An environmentally benign cascade reaction of chromone-3carboxaldehydes with ethyl 2-(pyridine-2-yl)acetate derivatives for highly site-selective synthesis of quinolizines and quinolizinium salts in water[†]

Li Chen, Rong Huang, Kun Li, Xing-Han Yun, Chang-Long Yang and Shengjiao Yan*

Key Laboratory of Medicinal Chemistry for Natural Resources (Yunnan University), Ministry of Education, School of Chemical Science and Technology, Yunnan University, Kunming, 650091, P. R. China

Supporting Information

Table of Contents:

General Information	S4
General Procedure for the Preparation of 3 and 4	S4
Spectroscopic Data of 3–4	S5
X-ray Structure and Data of 4a.	S20
Figure S1. X-Ray crystal structure of 4a	S20
Table S1. Crystal data and structure refinement for 4a	S20
Table S2. Bond lengths [A] and angles [deg] for 4a	S21
Figure S2. ¹ H NMR (600 MHz, DMSO- d_6) spectra of compound 3a	S23
Figure S3. ¹³ C NMR (150 MHz, DMSO- d_6) spectra of compound 3a	S24
Figure S4. ¹⁹ F NMR (564 MHz, DMSO- <i>d</i> ₆) spectra of compound 3a	S25
Figure S5. ¹ H NMR (600 MHz, DMSO- d_6) spectra of compound 3b	S26
Figure S6. ¹³ C NMR (150 MHz, DMSO- d_6) spectra of compound 3b	S27
Figure S7. ¹⁹ F NMR (564 MHz, DMSO- <i>d</i> ₆) spectra of compound 3b	S28
Figure S8. ¹ H NMR (600 MHz, DMSO- d_6) spectra of compound 3c	S29
Figure S9. ¹³ C NMR (150 MHz, DMSO- d_6) spectra of compound 3c	S30
Figure S10. ¹⁹ F NMR (564 MHz, DMSO- <i>d</i> ₆) spectra of compound 3c	S31
Figure S11. ¹ H NMR (600 MHz, DMSO- <i>d</i> ₆) spectra of compound 3d	S32
Figure S12. ¹³ C NMR (150 MHz, DMSO- <i>d</i> ₆) spectra of compound 3d	S33
Figure S13. ¹⁹ F NMR (564 MHz, DMSO- <i>d</i> ₆) spectra of compound 3d	S34
Figure S14. ¹ H NMR (600 MHz, DMSO- <i>d</i> ₆) spectra of compound 3e	S35
Figure S15. ¹³ C NMR (150 MHz, DMSO- <i>d</i> ₆) spectra of compound 3e	S36
Figure S16. ¹⁹ F NMR (564 MHz, DMSO- <i>d</i> ₆) spectra of compound 3e	S37
Figure S17. ¹ H NMR (600 MHz, DMSO- <i>d</i> ₆) spectra of compound 3f	S38

Figure S19. ¹H NMR (600 MHz, DMSO- d_6) spectra of compound 3g......S40 Figure S20. ¹³C NMR (150 MHz, DMSO- d_6) spectra of compound 3g.....S41 Figure S21. ¹H NMR (600 MHz, DMSO- d_6) spectra of compound **3h**......S42 Figure S23. ¹H NMR (600 MHz, DMSO-*d*₆) spectra of compound 3i......S44 Figure S25. ¹H NMR (600 MHz, DMSO- d_6 +HClO₄) spectra of compound 4aS46 Figure S26. ¹³C NMR (150 MHz, DMSO- d_6 +HClO₄) spectra of compound 4a.....S47 Figure S27. ¹⁹F NMR (564 MHz, DMSO- d_6 +HClO4) spectra of compound 4a.....S48 Figure S28. ¹H NMR (600 MHz, DMSO- d_6 +HClO₄) spectra of compound 4b.....S49 Figure S29. ¹³C NMR (150 MHz, DMSO- d_6 +HClO₄) spectra of compound 4bS50 Figure S30. ¹⁹F NMR (564 MHz, DMSO- d_6 +HClO₄) spectra of compound 4bS51 Figure S31. ¹H NMR (600 MHz, DMSO- d_6 +HClO₄) spectra of compound 4cS52 Figure S32. ¹³C NMR (150 MHz, DMSO- d_6 +HClO₄) spectra of compound 4cS53 Figure S33. ¹⁹F NMR (564 MHz, DMSO- d_6 +HClO₄) spectra of compound 4c.....S54 Figure S34. ¹H NMR (600 MHz, DMSO- d_6 +HClO₄) spectra of compound 4d.....S55 Figure S35. ¹³C NMR (150 MHz, DMSO- d_6 +HClO₄) spectra of compound 4d......S56 Figure S36. ¹⁹F NMR (564 MHz, DMSO- d_6 +HClO₄) spectra of compound 4dS57 Figure S37. ¹H NMR (600 MHz, DMSO- d_6 +HClO₄) spectra of compound 4eS58 Figure S39. ¹⁹F NMR (564 MHz, DMSO- d_6 +HClO₄) spectra of compound 4e......S60 Figure S40. ¹H NMR (600 MHz, DMSO- d_6 +HClO₄) spectra of compound 4f......S61 Figure S41. ¹³C NMR (150 MHz, DMSO- d_6 +HClO₄) spectra of compound 4f......S62 Figure S42. ¹⁹F NMR (564 MHz, DMSO- d_6 +HClO₄) spectra of compound 4f......S63 Figure S43. ¹H NMR (600 MHz, DMSO- d_6 +HClO₄) spectra of compound 4g......S64 Figure S44. ¹³C NMR (150 MHz, DMSO- d_6 +HClO₄) spectra of compound 4g......S65 Figure S45. ¹H NMR (600 MHz, DMSO- d_6 +HClO₄) spectra of compound 4h.....S66 Figure S46. ¹³C NMR (150 MHz, DMSO- d_6 +HClO₄) spectra of compound 4h......S67 Figure S47. ¹H NMR (600 MHz, DMSO- d_6 +HClO₄) spectra of compound 4i......S68 Figure S49. ¹H NMR (600 MHz, DMSO- d_6 +HClO₄) spectra of compound 4j.....S70 Figure S50. ¹³C NMR (150 MHz, DMSO- d_6 +HClO₄) spectra of compound 4j.....S71 Figure S51. ¹H NMR (600 MHz, DMSO- d_6 +HClO₄) spectra of compound 4k.....S72 Figure S52. ¹³C NMR (150 MHz, DMSO- d_6 +HClO₄) spectra of compound 4k.....S73 Figure S53. ¹H NMR (600 MHz, DMSO- d_6 +HClO₄) spectra of compound 41.....S74 Figure S54. ¹³C NMR (150 MHz, DMSO- d_6 +HClO₄) spectra of compound 41.....S75 Figure S55. ¹H NMR (600 MHz, DMSO-*d*₆+HClO₄) spectra of compound 4m.....S76 Figure S56. ¹³C NMR (150 MHz, DMSO- d_6 +HClO₄) spectra of compound 4m......S77 Figure S57. ¹H NMR (600 MHz, DMSO- d_6 +HClO₄) spectra of compound 4n.....S78 Figure S58. ¹³C NMR (150 MHz, DMSO- d_6 +HClO₄) spectra of compound 4n.....S79 Figure S59. ¹H NMR (600 MHz, DMSO- d_6 +HClO₄) spectra of compound 40S80 Figure S60. ¹³C NMR (150 MHz, DMSO-*d*₆+HClO₄) spectra of compound 40......S81 Figure S61. ¹H NMR (600 MHz, DMSO- d_6 +HClO₄) spectra of compound 4p......S82

Figure S62. ¹³C NMR (150 MHz, DMSO- d_6 +HClO₄) spectra of compound 4p......S83 Figure S63. ¹H NMR (600 MHz, DMSO- d_6 +HClO₄) spectra of compound 4q......S84 Figure S64. ¹³C NMR (150 MHz, DMSO- d_6 +HClO₄) spectra of compound 4q......S85 Figure S65. ¹H NMR (600 MHz, DMSO- d_6 +HClO₄) spectra of compound 4rS86 Figure S69. ¹H NMR (600 MHz, DMSO- d_6 +HClO₄) spectra of compound 4t.....S90 Figure S70. ¹³C NMR (150 MHz, DMSO- d_6 +HClO₄) spectra of compound 4t......S91 Figure S71. ¹H NMR (600 MHz, DMSO- d_6 +HClO₄) spectra of compound 4u.....S92 Figure S73. ¹H NMR (600 MHz, DMSO- d_6 +HClO₄) spectra of compound 4v......S94 Figure S78. ¹³C NMR (150 MHz, DMSO- d_6 +HClO₄) spectra of compound 4x......S99 Figure S79. ¹H NMR (600 MHz, DMSO- d_6 +HClO₄) spectra of compound 4y.....S100 Figure S80. ¹³C NMR (150 MHz, DMSO- d_6 +HClO₄) spectra of compound 4y......S101 Figure S81. ¹H NMR (600 MHz, DMSO- d_6 +HClO₄) spectra of compound 4zS102 Figure S82. ¹³C NMR (150 MHz, DMSO- d_6 +HClO₄) spectra of compound 4zS103 Figure S83. ¹H NMR (600 MHz, DMSO- d_6 +HClO₄) spectra of compound 4a'.....S104 Figure S84. ¹³C NMR (150 MHz, DMSO- d_6 +HClO₄) spectra of compound 4a'.....S105 Figure S85. ¹H NMR (600 MHz, DMSO- d_6 +HClO₄) spectra of compound 4b'S106 Figure S86. ¹³C NMR (150 MHz, DMSO- d_6 +HClO₄) spectra of compound 4b'......S107 Figure S87. ¹H NMR (600 MHz, DMSO- d_6 +HClO₄) spectra of compound 4c'S108 Figure S88. ¹³C NMR (150 MHz, DMSO- d_6 +HClO₄) spectra of compound 4c'......S109 Figure S89. ¹H NMR (600 MHz, DMSO- d_6 +HClO₄) spectra of compound 4d'......S110 Figure S90. ¹³C NMR (150 MHz, DMSO- d_6 +HClO₄) spectra of compound 4d'.........S111 Figure S91. ¹H NMR (600 MHz, DMSO- d_6 +HClO₄) spectra of compound 4e'S112 Figure S92. ¹³C NMR (150 MHz, DMSO- d_6 +HClO₄) spectra of compound 4e'......S113

General Information

All compounds were fully characterised by spectroscopic data. The NMR spectra were recorded on a Bruker DRX600. Chemical shifts (δ) are expressed in ppm, *J* values are given in Hz, and deuterated DMSO-*d*₆ were used as solvent. IR spectra were recorded on a FT-IR Thermo Nicolet Avatar 360 using a KBr pellet. The reactions were monitored by thin layer chromatography (TLC) using silica gel GF₂₅₄. The melting points were determined on a XT-4A melting point apparatus and are uncorrected. HRMs were performed on an Agilent LC/Msd TOF instrument. Materials used were purchased from Adamas-beta Corporation Limited.

