Structure-function relationships of deep eutectic solvents for lignin extraction and chemical transformation

Si Hong,a,b,1 Xiao-Jun Shen,c,1 Zhimin Xue,b Zhuohua Sun,a,b and Tong-Qi Yuana,b,*

aBeijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, No.35 Tsinghua East Road, Beijing, 100083, P. R. China.
bBeijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, No.35 Tsinghua East Road, Beijing, 100083, P. R. China.
cBeijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190 (P. R. China).

†Corresponding author: Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, 100083, P. R. China. Tel./fax: +86-010-6233-6903; E-mail address: ytq581234@bjfu.edu.cn (T. Q. Yuan).

1 These authors contributed equally.
Fig. S1 Side-chain in the 2D HSQC NMR spectra of the lignins. Lignin: (A) β-O-4’ aryl ether linkages with a free–OH at the γ-carbon; (A’) β-O-4’ aryl ether linkages with acylated; (B) resinol substructures formed by β–β, α-O-γ, and γ-O-α linkages; (C) phenylcoumaran substructures formed by β-5 and α-O-4’ linkages; (L) lactic acid; (I) p-hydroxycinnamyl alcohol end groups; (G) guaiacyl units; (S) syringyl units; (S’) oxidized syringyl units with a Cα ketone.

Reference: