.02	0.98	21.3
	1.3773	1.3680	5.77	4.49	1.51	22.3
[A336][Br]	1.3337	1.3337	0.09	0.09	0.01	0.01
	1.3371	1.3371	0.50	0.50	0.00	0.01
	1.3409	1.3409	0.97	0.97	0.03	0.01
	1.3484	1.3481	1.91	1.87	0.13	2.02
	1.3632	1.3609	3.84	3.53	0.47	8.01
	1.3773	1.3731	5.77	5.19	0.81	10.2
[A336][I]	1.3337	1.3337	0.09	0.09	0.01	0.01
	1.3371	1.3371	0.50	0.50	0.00	0.01
	1.3409	1.3409	0.97	0.97	0.03	0.01
	1.3484	1.3484	1.91	1.91	0.09	0.01
	1.3632	1.3627	3.84	3.77	0.23	1.70
	1.3773	1.3752	5.77	5.48	0.52	5.10

Table S1 Extraction behavior of HCl in the water-saturated ionic liquids phase as a function of the acidity of aqueous feeds.

	Stripping reagent	Concentration	Percentage stripping (%S)							
Extractant			Loaded organic from 6 mol L ⁻¹ HCl feed ^a			Loaded organic from 6 mol L ⁻¹ NaCl feed ^b				
		$(mol L^{-1})$	Pt	Pd	Rh	Au	Pt	Pd	Rh	Au
[A336][Cl]	NH4OH	1.0	0.16	1.95	24.5	0.61	22.9	100	68.8	96.2
	$Na_2S_2O_3$	1.0	0.60	0.20	2.73	2.70	1.51	2.43	82.4	0.60
	CS(NH ₂) ₂ /HCl	1.0	25.0	23.0	6.16	20.2	49.5	48.2	21.8	34.3
[A336][Br]	NH4OH	1.0	0.11	2.30	9.24	0.07	16.2	100	68.6	3.40
	$Na_2S_2O_3$	1.0	8.48	0.28	1.98	9.40	1.24	8.59	31.5	14.1
	CS(NH ₂) ₂ /HCl	1.0	19.0	16.1	4.50	14.5	34.9	35.6	14.7	25.0
[A336][I]	NH4OH	0.1	0.01	0.11	0.31	0.31	0.01	7.16	1.46	0.47
		0.2	0.01	0.03	0.22	0.19	0.11	66.8	1.12	0.14
		0.5	0.03	0.12	0.14	0.10	0.71	90.1	1.23	0.12
		1.0	0.97	89.8	4.25	0.04	1.38	100	2.54	0.07
	$Na_2S_2O_3$	1.0	2.23	0.09	1.63	100	0.65	36.8	12.6	6.34
	CS(NH ₂) ₂ /HCl	1.0	67.5	61.2	53.6	18.6	79.4	80.9	36.6	38.6

Table S2 Stripping behavior of precious metals from loaded organic phase using various striping reagents.[§]

[§]Aqueous phase: 1.0 mol L⁻¹ Na₂S₂O₃, NH₄OH, and CS(NH₂)₂/HCl. Loaded organic phases: [A336][Cl], 680 mg L⁻¹ Pt(IV), 674 mg L⁻¹ Pd(II), 25.5 mg L⁻¹ Rh(III), and 28.8 mg L⁻¹ Au(III); [A336][Br], 676 mg L⁻¹ Pt(IV), 675 mg L⁻¹ Pd(II), 31.9 mg L⁻¹ Rh(III), and 28.9 mg L⁻¹ Au(III); and [A336][I], 678 mg L⁻¹ Pt(IV), 672 mg L⁻¹ Pd(II), 11.8 mg L⁻¹ Rh(III), and 27.7 mg L⁻¹ Au(III); O/A = 1/1; equilibrium time 60 min; 298 K; 2000 rpm. ^aLoaded organic phase from 6.0 mol L⁻¹ HCl feed (Fig. 2). ^bLoaded organic phase from 6.0 mol L⁻¹ NaCl feed (Fig. 4)

Table S3 Mass balance of batch simulation extraction and stripping of precious metals from chloride

 leachate of spent automotive catalysts.

Metal concentration in the aqueous phases (mg L^{-1}) Element Raffinate Pt stripping Feed Scrubbing Pd stripping (NaCl) (NH₄OH) $(CS(NH_2)_2/HCl)$ Al 1427 1408 7.22 0.78 0.25 0.49 0.41 < 0.01 As < 1.0 1.36 0.30 0.04 0.02 0.04 Ba 0.27 Bi < 0.01 0.07 < 0.01 0.28 < 0.01 Ca 46.6 40.4 5.50 1.73 5.37 Ce 60.3 55.2 5.74 0.23 < 0.01 Cr 4.03 3.66 < 0.01 < 0.01 0.25 Cu 0.69 < 0.01 0.21 9.47 0.06 Fe 80.2 78.2 2.80 < 0.01 0.16 8.91 Κ 59.0 71.9 8.26 < 0.01 La 8.70 8.00 0.57 < 0.01 0.02 310 300 1.99 < 0.01 0.18 Mg Mn 3.25 3.17 0.05 < 0.01 < 0.01 Mo 2.28 0.89 1.71 1.34 0.04 Na 33591 30703 13885 13577 323 Ni 4.74 4.34 0.23 < 0.01 0.03 Р 4.47 2.51 2.66 < 0.01 6.62 0.96 0.46 0.08 0.18 Pb < 0.01 209 Pd 24.0 < 0.01 < 0.01 6.09 Pt 0.81 10.5 < 0.01 < 0.01 89.1 6.81 5.12 < 0.01 3.84 0.91 Rh S 349.6 36.9 18047 17520 866 Si 3.08 0.23 0.21 0.14 3.28 Sn 28.7 12.4 < 0.01 1.22 1.96 9.68 9.02 0.91 0.02 0.01 Sr Ti 3.93 0.08 0.01 0.01 4.12 V < 0.01 < 0.01 0.45 0.56 < 0.01 Zn 60.4 0.16 0.36 404 0.28 Zr 419 391 2.01 < 0.01 0.06