The materials were purchased from Adamas-beta Corporation Limited. All chemicals and solvents were used as received without further purification unless otherwise stated. Column chromatography was performed on silica gel (200–300 mesh). The chromone-3-carboxaldehydes **1** and ethyl 2-(pyridine-2-yl)acetates **2** were commercially available reagents.

General Procedure for the Preparation of 3 and 4

First, chromone-3-carboxaldehydes **1** (1.0 ml) was charged into a round-bottom flask. Then, water (5 ml) and ethyl 2-(pyridine-2-yl)acetate derivatives **2** (1.1 mmol) were added to the mixture. The mixture was stirred at reflux for approximately 3 hours and monitored by TLC until the intermediate was completely consumed. The reaction mixture was cooled to room temperature and then was filtered by a suction funnel and washing with a few drops of water or recrystallized by EtOH or acetone. Finally, the obtained red solid was dried using an infrared lamp. As a result, we obtained the target compounds **3** with good to excellent yields (85–96%).

First, chromone-3-carboxaldehydes 1 (1.0 ml) was charged into a round-bottom flask. Then, water (5 ml) and ethyl 2-(pyridine-2-yl)acetate derivatives 2 (1.1 mmol) were added to the mixture. The mixture was stirred at reflux for approximately 3

hours and monitored by TLC until the intermediate was completely consumed, and then was filtered by a suction funnel and washing with a few drops of water or recrystallized by EtOH or acetone. We can obtain the target compounds **3**. Then compounds **3** and H₂O were charged in a round-bottom flask. Then, the mixture was added a few drops of perchloric acid and make the value of pH of the mixture is up to 1-2 at room temperature under the magneton agitation. Then, the mixture was filtered by suction funnel and washed by small of water. We obtained the target compounds **4** (yellow solid) with good to excellent yields. It should be noted that compounds **4** are in equilibrium with compounds **3** in the solution. The cascade reaction produces compounds **4** at strong acidic conditions (pH < 3) and obtains compounds **3** at neutral or basic conditions.

Spectroscopic Data of 3-4

Ethyl 2-fluoro-13-oxo-5a,13-dihydrochromeno[2,3-b]quinolizine-6-carboxylate (3a)

Red solid; Mp: 266.3-267.1 °C; IR (KBr): 2928, 1671, 1648, 1597, 1528, 1492, 1478, 1385, 1366, 1196, 823, 801, 777, 765 cm⁻¹; ¹H NMR (600 MHz, DMSO-*d*₆): δ = 1.28 (t, *J* = 7.0 Hz, 3H, CH₃), 4.18 (d, *J* = 7.0 Hz, 2H, CH₂), 7.17 (s, 2H, ArH), 7.47 (s, 1H, ArH), 7.51 (d, *J* = 7.5 Hz, 2H, ArH), 7.85 (t, *J* = 7.7 Hz, 1H, ArH), 7.94 (s, 1H, ArH), 8.38 (d, *J* = 5.5 Hz, 1H, ArH), 8.82 (d, *J* = 8.5 Hz, 1H, ArH); ¹³C NMR (150 MHz, DMSO-*d*₆): δ = 15.0, 59.7, 89.1, 91.2, 106.3, 112.0, 112.2, 116.6, 120.7, 122.0, 123.3 (d, *J*₂ = 24.0 Hz), 125.1, 133.6, 139.4, 140.0, 148.0, 151.0, 165.2, 177.3. HRMS (TOF ES⁺): *m/z* calcd for C₁₉H₁₄FNO₄ [(M+H)⁺], 340.0980; found, 340.0979.

Ethyl-9-ethyl-2-fluoro-13-oxo-5a,13-dihydrochromeno[2,3-*b*]quinolizine-6-carboxylate (3b)

Red solid; Mp: 234.4-235.1 °C; IR (KBr): 2962, 2927, 1655, 1616, 1574, 1492, 1355, 1275, 1247, 1201, 1171, 1137, 837, 785, 758 cm⁻¹; ¹H NMR (600 MHz, DMSO- d_6): $\delta = 1.22$ (t, J =

7.6 Hz, 3H, CH₃), 1.27 (t, J = 7.1 Hz, 3H, CH₃), 2.61-2.65 (m, 2H, CH₂), 4.15-4.19 (m, 2H, CH₂), 7.21 (s, 2H, ArH), 7.43 (s, 1H, ArH), 7.50 (s, 1H, ArH), 7.51 (s, 1H, ArH), 7.85 (d, J = 9.2 Hz, 1H, ArH), 7.93 (s, 1H, ArH), 8.25 (s, 1H, ArH), 8.81 (d, J = 9.0 Hz, 1H, ArH); ¹³C NMR (150 MHz, DMSO- d_6): $\delta = 14.7$, 14.9, 24.8, 59.6, 89.3, 90.9, 105.8, 112.0 (d, $J_2 = 24.0$ Hz), 120.9, 122.0, 123.1 (d, $J_2 = 25.5$ Hz), 125.3, 132.2, 133.6, 136.4, 141.2, 146.7, 151.0, 158.8, 165.2, 177.2. HRMS (TOF ES⁺): m/z calcd for C₂₁H₁₉FNO₄ [(M+H)⁺], 368.1293; found, 368.1289.

Methyl 2-fluoro-13-oxo-5a,13-dihydrochromeno[2,3-b]quinolizine-6-carboxylate (3c)

Red solid; Mp: 283.0-283.6 °C; IR (KBr): 2950, 1686, 1644, 1593, 1533, 1491, 1459, 1390, 1367, 1220, 1173, 878, 832, 777, 761 cm⁻¹; ¹H NMR (600 MHz, DMSO-*d*₆): δ = 3.71 (s, 3H, CH₃), 7.18 (d, *J* = 5.5 Hz, 2H, ArH), 7.48-7.52 (m, 3H, ArH), 7.87 (t, *J* = 7.9 Hz, 1H, ArH), 7.94 (s, 1H, ArH), 8.39 (d, *J* = 6.3 Hz, 1H, ArH), 8.82 (d, *J* = 8.9 Hz, 1H, ArH); ¹³C NMR (150 MHz, DMSO-*d*₆): δ = 51.4, 89.1, 91.0, 106.5, 112.1 (d, *J*₂ = 22.5 Hz), 116.6, 120.8, 122.0, 123.3 (d, *J*₂ = 24.0 Hz), 125.2, 133.5, 139.5, 140.1, 148.0, 151.0, 158.0 (d, *J*₁ = 241.5 Hz), 165.6, 177.4. HRMS (TOF ES⁺): *m/z* calcd for C₁₈H₁₂FNO₄ [(M+H)⁺], 326.0823; found, 326.0821.

2-Fluoro-13-oxo-5a,13-dihydrochromeno[2,3-b]quinolizine-6-carbonitrile (3d)

Red solid; Mp: 256.3-257.1 °C; IR (KBr): 2201, 1647, 1619, 1533, 1481, 1396, 1368, 1288, 1208, 1181, 875, 782, 766 cm⁻¹; ¹H NMR (600 MHz, DMSO- d_6): δ = 7.14-7.19 (m, 2H, ArH), 7.40 (t, J = 5.9 Hz, 2H, ArH), 7.50-7.54 (m, 3H, ArH), 7.86 (t, J = 7.6 Hz, 1H, ArH), 8.38 (d, J = 6.7 Hz, 1H, ArH); ¹³C NMR (150 MHz, DMSO- d_6): δ = 79.7, 89.0, 112.1 (d, J_2 = 22.5 Hz), 116.9, 119.4, 120.9 (d, J_3 = 7.5 Hz), 121.3, 123.5, 123.7, 125.0 (d, J_3 = 6.0 Hz), 132.7, 139.6, 140.7, 148.4, 150.9, 158.9, 176.7. HRMS (TOF ES⁺): m/z calcd for C₁₇H₉FN₂O₂ [(M+H)⁺], 293.0721; found, 293.0720.

6-Acetyl-2-fluorochromeno[2,3-b]quinolizin-13(5aH)-one (3e)

Red solid; Mp: 269.5-270.3 °C; IR (KBr): 2925, 1642, 1561, 1519, 1484, 1437, 1360, 1316, 1276, 1211, 1172, 1114, 780 cm⁻¹; ¹H NMR (600 MHz, DMSO-*d*₆): δ = 2.37 (s, 3H, CH₃), 7.19 (d, *J* = 4.7 Hz, 1H, ArH), 7.28 (t, *J* = 6.3 Hz, 1H, ArH), 7.45 (s, 1H, ArH), 7.52 (t, *J* = 7.3 Hz, 2H, ArH), 7.89 (s, 1H, ArH), 7.94 (t, *J* = 7.5 Hz, 1H, ArH), 8.49 (d, *J* = 6.2 Hz, 1H, ArH), 9.19 (d, *J* = 8.8 Hz, 1H, ArH); ¹³C NMR (150 MHz, DMSO-*d*₆): δ = 28.6, 88.8, 101.2, 105.6, 112.1 (d, *J*₂ = 21.0 Hz), 117.9, 120.7, 123.0, 123.2 (d, *J*₂ = 24.0 Hz), 125.1, 134.9, 139.5, 141.1, 147.4, 151.0, 158.0 (d, *J*₁ = 244.5 Hz), 177.0, 192.4. HRMS (TOF ES⁺): *m/z* calcd for C₁₈H₁₂FNO₃ [(M+H)⁺], 310.0874; found, 310.0873.

6-Acetyl-2-chlorochromeno[2,3-b]quinolizin-13(5aH)-one (3f)

Red solid; Mp: 269.3-269.9 °C; IR (KBr): 2923, 1647, 1604, 1567, 1474, 1453, 1359, 1269, 1217, 1205, 1186, 1150, 1006, 817, 779, 733 cm⁻¹; ¹H NMR (600 MHz, DMSO-*d*₆): δ = 2.38 (s, 3H, CH₃), 7.18 (d, *J* = 8.6 Hz, 1H, ArH), 7.30 (s, 1H, ArH), 7.48 (s, 1H, ArH), 7.67 (t, *J* = 1.8 Hz, 1H, ArH), 7.76 (s, 1H, ArH), 7.90 (s, 1H, ArH), 7.95 (s, 1H, ArH), 8.49 (d, *J* = 6.2 Hz, 1H, ArH), 9.19 (d, *J* = 8.9 Hz, 1H, ArH); ¹³C NMR (150 MHz, DMSO-*d*₆): δ = 28.6, 88.9, 101.3, 105.4, 118.0, 120.9, 123.0, 125.4, 126.0, 127.5, 135.0, 135.6, 139.5, 141.2, 147.4, 153.5, 176.8, 192.5. HRMS (TOF ES⁺): *m*/*z* calcd for C₁₈H₁₃ClNO₃ [(M+H)⁺], 326.0578; found, 326.0576.

6-Acetyl-2-bromochromeno[2,3-b]quinolizin-13(5aH)-one (3g)

Red solid; Mp: 234.6-235.5 °C; IR (KBr): 2925, 1644, 1597, 1566, 1514, 1478, 1358, 1331, 1269, 1218, 1183, 814, 779, 713 cm⁻¹; ¹H NMR (600 MHz, DMSO-*d*₆): δ = 2.37 (s, 3H, CH₃), 7.11 (d, *J* = 8.6 Hz, 1H, ArH), 7.29 (t, *J* = 7.2 Hz, 1H, ArH), 7.48 (s, 1H, ArH), 7.77-7.78 (m, 1H, ArH), 7.89 (d, *J* = 6.4 Hz, 2H, ArH), 7.95 (t, *J* = 7.2 Hz, 1H, ArH), 8.49 (d, *J* = 6.1 Hz, 1H, ArH), 9.19 (d, *J* = 8.9 Hz, 1H, ArH); ¹³C NMR (150 MHz, DMSO-*d*₆): δ = 28.6, 88.9, 101.3, 105.3, 115.1, 118.0, 121.2, 123.0, 125.8, 129.0, 135.0, 138.3, 139.5, 141.2, 147.4, 153.9, 176.6, 192.5. HRMS (TOF ES⁺): *m/z* calcd for C₁₈H₁₃BrNO₃ [(M+H)⁺], 370.0073; found, 370.0071.

Ethyl 13-oxo-5a,13-dihydrochromeno[2,3-b]quinolizine-6-carboxylate (3h)

Red solid; Mp: 231.5-232.3 °C; IR (KBr): 2928, 1674, 1641, 1593, 1526, 1489, 1384, 1338, 1222, 1192, 1043, 773 cm⁻¹; ¹H NMR (600 MHz, DMSO-*d*₆): δ = 1.21 (t, *J* = 7.0 Hz, 3H, CH₃), 4.16-4.19 (m, 2H, CH₂), 7.11-7.15 (m, 2H, ArH), 7.19 (t, *J* = 7.4 Hz, 1H, ArH), 7.48 (s, 1H, ArH), 7.63 (t, *J* = 7.4 Hz, 1H, ArH), 7.82-7.84 (m, 2H, ArH), 7.92 (s, 1H, ArH), 8.35 (d, *J* = 6.5 Hz, 1H, ArH), 8.83 (d, *J* = 9.1 Hz, 1H, ArH); ¹³C NMR (150 MHz, DMSO-*d*₆): δ = 14.9, 59.6, 89.0, 90.7, 107.3, 116.3, 118.6, 122.0, 123.2, 124.2, 127.1, 133.0, 136.2, 139.4, 139.7, 148.0, 154.8, 165.3, 178.5. HRMS (TOF ES⁺): *m/z* calcd for C₁₉H₁₆NO₄ [(M+H)⁺], 322.1074; found, 322.1071.

6-Acetyl-2-methylchromeno[2,3-b]quinolizin-13(5aH)-one (3i)

Red solid; Mp: 280.0-280.9 °C; IR (KBr): 2923, 1652, 1611, 1569, 1527, 1491, 1473, 1400, 1328, 1283, 1203, 1179, 1020, 813, 767, 703 cm⁻¹; ¹H NMR (600 MHz, DMSO-*d*₆): δ = 2.33 (s, 3H, CH₃), 2.37 (s, 3H, CH₃), 7.03 (d, *J* = 7.2 Hz, 1H, ArH), 7.25 (s, 1H, ArH), 7.40 (s, 1H, ArH), 7.44 (d, *J* = 6.8 Hz, 1H, ArH), 7.64 (s, 1H, ArH), 7.86 (s, 1H, ArH), 7.91 (s, 1H, ArH), 8.44 (d, *J* = 4.2 Hz, 1H, ArH), 9.19 (d, *J* = 8.5 Hz, 1H, ArH); ¹³C NMR (150 MHz, DMSO-*d*₆): δ = 20.6, 28.6, 88.5, 100.7, 106.7, 117.6, 118.3, 122.9, 123.8, 126.7, 132.4, 134.1, 136.9, 139.4, 140.8, 147.4, 152.9, 178.3, 192.3. HRMS (TOF ES⁺): *m/z* calcd for C₁₉H₁₆NO₃ [(M+H)⁺], 306.1125; found, 306.1122.

1-(Ethoxycarbonyl)-3-(5-fluoro-2-hydroxybenzoyl) quinolizin-5-ium (4a)

Yellow solid; Mp: 278.2-283.9 °C; IR (KBr): 3445, 2925, 1731, 1652, 1625, 1482, 1367, 1343, 1257, 1206, 1121, 1107, 1079, 792, 624 cm⁻¹; ¹H NMR (600 MHz, DMSO-*d*₆+HClO₄): $\delta = 1.37$ (t, J = 7.1 H z, 3H, CH₃), 4.46-4.50 (m, 2H, CH₂), 7.04-7.07 (m, 1H, ArH), 7.38-7.44 (m, 2H, ArH), 8.23 (t, J = 6.8 Hz, 1H, ArH), 8.60 (t, J = 8.0 HZ, 1H, ArH), 8.89 (s, 1H, ArH), 9.24 (d, J = 8.9 Hz, 1H, ArH), 9.58 (d, 1H, ArH), 9.86 (s, 1H, ArH) ; ¹³C NMR (150 MHz, DMSO-*d*₆+HClO₄): $\delta = 14.3$, 63.6, 117.1, 117.2, 119.4 (d, $J_3 = 7.5$ Hz), 122.8 (d, $J_2 = 22.5$ Hz), 123.3 (d, $J_3 = 7.5$ Hz), 125.3, 127.2, 131.5, 138.1, 140.1, 141.4, 142.3, 142.7, 154.4, 155.6 (d, $J_1 = 235.5$ Hz), 163.2, 190.1. HRMS (ESI-TOF, [M-ClO₄⁻]⁺): calcd for C₁₉H₁₅FNO₄⁺, 340.0980; found, 340.0979.

1-(Ethoxycarbonyl)-7-ethyl-3-(5-fluoro-2-hydroxybenzoyl)quinolizin-5-ium (4b)

Yellow solid; Mp: 171.3-172.1 °C; IR (KBr): 3438, 2938, 1730, 1652, 1631, 1482, 1348, 1258, 1158, 1098, 1032, 855, 793, 678, 623 cm⁻¹; ¹H NMR (600 MHz, DMSO-*d*₆+HClO₄): δ = 1.35 (t, *J* = 7.5 Hz, 3H, CH₃), 1.42 (t, *J* = 7.1 Hz, 3H, CH₃), 2.95-2.99 (m, 2H, CH₂), 4.50-4.54 (m, 2H, CH₂), 7.09-7.11 (m, 1H, ArH), 7.43-7.49 (m, 2H, ArH), 8.63 (d, *J* = 9.6 Hz, 1H, ArH), 8.88 (s, 1H, ArH), 9.19 (d, *J* = 9.2 Hz, 1H, ArH), 9.58 (s, 1H, ArH), 9.81(s, 1H, ArH); ¹³C NMR (150 MHz, DMSO-*d*₆+HClO₄): δ = 14.0, 14.4, 25.6, 63.5, 117.1 (d, *J*₂ = 24.0 Hz), 119.4 (d, *J*₃ = 7.5 Hz), 122.6 (d, *J*₂ = 22.5 Hz), 123.6 (d, *J*₃ = 7.5 Hz), 124.9, 127.1, 131.5, 137.2, 137.7, 140.8, 141.4, 142.4, 142.6, 154.3, 155.6 (d, *J*₁ = 234.0 Hz), 163.3, 190.1. HRMS (ESI-TOF, [M-ClO₄⁻]⁺): calcd for C₂₁H₁₉FNO₄⁺, 368.1293; found, 368.1289.

3-(5-Fluoro-2-hydroxybenzoyl)-1-(methoxycarbonyl)quinolizin-5-ium (4c)

Yellow solid; Mp: 165.8-166.4 °C; IR (KBr): 3439, 2961, 2023, 1733, 1630, 1486, 1425, 1346, 1247, 1210, 1120, 1109, 801, 712, 624 cm⁻¹; ¹H NMR (600 MHz, DMSO- d_6 +HClO₄): δ = 4.05 (s, 3H, CH₃), 7.08-7.11 (m, 1H, ArH), 7.44-7.46 (m, 1H, ArH), 7.48 (d, J = 3.0 Hz, 1H, ArH), 8.31 (t, J = 7.0 Hz, 1H, ArH), 8.67 (t, J = 8.2 HZ, 1H, ArH), 8.93 (s, 1H, ArH), 9.27 (d, J = 9.0 Hz, 1H, ArH), 9.66 (d, J = 6.7 Hz, 1H, ArH), 9.95 (s, 1H, ArH); ¹³C NMR (150 MHz, DMSO- d_6 +HClO₄): δ = 54.3, 117.2 (d, J_2 = 24.0 Hz), 119.4, 122.8 (d, J_2 = 22.5 Hz), 123.4, 125.4, 125.5, 126.9, 131.6, 138.2, 140.3, 141.5, 142.2, 142.8, 154.4, 155.7 (d, J_1 = 234.0 Hz), 163.7, 190.1. HRMS (ESI-TOF, [M-ClO₄-]⁺): calcd for C₁₈H₁₃FNO₄⁺, 326.0823; found, 326.0820.

1-Acetyl-3-(5-fluoro-2-hydroxybenzoyl)quinolizin-5-ium (4d)

Yellow solid; Mp: > 300 °C; IR (KBr): 3439, 2927, 2021, 1694, 1630, 1581, 1486, 1363, 1347, 1279, 1218, 1121, 1108, 784, 683, 623 cm⁻¹; ¹H NMR (600 MHz, DMSO- d_6 +HClO₄): δ = 2.86 (s, 3H, CH₃), 7.09-7.11 (m, 1H, ArH), 7.48 (t, J = 9.0 Hz, 2H, ArH), 8.29 (t, J = 6.8 Hz, 1H, ArH), 8.63 (t, J = 8.0 HZ, 1H, ArH), 8.97 (d, J = 8.9 Hz, 1H, ArH), 9.00 (s, 1H, ArH), 9.66 (d, J = 6.6 Hz, 1H, ArH), 9.87 (s, 1H, ArH); ¹³C NMR (150 MHz,

DMSO- d_6 +HClO₄): δ = 30.6, 117.2 (d, J_2 = 24.0 Hz), 119.5 (d, J_3 = 7.5 Hz), 122.9 (d, J_2 = 24.0 Hz), 123.4 (d, J_3 = 7.5 Hz), 125.3, 125.7, 131.8, 134.1, 136.4, 140.0, 141.3, 141.4, 141.8, 154.6, 155.7 (d, J_1 = 235.5 Hz), 190.3, 198.5. HRMS (ESI-TOF, [M-ClO₄-]+): calcd for C₁₈H₁₃FNO₃⁺, 310.0874; found, 310.0871.

1-Acetyl-3-(5-fluoro-2-hydroxybenzoyl)-7-methylquinolizin-5-ium (4e)

Yellow solid; Mp: > 300 °C; IR (KBr): 3439, 2933, 1701, 1650, 1624, 1487, 1365, 1346, 1284, 1211, 1108, 836, 789, 684, 624 cm⁻¹; ¹H NMR (600 MHz, DMSO-*d*₆+HClO₄): δ = 2.61 (s, 3H, CH₃), 2.86 (s, 3H, CH₃), 7.09-7.11 (m, 1H, ArH), 7.45-7.50 (m, 2H, ArH), 8.52 (d, *J* = 9.2 Hz, 1H, ArH), 8.90 (d, *J* = 9.1 Hz, 1H, ArH), 8.95 (s, 1H, ArH), 9.52 (s, 1H, ArH), 9.69 (s, 1H, ArH) ; ¹³C NMR (150 MHz, DMSO-*d*₆+HClO₄): δ = 18.4, 30.5, 117.1 (d, *J*₂ = 22.5 Hz), 119.5 (d, *J*₃ = 7.5 Hz), 122.7 (d, *J*₂ = 24.0 Hz), 123.5 (d, *J*₃ = 6.0 Hz), 125.0, 131.8, 134.0, 135.5, 136.1, 138.0, 139.7, 141.2, 143.3, 154.4, 155.7(d, *J*₁ = 234.0 Hz), 190.3, 198.5. HRMS (ESI-TOF, [M-ClO₄⁻]⁺): calcd for C₁₉H₁₅FNO₃⁺, 324.1030; found, 324.1031.

1-Cyano-3-(5-fluoro-2-hydroxybenzoyl)quinolizin-5-ium (4f)

Yellow solid; Mp: 276.2-277.1 °C; IR (KBr): 3439, 2023, 1693, 1636, 1482, 1437, 1345, 1283, 1249, 1213, 1121, 1108, 1001, 784, 681, 624 cm⁻¹; ¹H NMR (600 MHz, DMSO-*d*₆+HClO₄): δ = 7.05-7.08 (m, 1H, ArH), 7.38-7.39 (m, 1H, ArH), 7.43-7.45 (m, 1H, ArH), 8.34-8.35 (m, 1H, ArH), 8.72 (t, *J* = 2.8 Hz, 2H, ArH), 9.24 (d, *J* = 1.2 Hz, 1H, ArH), 9.66 (d, *J* = 6.8 Hz, 1H, ArH), 9.97 (s, 1H, ArH) ; ¹³C NMR (150 MHz, DMSO-*d*₆+HClO₄): δ = 110.7, 113.8, 117.1 (d, *J*₂ = 24.0 Hz), 119.6, 123.0 (d, *J*₂ = 22.5 Hz), 123.2, 125.2, 126.3, 132.0, 140.4, 142.6, 142.8, 142.9, 143.0, 154.5, 154.9, 189.2. HRMS (ESI-TOF, [M-ClO₄⁻]⁺): calcd for C₁₇H₁₀FN₂O₂⁺, 293.0721; found, 293.0720.

3-(5-Chloro-2-hydroxybenzoyl)-1-(ethoxycarbonyl)quinolizin-5-ium (4g)

Yellow solid; Mp: 169.2-170.6 °C; IR (KBr): 3439, 2924, 2024, 1726, 1632, 1467, 1438, 1405, 1343, 1261, 1225, 1096, 785, 622 cm⁻¹; ¹H NMR (600 MHz, DMSO- d_6 +HClO₄): δ = 1.39 (t, J = 7.1 Hz, 3H, CH₃), 4.47-4.51 (m, 2H, CH₂), 7.07 (d, J = 9.1 HZ, 1H, ArH), 7.59 (t, J = 2.6 Hz, 2H, ArH), 8.27 (t, J = 6.9 Hz, 1H, ArH), 8.63 (t, J = 7.9 HZ, 1H, ArH), 8.90 (s,

1H, ArH), 9.24 (d, J = 9.0 Hz, 1H, ArH), 9.61 (d, J = 6.7 Hz, 1H, ArH), 9.90 (s, 1H, ArH) ; ¹³C NMR (150 MHz, DMSO- d_6 +HClO₄): $\delta = 14.3$, 63.6, 119.7, 123.8, 124.6, 125.3, 125.5, 127.2, 130.6, 131.4, 135.1, 138.0, 140.2, 141.4, 142.3, 142.9, 156.6, 163.2, 190.0. HRMS (ESI-TOF, [M-ClO₄-]⁺): calcd for C₁₉H₁₅ClNO₄⁺, 356.0684; found, 356.0686.

3-(5-Chloro-2-hydroxybenzoyl)-1-(ethoxycarbonyl)-7-ethylquinolizin-5-ium (4h)

Yellow solid; Mp: 150.3-151.1 °C; IR (KBr): 3433, 2924, 1726, 1631, 1465, 1356, 1267, 1188, 1082, 776, 695, 623 cm⁻¹; ¹H NMR (600 MHz, DMSO- d_6 +HClO₄): δ = 1.35 (t, *J* = 7.5 Hz, 3H, CH₃), 1.42 (t, *J* = 7.1 Hz, 3H, CH₃), 2.95-2.99 (m, 2H, CH₂), 4.50-4.54 (m, 2H, CH₂), 7.10 (d, *J* = 8.6 Hz, 1H, ArH), 7.61 (d, *J* = 2.6 Hz, 1H, ArH), 7.63 (d, *J* = 2.5 Hz, 1H, ArH), 8.62 (d, *J* = 9.2 Hz, 1H, ArH), 8.88 (s, 1H, ArH), 9.19 (d, *J* = 9.2 Hz, 1H, ArH), 9.57 (s, 1H, ArH), 9.81(s, 1H, ArH); ¹³C NMR (150 MHz, DMSO- d_6 +HClO₄): δ = 14.0, 14.3, 25.6, 63.5, 119.7, 123.7, 124.8, 124.9, 127.1, 130.5, 131.4, 135.0, 137.1, 137.6, 140.8, 141.4, 142.4, 142.6, 156.5, 163.3, 190.0. HRMS (ESI-TOF, [M-ClO₄⁻]⁺): calcd for C₂₁H₁₉ClNO₄⁺, 384.0997; found, 384.0996.

3-(5-Chloro-2-hydroxybenzoyl)-1-(methoxycarbonyl)quinolizin-5-ium (4i)

Yellow solid; Mp: > 300 °C; IR (KBr): 3439, 2926, 2025, 1735, 1654, 1637, 1470, 1426, 1341, 1280, 1266, 1102, 1002, 798, 780, 625 cm⁻¹; ¹H NMR (600 MHz, DMSO-*d*₆+HClO₄): δ = 4.02 (s, 3H, CH₃), 7.08 (d, *J* = 9.4 Hz, 1H, ArH), 7.59 (s, 1H, ArH), 7.60 (s, 1H, ArH), 8.28 (t, *J* = 6.8 Hz, 1H, ArH), 8.64 (t, *J* = 7.9 Hz, 1H, ArH), 8.90 (s, 1H, ArH), 9.25 (d, *J* = 8.9 Hz, 1H, ArH), 9.63 (d, *J* = 6.6 Hz, 1H, ArH), 9.92 (s, 1H, ArH) ; ¹³C NMR (150 MHz, DMSO-*d*₆+HClO₄): δ = 54.3, 119.7, 123.8, 124.6, 125.4, 125.5, 126.9, 130.6, 131.5, 135.1, 138.1, 140.2, 141.5, 142.3, 142.8, 156.6, 163.7, 189.9. HRMS (ESI-TOF, [M-ClO₄⁻]⁺): calcd for C₁₈H₁₃ClNO₄⁺, 342.0528; found, 342.0529.

1-Acetyl-3-(5-chloro-2-hydroxybenzoyl)quinolizin-5-ium (4j)

Yellow solid; Mp: 138.8–139.4 °C; IR (KBr): 3433, 2923, 2022, 1694, 1632, 1510, 1472, 1359, 1343, 1284, 1208, 1176, 1097, 784, 697, 622 cm⁻¹; ¹H NMR (600 MHz,

DMSO- d_6 +HClO₄): δ = 2.82 (s, 3H, CH₃), 7.08 (d, J = 8.5 Hz, 1H, ArH), 7.59 (d, J = 7.9 Hz, 1H, ArH), 7.60 (s, 1H, ArH), 8.24 (t, J = 6.9 Hz, 1H, ArH), 8.59 (t, J = 7.8 Hz, 1H, ArH), 8.94 (s, 1H, ArH), 8.95 (s, 1H, ArH), 9.59 (d, J = 6.7 Hz, 1H, ArH), 9.82 (s, 1H, ArH); ¹³C NMR (150 MHz, DMSO- d_6 +HClO₄): δ = 30.5, 119.9, 123.8, 124.6, 125.3, 125.7, 130.7, 131.7, 134.1, 135.2, 136.3, 139.9, 141.3, 141.4, 141.8, 156.8, 190.1, 198.5. HRMS (ESI-TOF, [M-ClO₄-]⁺): calcd for C₁₈H₁₃ClNO₃⁺, 326.0578; found, 326.0576.

1-Acetyl-3-(5-chloro-2-hydroxybenzoyl)-7-methylquinolizin-5-ium (4k)

Yellow solid; Mp: 236.1-237.2 °C; IR (KBr): 3430, 2925, 1695, 1631, 1420, 1352, 1320, 1280, 1237, 1194, 1121, 1076, 824, 777, 621 cm⁻¹; ¹H NMR (600 MHz, DMSO- d_6 +HClO₄): δ = 2.60 (s, 3H, CH₃), 2.85 (s, 3H, CH₃), 7.10 (t, J = 4.7 Hz, 1H, ArH), 7.62 (d, J = 2.3 Hz, 2H, ArH), 8.51 (d, J = 9.0 Hz, 1H, ArH), 8.89 (d, J = 9.1 Hz, 1H, ArH), 8.93 (s, 1H, ArH), 9.51 (s, 1H, ArH), 9.68 (s, 1H, ArH) ; ¹³C NMR (150 MHz, DMSO- d_6 +HClO₄): δ = 18.4, 30.5, 119.8, 123.8, 124.8, 125.0, 130.6, 131.7, 134.0, 135.1, 135.4, 136.1, 138.0, 139.8, 141.3, 143.3, 156.7, 190.1, 198.5. HRMS (ESI-TOF, [M-ClO₄⁻]⁺): calcd for C₁₉H₁₅ClNO₃⁺, 340.0735; found, 340.0732.

3-(5-Chloro-2-hydroxybenzoyl)-1-cyanoquinolizin-5-ium (41)

Yellow solid; Mp: > 300 °C; IR (KBr): 3440, 2199, 1637, 1472, 1438, 1402, 1351, 1289, 1213, 1121, 1097, 848, 787, 702, 625 cm⁻¹; ¹H NMR (600 MHz, DMSO- d_6 +HClO₄): δ = 7.10 (d, J = 8.8 Hz, 1H, ArH), 7.60-7.63 (m, 1H, ArH), 7.64 (d, J = 2.6 Hz, 1H, ArH), 8.39-8.41 (m, 1H, ArH), 8.76 (t, J = 2.6 Hz, 2H, ArH), 9.30 (s, 1H, ArH), 9.70 (d, J = 6.7 Hz, 1H, ArH), 10.03 (s, 1H, ArH) ; ¹³C NMR (150 MHz, DMSO- d_6 +HClO₄): δ = 110.6, 113.9, 119.9, 123.8, 124.4, 125.3, 126.3, 130.6, 132.0, 135.3, 140.5, 142.7, 142.8, 142.9, 143.0, 156.8, 189.1. HRMS (ESI-TOF, [M-ClO₄⁻]⁺): calcd for C₁₇H₁₀ClN₂O₂⁺, 309.0425; found, 309.0421.

3-(5-Bromo-2-hydroxybenzoyl)-1-(ethoxycarbonyl) quinolizin-5-ium (4m)

Yellow solid; Mp: 164.0–164.9 °C; IR (KBr): 3439, 2923, 1729, 1663, 1630, 1594, 1416, 1389, 1278, 1259, 1094, 982, 781, 662, 624 cm⁻¹; ¹H NMR (600 MHz, DMSO- d_{δ} +HClO₄): δ

= 1.40 (t, J = 7.1 Hz, 3H, CH₃), 4.49-4.53 (m, 2H, CH₂), 7.04 (d, J = 8.9 Hz, 1H, ArH), 7.71 (s, 1H, ArH), 7.73(d, J = 2.4 Hz, 1H, ArH), 8.29 (t, J = 7.0 Hz, 1H, ArH), 8.65 (t, J = 8.2 Hz, 1H, ArH), 8.91 (s, 1H, ArH), 9.25 (d, J = 9.0 Hz, 1H, ArH), 9.64 (d, J = 6.7 Hz, 1H, ArH), 9.92 (s, 1H, ArH) ; ¹³C NMR (150 MHz, DMSO- d_6 +HClO₄): δ = 14.3, 63.6, 111.1, 120.2, 125.2, 125.4, 125.5, 127.2, 131.5, 133.5, 137.9, 138.0, 140.2, 141.5, 142.3, 142.8, 157.0, 163.2, 189.9. HRMS (ESI-TOF, [M-ClO₄⁻]⁺): calcd for C₁₉H₁₅BrNO₄⁺, 400.0179; found, 400.0177.

3-(5-Bromo-2-hydroxybenzoyl)-1-(ethoxycarbonyl)-7-ethylquinolizin-5-ium (4n)

Yellow solid; Mp: 110.1–110.8 °C; IR (KBr): 3433, 2920, 1710, 1630, 1611, 1587, 1515, 1427, 1330, 1311, 1246, 1221, 1093, 989, 847, 772, 624 cm⁻¹; ¹H NMR (600 MHz, DMSO- d_6 +HClO₄): δ = 1.35 (t, J = 7.5 Hz, 3H, CH₃), 1.41 (t, J = 7.1 Hz, 3H, CH₃), 2.96 (t, J = 7.5 Hz, 2H, CH₂), 4.51 (t, J = 7.1 Hz, 2H, CH₂),7.05 (d, J = 8.8 Hz, 1H, ArH), 7.71 (d, J = 2.2 Hz, 1H, ArH), 7.72-7.74 (m, 1H, ArH), 8.61 (d, J = 9.2 Hz, 1H, ArH), 8.87 (s, 1H, ArH), 9.19 (d, J = 9.2 Hz, 1H, ArH), 9.56 (s, 1H, ArH), 9.80 (s, 1H, ArH); ¹³C NMR (150 MHz, DMSO- d_6 +HClO₄): δ = 13.9, 14.3, 25.6, 63.5, 111.1, 120.1, 124.9, 125.3, 127.0, 131.4, 133.3, 137.1, 137.6, 137.8, 140.8, 141.5, 142.4, 142.6, 156.8, 163.2, 189.9. HRMS (ESI-TOF, [M-ClO₄⁻]⁺): calcd for C₂₁H₁₉BrNO₄⁺, 428.0492; found, 428.0490.

3-(5-Bromo-2-hydroxybenzoyl)-1-(methoxycarbonyl)quinolizin-5-ium (40)

Yellow solid; Mp: 172.7–173.8 °C; IR (KBr): 3439, 2959, 1734, 1655, 1621, 1470, 1339, 1280, 1265, 1225, 1101, 1026, 798, 687, 624 cm⁻¹; ¹H NMR (600 MHz, DMSO-*d*₆+HClO₄): δ = 4.05 (s, 3H, CH₃), 7.06 (t, *J* = 1.6 Hz, 1H, ArH), 7.73 (s, 1H, ArH), 7.74 (d, *J* = 2.5 Hz, 1H, ArH), 8.31-8.33 (m, 1H, ArH), 8.68 (t, *J* = 8.5 Hz, 1H, ArH), 8.92 (d, *J* = 1.3 Hz, 1H, ArH), 9.26 (d, *J* = 9.0 Hz, 1H, ArH), 9.67 (d, *J* = 6.7 Hz, 1H, ArH), 9.95 (s, 1H, ArH); ¹³C NMR (150 MHz, DMSO-*d*₆+HClO₄): δ = 54.3, 111.2, 120.2, 125.3, 125.4, 125.5, 127.0, 131.5, 133.5, 137.9, 138.2, 140.3, 141.5, 142.3, 142.8, 157.0, 163.7, 189.8. HRMS (ESI-TOF, [M-ClO₄⁻]⁺): calcd for C₁₈H₁₃BrNO₄⁺, 386.0022; found, 386.0020.

1-Acetyl-3-(5-bromo-2-hydroxybenzoyl)quinolizin-5-ium (4p)

Yellow solid; Mp: >300 °C; IR (KBr): 3440, 2924, 1698, 1625, 1599, 1469, 1439, 1352, 1291, 1210, 1121, 1107, 1092, 790, 699, 636, 624 cm⁻¹; ¹H NMR (600 MHz, DMSO- d_6 +HClO₄): δ = 2.86 (s, 3H, CH₃), 7.06 (d, J = 8.4 Hz, 1H, ArH), 7.75 (s, 1H, ArH), 7.76 (s, 1H, ArH), 8.30 (t, J = 6.8 Hz, 1H, ArH), 8.64 (t, J = 7.9 Hz, 1H, ArH), 8.97 (d, J = 8.9 Hz, 1H, ArH), 9.01 (s, 1H, ArH), 9.63 (d, J = 6.6 Hz, 1H, ArH), 9.88 (s, 1H, ArH), 10.97 (s, 1H, ArOH); ¹³C NMR (150 MHz, DMSO- d_6 +HClO₄): δ = 30.7, 111.2, 120.3, 125.3, 125.4, 125.7, 131.8, 133.5, 134.1, 136.3, 138.0, 140.0, 141.3, 141.4, 141.9, 157.2, 190.0, 198.6. HRMS (ESI-TOF, [M-ClO₄⁻]⁺): calcd for C₁₈H₁₃BrNO₃⁺, 370.0073; found, 370.0073.

3-(5-Bromo-2-hydroxybenzoyl)-1-cyanoquinolizin-5-ium (4q)

Yellow solid; Mp: >300 °C; IR (KBr): 3443, 2201, 1637, 1605, 1498, 1469, 1351, 1289, 1199, 1121, 1095, 809, 698, 625 cm⁻¹; ¹H NMR (600 MHz, DMSO- d_6 +HClO₄): δ = 6.95 (s, 1H, ArH), 7.61 (d, *J* = 6.5 Hz, 1H, ArH), 7.63 (d, *J* = 6.7 Hz, 1H, ArH), 8.28 (s, 1H, ArH), 8.65 (s, 2H, ArH), 9.18 (s, 1H, ArH), 9.59 (s, 1H, ArH), 9.91 (s, 1H, ArH); ¹³C NMR (150 MHz, DMSO- d_6 +HClO₄): δ = 110.6, 111.2, 113.9, 120.3, 125.0, 125.3, 126.3, 132.0, 133.4, 138.1, 140.4, 142.6, 142.8, 142.9, 143.1, 157.2, 189.0. HRMS (ESI-TOF, [M-ClO₄⁻]⁺): calcd for C₁₇H₁₀BrN₂O₂⁺, 352.9920; found, 352.9917.

1-(Ethoxycarbonyl)-3-(2-hydroxy-5-nitrobenzoyl)quinolizin-5-ium (4r)

Yellow solid; Mp: 118.5–119.3 °C; IR (KBr): 3440, 2923, 1729, 1676, 1636, 1496, 1338, 1252, 1115, 1035, 984, 802, 736, 634 cm⁻¹; ¹H NMR (600 MHz, DMSO- d_6 +HClO₄): δ = 1.40 (t, *J* = 9.1 Hz, 3H, CH₃), 4.49-4.52 (m, 2H, CH₂), 7.24 (d, *J* = 8.8 Hz, 1H, ArH), 8.29 (t, *J* = 6.9 Hz, 1H, ArH), 8.42 (d, *J* = 2.6 Hz, 1H, ArH), 8.68 (s, 1H, ArH), 8.66 (t, *J* = 8.0 Hz, 1H, ArH), 8.94 (s, 1H, ArH), 9.25 (d, *J* = 8.9 Hz, 1H, ArH), 9.60 (d, *J* = 6.7 Hz, 1H, ArH), 9.94(s, 1H, ArH); ¹³C NMR (150 MHz, DMSO- d_6 +HClO₄): δ = 14.3, 63.6, 118.5, 123.8, 125.4, 125.6, 127.3, 127.8, 130.2, 131.1, 137.6, 140.2, 140.3, 141.7, 142.4, 143.3, 163.0, 163.2, 189.2. HRMS (ESI-TOF, [M-ClO₄⁻]⁺): calcd for C₁₉H₁₅N₂O₆⁺, 367.0925; found, 367.0922.

1-(Ethoxycarbonyl)-7-ethyl-3-(2-hydroxy-5-nitrobenzoyl)quinolizin-5-ium (4s)

Yellow solid; Mp: 169.3–170.2 °C; IR (KBr): 3439, 2925, 1732, 1664, 1632, 1613, 1591, 1523, 1433, 1338, 1315, 1247, 1228, 1097, 1083, 989, 852, 777, 624 cm⁻¹; ¹H NMR (600 MHz, DMSO- d_6 +HClO₄): δ = 1.34 (t, J = 7.5 Hz, 3H, CH₃), 1.42 (t, J = 7.1 Hz, 3H, CH₃), 2.96(d, J = 7.5 Hz, 2H, CH₂), 4.52(t, J = 7.1 Hz, 2H, CH₂), 7.26 (d, J = 9.7 Hz, 1H, ArH), 8.44 (d, J = 2.5 Hz, 1H, ArH), 8.45 (s, 1H, ArH), 8.63 (d, J = 9.2 Hz, 1H, ArH), 8.91 (s, 1H, ArH), 9.19 (d, J = 9.2 Hz, 1H, ArH), 9.52 (s, 1H, ArH), 9.82(s, 1H, ArH); ¹³C NMR (150 MHz, DMSO- d_6 +HClO₄): δ = 14.0, 14.3, 25.6, 63.6, 118.5, 123.9, 125.0, 127.2, 127.7, 130.1, 131.1, 136.7, 137.7, 140.2, 140.9, 141.5, 142.8, 142.8, 162.9, 163.2, 189.3. HRMS (ESI-TOF, [M-ClO₄-]⁺): calcd for C₂₁H₁₉N₂O₆⁺, 395.1238; found, 395.1235.

3-(2-Hydroxy-5-nitrobenzoyl)-1-(methoxycarbonyl)quinolizin-5-ium (4t)

Yellow solid; Mp: 122.8–123.6 °C; IR (KBr): 3439, 2923, 1729, 1658, 1634, 1621, 1515, 1437, 1357, 1336, 1292, 1263, 1147, 1121, 1102, 1027, 998, 805, 685, 624 cm⁻¹; ¹H NMR (600 MHz, DMSO- d_6 +HClO₄): δ = 4.05 (s, 3H, CH₃), 7.26 (d, J = 9.1 Hz, 1H, ArH), 8.33 (t, J = 6.9 Hz, 1H, ArH), 8.44-8.47 (m, 2H, ArH), 8.70 (t, J = 8.0 Hz, 1H, ArH), 8.96 (s, 1H, ArH), 9.26 (d, J = 8.9 Hz, 1H, ArH), 9.63 (d, J = 6.7 Hz, 1H, ArH), 9.98(s, 1H, ArH); ¹³C NMR (150 MHz, DMSO- d_6 +HClO₄): δ = 54.4, 118.5, 123.9, 125.5, 125.6, 127.1, 127.9, 130.2, 131.2, 137.8, 140.2, 140.4, 141.7, 142.4, 143.3, 163.0, 163.7, 189.2. HRMS (ESI-TOF, [M-ClO₄-]⁺): calcd for C₁₈H₁₃N₂O₆⁺, 353.0768; found, 353.0767.

1-Acetyl-3-(2-hydroxy-5-nitrobenzoyl)quinolizin-5-ium (4u)

Yellow solid; Mp: 242.8-243.6 °C; IR (KBr): 3439, 2924, 1703, 1654, 1630, 1475, 1344, 1289, 1247, 1206, 1121, 1094, 906, 782, 747, 624 cm⁻¹; ¹H NMR (600 MHz, DMSO- d_6 +HClO₄): δ = 2.84 (s, 3H, CH₃), 7.24 (d, J = 9.0 Hz, 1H, ArH), 8.27 (t, J = 6.9 Hz, 1H, ArH), 8.42 (d, J = 2.8 Hz, 1H, ArH), 8.43-8.45 (m, 1H, ArH), 8.62 (t, J = 8.0 Hz, 1H, ArH), 8.95 (d, J = 8.9 Hz, 1H, ArH), 9.0 (s, 1H, ArH), 9.57 (d, J = 6.7 Hz, 1H, ArH), 9.87(s, 1H, ArH); ¹³C NMR (150 MHz, DMSO- d_6 +HClO₄): δ = 30.6, 118.6, 123.9, 125.4, 125.8, 127.8, 130.2, 131.3, 134.3, 134.3, 135.9, 140.0, 140.2, 141.5, 142.3, 163.1, 189.4, 198.6. HRMS (ESI-TOF, [M-ClO₄⁻]⁺): calcd for C₁₈H₁₃N₂O₅⁺, 337.0819; found, 337.0818.

1-Cyano-3-(2-hydroxy-5-nitrobenzoyl)quinolizin-5-ium (4v)

Yellow solid; Mp: >300 °C; IR (KBr): 3432, 2245, 1683, 1634, 1525, 1498, 1438, 1339, 1296, 1261, 1121, 1102, 898, 837, 627 cm⁻¹; ¹H NMR (600 MHz, DMSO-*d*₆+HClO₄): δ = 7.25-7.26 (m, 1H, ArH), 8.40-8.43 (m, 2H, ArH), 8.45-8.46 (m, 1H, ArH), 8.76 (s, 1H, ArH), 8.78 (d, *J* = 3.4 Hz, 1H, ArH), 9.37 (d, *J* = 1.1 Hz, 1H, ArH), 9.69 (d, *J* = 6.7 Hz, 1H, ArH), 10.07(s, 1H, ArH); ¹³C NMR (150 MHz, DMSO-*d*₆+HClO₄): δ = 110.6, 113.9, 118.7, 123.6, 125.3, 126.4, 127.9, 130.3, 131.6, 140.3, 140.5, 140.5, 142.6, 143.2, 143.2, 163.2, 188.6. HRMS (ESI-TOF, [M-ClO₄⁻]⁺): calcd for C₁₇H₁₀N₃O₄⁺, 320.0666; found, 320.0660.

1-(Ethoxycarbonyl)-3-(2-hydroxybenzoyl) quinolizin-5-ium (4w)

Yellow solid; Mp: 170.3–171.1 °C; IR (KBr): 3439, 2925, 1730, 1647, 1635, 1620, 1487, 1342, 1258, 1222, 1156, 1104, 1078, 769, 665, 624 cm⁻¹; ¹H NMR (600 MHz, DMSO- d_6 +HClO₄): δ = 1.42 (t, J = 7.1 Hz, 3H, CH₃), 4.51-4.54 (m, 2H, CH₂), 7.05-7.10 (m, 2H, ArH), 7.60-7.66 (m, 2H, ArH), 8.31 (t, J = 7.0 Hz, 1H, ArH), 8.66-8.68 (m, 1H, ArH), 8.93 (s, 1H, ArH), 9.27 (d, J = 8.9 Hz, 1H, ArH), 9.66 (d, J = 6.5 Hz, 1H, ArH), 9.93 (s, 1H, ArH) ; ¹³C NMR (150 MHz, DMSO- d_6 +HClO₄): δ = 14.4, 63.5, 117.9, 120.3, 122.9, 125.3, 125.5, 127.1, 132.0, 132.0, 136.2, 138.3, 140.2, 141.3, 142.2, 142.5, 158.4, 163.3, 191.4. HRMS (ESI-TOF, [M-ClO₄⁻]⁺): calcd for C₁₉H₁₆NO₄⁺, 322.1074; found, 322.1071.

1-Cyano-3-(2-hydroxybenzoyl)quinolizin-5-ium (4x)

Yellow solid; Mp: >300 °C; IR (KBr): 3439, 2197, 1637, 1611, 1485, 1436, 1351, 1319, 1287, 1242, 1174, 1121, 1096, 810, 705, 625 cm⁻¹; ¹H NMR (600 MHz, DMSO- d_6 +HClO₄): δ = 7.06 (d, J = 7.1 Hz, 1H, ArH), 7.09 (d, J = 8.3 Hz, 1H, ArH), 7.61 (d, J = 7.4 Hz, 1H, ArH), 7.64 (d, J = 8.0 Hz, 1H, ArH), 8.39 (s, 1H, ArH), 8.76 (s, 2H, ArH), 9.28 (s, 1H, ArH), 9.70 (d, J = 6.1 Hz, 1H, ArH), 10.01 (s, 1H, ArH); ¹³C NMR (150 MHz, DMSO- d_6 +HClO₄): δ = 110.6, 113.9, 118.0, 120.3, 122.7, 125.2, 126.3, 132.1, 132.6, 136.4, 140.4, 142.5, 142.8, 142.8, 142.9, 158.5, 190.5. HRMS (ESI-TOF, [M-ClO₄⁻]⁺): calcd for C₁₇H₁₁N₂O₂⁺, 275.0815; found, 275.0814.

1-Cyano-3-(2-hydroxy-5-methylbenzoyl)quinolizin-5-ium (4y)

Yellow solid; Mp: >300 °C; IR (KBr): 3438, 2925, 2022, 1637, 1489, 1435, 1353, 1289, 1248, 1196, 1173, 1094, 919, 790, 678, 625 cm⁻¹; ¹H NMR (600 MHz, DMSO-*d*₆+HClO₄): δ = 2.26 (s, 3H, CH₃), 6.96 (d, *J* = 9.0 Hz, 1H, ArH), 7.41 (d, *J* = 7.0 Hz, 2H, ArH), 8.33-8.36 (m, 1H, ArH), 8.70 (s, 1H, ArH), 8.72 (d, *J* =6.4 Hz, 1H, ArH), 9.22 (s, 1H, ArH), 9.66 (d, *J* = 6.7 Hz, 1H, ArH), 9.96(s, 1H, ArH); ¹³C NMR (150 MHz, DMSO-*d*₆+HClO₄): δ = 20.2, 110.6, 113.9, 117.9, 122.2, 125.2, 126.2, 129.2, 131.8, 132.6, 137.3, 140.3, 142.4, 142.6, 142.7, 142.9, 156.4, 190.6. HRMS (ESI-TOF, [M-ClO₄⁻]⁺): calcd for C₁₈H₁₃N₂O₂⁺, 289.0972; found, 289.0970.

1-Acetyl-3-(2-hydroxy-5-methylbenzoyl)quinolizin-5-ium (4z)

Yellow solid; Mp: 206.5–207.3 °C; IR (KBr): 3432, 2925, 1702, 1634, 1488, 1460, 1438, 1356, 1294, 1251, 1177, 1121, 1094, 785, 677, 624 cm⁻¹; ¹H NMR (600 MHz, DMSO- d_6 +HClO₄): δ = 2.34 (s, 3H, CH₃), 2.89 (s, 3H, CH₃), 7.04 (d, J = 8.4 Hz, 1H, ArH), 7.47-7.49 (m, 1H, ArH), 7.52 (s, 1H, ArH), 8.31 (t, J = 6.5 Hz, 1H, ArH), 8.64-8.66 (m, 1H, ArH), 9.02 (s, 1H, ArH), 9.04 (s, 1H, ArH), 9.65 (d, J = 6.7 Hz, 1H, ArH), 9.87(s, 1H, ArH); ¹³C NMR (150 MHz, DMSO- d_6 +HClO₄): δ = 20.2, 30.5, 117.9, 122.3, 125.2, 125.6, 129.2, 131.9, 132.4, 134.0, 136.7, 137.2, 139.9, 141.1, 141.3, 141.3, 156.6, 191.7, 198.5. HRMS (ESI-TOF, [M-ClO₄⁻]⁺): calcd for C₁₉H₁₆NO₃⁺, 306.1125; found, 306.1122.

1-Cyano-3-(2-hydroxy-4,6-dimethylbenzoyl)quinolizin-5-ium (4a')

Yellow solid; Mp: 283.5–284.5 °C; IR (KBr): 3437, 2198, 1643, 1563, 1468, 1399, 1305, 1256, 1222, 1109, 837, 788, 624 cm⁻¹; ¹H NMR (600 MHz, DMSO- d_6 +HClO₄): δ = 2.19 (s, 3H, CH₃), 2.31 (s, 3H, CH₃), 6.68 (s, 1H, ArH), 6.73 (s, 1H, ArH), 8.34-8.37 (m, 1H, ArH), 8.74 (d, *J* = 4.1 Hz, 2H, ArH), 9.18 (d, *J* = 1.3 Hz, 1H, ArH), 9.77 (d, *J* = 6.8 Hz, 1H, ArH), 9.90(s, 1H, ArH); ¹³C NMR (150 MHz, DMSO- d_6 +HClO₄): δ = 19.6, 21.6, 111.2, 113.8, 114.8, 121.3, 123.5, 125.2, 126.2, 132.2, 138.6, 140.6, 141.8, 142.9, 143.2, 143.2, 143.2, 156.4, 192.0. HRMS (ESI-TOF, [M-ClO₄⁻]⁺): calcd for C₁₉H₁₅N₂O₂⁺, 303.1128; found,

303.1120.

1-Acetyl-3-(2-hydroxy-4,6-dimethylbenzoyl)quinolizin-5-ium (4b')

Yellow solid; Mp: 226.5–227.5 °C; IR (KBr): 3430, 1701, 1635, 1553, 1473, 1400, 1375, 1256, 1163, 1120, 1008, 804, 665, 625 cm⁻¹; ¹H NMR (600 MHz, DMSO- d_6 +HClO₄): δ = 2.21 (s, 3H, CH₃), 2.31 (s, 3H, CH₃), 2.86 (s, 3H, CH₃), 6.68 (s, 1H, ArH), 6.73 (s, 1H, ArH), 8.23-8.25 (m, 1H, ArH), 8.59-8.62 (m, 1H, ArH), 8.94-8.97 (m, 2H, ArH), 9.69 (d, J = 6.8 Hz, 1H, ArH), 9.71(s, 1H, ArH); ¹³C NMR (150 MHz, DMSO- d_6 +HClO₄): δ = 19.6, 21.6, 30.5, 114.8, 121.6, 123.4, 125.3, 125.7, 131.9, 134.6, 135.4, 138.4, 140.2, 141.4, 141.6, 142.0, 142.9, 156.3, 192.9, 198.5. HRMS (ESI-TOF, [M-ClO₄⁻]⁺): calcd for C₂₀H₁₈NO₃⁺, 320.1281; found, 320.1273.

3-(5-Chloro-2-hydroxy-4-methylbenzoyl)-1-cyanoquinolizin-5-ium (4c')

Yellow solid; Mp: >300 °C; IR (KBr): 3439, 2194, 1637, 1561, 1483, 1401, 1325, 1246, 1210, 1122, 1108, 824, 785, 625 cm⁻¹; ¹H NMR (600 MHz, DMSO- d_6 +HClO₄): δ = 2.37 (s, 3H, CH₃), 7.04 (s, 1H, ArH), 7.60 (s, 1H, ArH), 8.36-8.39 (m, 1H, ArH), 8.72-8.75 (m, 2H, ArH), 9.26 (d, *J* = 1.1 Hz,1H, ArH), 9.66 (d, *J* = 6.7 Hz, 1H, ArH), 9.99(s, 1H, ArH); ¹³C NMR (150 MHz, DMSO- d_6 +HClO₄): δ = 20.6, 110.6, 113.9, 120.4, 122.1, 124.5, 125.2, 126.3, 131.3, 132.3, 140.3, 142.6, 142.7, 142.8, 143.0, 144.2, 157.0, 188.9. HRMS (ESI-TOF, [M-ClO₄-]⁺): calcd for C₁₈H₁₂ClN₂O₂⁺, 323.0582; found, 323.0573.

3-(3,5-Dichloro-2-hydroxybenzoyl)-1-(ethoxycarbonyl)quinolizin-5-ium (4d')

Yellow solid; Mp: >300 °C; IR (KBr): 3432, 3065, 1709, 1656, 1640, 1462, 1394, 1318, 1278, 1237, 1088, 1035, 919, 872, 797, 624 cm-1; ¹H NMR (600 MHz, DMSO- d_6 +HClO₄): δ = 1.41 (t, *J* = 7.1 Hz, 3H, CH₃), 4.49-4.53 (m, 2H, CH₂), 7.61 (d, 1H, *J* = 2.6 Hz, ArH), 7.92 (d, *J* = 2.5 Hz, 1H, ArH), 8.28-8.31 (m, 1H, ArH), 8.65-8.68 (m, 1H, ArH), 8.93 (d, *J* = 1.5 Hz, 1H, ArH), 9.27 (d, *J* = 8.9 Hz, 1H, ArH), 9.58 (d, *J* = 6.7 Hz, 1H, ArH), 9.88 (s, 1H, ArH) ; ¹³C NMR (150 MHz, DMSO- d_6 +HClO₄): δ = 14.3, 63.6, 124.3, 125.5, 125.5, 126.4, 127.5, 129.8, 129.8, 130.9, 134.4, 137.6, 140.3, 141.7, 142.3, 143.2, 152.5, 163.1, 190.0.

1-Cyano-3-(3,5-dichloro-2-hydroxybenzoyl)quinolizin-5-ium (4e')

Yellow solid; Mp: >300 °C; IR (KBr): 3440, 2197, 1637, 1600, 1560, 1483, 1401, 1325, 1217, 1189, 1103, 875, 848, 767, 700 cm-1; ¹H NMR (600 MHz, DMSO-*d*₆+HClO₄): δ = 7.53 (d, *J* = 2.5 Hz, 1H, ArH), 7.87 (d, *J* = 2.5 Hz, 1H, ArH), 8.34-8.36 (m, 1H, ArH), 8.73 (d, *J* = 4.2 Hz, 2H, ArH), 9.22 (d, *J* = 1.0 Hz, 1H, ArH), 9.62 (d, *J* = 6.6 Hz, 1H, ArH), 9.95 (s, 1H, ArH) ; ¹³C NMR (150 MHz, DMSO-*d*₆+HClO₄): δ = 111.0, 113.7, 124.5, 125.2, 126.2, 126.4, 129.7, 129.7, 131.3, 134.5, 134.5, 140.5, 142.1, 143.0, 143.1, 152.5, 189.2. HRMS (ESI-TOF, [M-ClO₄-]⁺): calcd for C₁₇H₉Cl₂N₂O₂⁺, 343.0036; found, 343.0031.

X-ray Structure and Data² of 4a.

Figure S1. X-Ray crystal structure of 4a

	Crystal data and structure refinement for 4	able S1. Crysta	'ab	ľ
--	---	-----------------	-----	---

Table S1. Crystal data and structure refinement for 4a		or 4a
Identification code	1	
Empirical formula	C19 H15 Cl F N O8	
Formula weight	439.77	
Temperature	296.15 K	
Wavelength	0.71073 Å	
Crystal system	Monoclinic	
Space group	P 1 21/n 1	
Unit cell dimensions Volume	a = 8.1097(12) Å b = 14.3670(19) Å c = 16.622(2) Å $1916.9(4) \text{ Å}^3$	$\alpha = 90^{\circ}.$ $\beta = 98.194(2)^{\circ}.$ $\gamma = 90^{\circ}.$
	4	
Density (calculated)	1.524 Mg/m ³	
Absorption coefficient	0.258 mm ⁻¹	
F(000)	904	
Theta range for data collection	$2.660 \text{ to } 27.867^{\circ}.$	
Index ranges	-10<=h<=10, -18<=k<=1	5, -21<=l<=20
Reflections collected	11596	
Independent reflections	4491 [$\mathbf{R}(int) = 0.0209$]	
Completeness to theta = 25.242°	99.9 %	
Absorption correction	Semi-empirical from equ	ivalents
Max. and min. transmission	0.7456 and 0.6873	
Refinement method	Full-matrix least-squares on F ²	
C_{1}	1 034	
Final R indices [1\2sigma(1)]	$R_1 = 0.0/31 \text{ w}R_2 = 0.10$)61
R indices (all data)	R1 = 0.0628 wR2 = 0.10	03
Extinction coefficient	n/2	
L'Anneuon coefficient	11/a	
Largest diff. peak and note	$0.256 \text{ and } -0.467 \text{ e.}\text{Å}^{-3}$	

Table S2. Bond lengths [A] and angles [deg] for 4a

Cl(1)-O(1)	1.4236(16)	C(1)-C(2)-H(2)	120.5
Cl(1)-O(2)	1.4209(17)	C(1)-C(2)-C(3)	119.03(18)
Cl(1)-O(3)	1.4207(17)	C(3)-C(2)-H(2)	120.5
Cl(1)-O(4)	1.398(2)	C(2)-C(3)-C(4)	121.13(16)
F(1)-C(1)	1.362(2)	C(2)-C(3)-C(17)	118.73(17)
O(5)-C(4)	1.228(2)	C(17)-C(3)-C(4)	120.12(17)
O(6)-C(9)	1.319(2)	O(5)-C(4)-C(3)	122.24(17)
O(6)-C(10)	1.455(2)	O(5)-C(4)-C(5)	117.98(16)
O(7)-C(9)	1.197(2)	C(3)-C(4)-C(5)	119.78(16)
O(8)-H(8)	0.82	C(6)-C(5)-C(4)	118.47(16)
O(8)-C(17)	1.345(3)	C(6)-C(5)-C(12)	119.01(16)
N(1)-C(6)	1.379(2)	C(12)-C(5)-C(4)	122.43(15)
N(1)-C(7)	1.387(2)	N(1)-C(6)-H(6)	119.5
N(1)-C(16)	1.380(2)	C(5)-C(6)-N(1)	120.91(16)
C(1)-C(2)	1.361(3)	C(5)-C(6)-H(6)	119.5
C(1)-C(19)	1.378(3)	N(1)-C(7)-C(8)	116.75(15)
C(2)-H(2)	0.93	N(1)-C(7)-C(13)	117.23(16)
C(2)-C(3)	1.405(3)	C(13)-C(7)-C(8)	125.99(16)
C(3)-C(4)	1.464(3)	C(7)-C(8)-C(9)	121.14(15)
C(3)-C(17)	1.405(2)	C(12)-C(8)-C(7)	120.33(16)
C(4)-C(5)	1.501(2)	C(12)-C(8)-C(9)	118.53(16)
C(5)-C(6)	1.352(2)	O(6)-C(9)-C(8)	110.75(15)
C(5)-C(12)	1.407(2)	O(7)-C(9)-O(6)	123.78(18)
C(6)-H(6)	0.93	O(7)-C(9)-C(8)	125.47(18)
C(7)-C(8)	1.428(2)	O(6)-C(10)-H(10A)	110.3
C(7)-C(13)	1.402(3)	O(6)-C(10)-H(10B)	110.3
C(8)-C(9)	1.503(2)	O(6)-C(10)-C(11)	107.1(2)
C(8)-C(12)	1.365(2)	H(10A)-C(10)-H(10B)	108.5
C(10)-H(10A)	0.97	C(11)-C(10)-H(10A)	110.3
C(10)-H(10B)	0.97	C(11)-C(10)-H(10B)	110.3
C(10)-C(11)	1.488(3)	C(10)-C(11)-H(11A)	109.5
C(11)-H(11A)	0.96	C(10)-C(11)-H(11B)	109.5
C(11)-H(11B)	0.96	C(10)-C(11)-H(11C)	109.5
C(11)-H(11C)	0.96	H(11A)-C(11)-H(11B)	109.5

C(12)-H(12)	0.93	H(11A)-C(11)-H(11C)	109.5
C(13)-H(13)	0.93	H(11B)-C(11)-H(11C)	109.5
C(13)-C(14)	1.360(3)	C(5)-C(12)-H(12)	119.5
C(14)-H(14)	0.93	C(8)-C(12)-C(5)	120.93(16)
C(14)-C(15)	1.393(3)	C(8)-C(12)-H(12)	119.5
C(15)-H(15)	0.93	C(7)-C(13)-H(13)	119.3
C(15)-C(16)	1.342(3)	C(14)-C(13)-C(7)	121.35(19)
C(16)-H(16)	0.93	C(14)-C(13)-H(13)	119.3
C(17)-C(18)	1.392(3)	C(13)-C(14)-H(14)	120.1
C(18)-H(18)	0.93	C(13)-C(14)-C(15)	119.87(19)
C(18)-C(19)	1.370(3)	C(15)-C(14)-H(14)	120.1
C(19)-H(19)	0.93	C(14)-C(15)-H(15)	120.2
O(2)-Cl(1)-O(1)	109.03(10)	C(16)-C(15)-C(14)	119.69(19)
O(3)-Cl(1)-O(1)	109.07(12)	C(16)-C(15)-H(15)	120.2
O(3)-Cl(1)-O(2)	108.68(12)	N(1)-C(16)-H(16)	119.4
O(4)-Cl(1)-O(1)	109.14(15)	C(15)-C(16)-N(1)	121.10(19)
O(4)-Cl(1)-O(2)	110.89(16)	C(15)-C(16)-H(16)	119.4
O(4)-Cl(1)-O(3)	110.00(15)	O(8)-C(17)-C(3)	122.85(18)
C(9)-O(6)-C(10)	117.01(16)	O(8)-C(17)-C(18)	117.12(18)
C(17)-O(8)-H(8)	109.5	C(18)-C(17)-C(3)	120.02(19)
C(6)-N(1)-C(7)	122.04(15)	C(17)-C(18)-H(18)	119.7
C(6)-N(1)-C(16)	117.23(15)	C(19)-C(18)-C(17)	120.5(2)
C(16)-N(1)-C(7)	120.73(15)	C(19)-C(18)-H(18)	119.7
F(1)-C(1)-C(19)	118.62(18)	C(1)-C(19)-H(19)	120.6
C(2)-C(1)-F(1)	118.56(19)	C(18)-C(19)-C(1)	118.86(19)
C(2)-C(1)-C(19)	122.8(2)	C(18)-C(19)-H(19)	120.6

Figure S2. ¹H NMR (600 MHz, DMSO-*d*₆) spectra of compound 3a

Figure S4. ¹⁹F NMR (564 MHz, DMSO-*d*₆) spectra of compound 3a

Figure S5. ¹H NMR (600 MHz, DMSO-*d*₆) spectra of compound **3b**

Figure S6. ¹³C NMR (150 MHz, DMSO-*d*₆) spectra of compound **3b**

Figure S7. ¹⁹F NMR (564 MHz, DMSO-*d*₆) spectra of compound **3b**

Figure S9. ¹³C NMR (150 MHz, DMSO- d_6) spectra of compound **3c**

DEPT135

Figure S10. ¹⁹F NMR (564 MHz, DMSO-*d*₆) spectra of compound **3c**

Figure S12. ¹³C NMR (150 MHz, DMSO-*d*₆) spectra of compound 3d

DEPT135

Figure S13. ¹⁹F NMR (564 MHz, DMSO-*d*₆) spectra of compound 3d

Figure S14. ¹H NMR (600 MHz, DMSO-*d*₆) spectra of compound 3e

DEPT135

Figure S15. ¹³C NMR (150 MHz, DMSO-*d*₆) spectra of compound 3e

Figure S16. ¹⁹F NMR (564 MHz, DMSO-*d*₆) spectra of compound **3e**

Figure S17. ¹H NMR (600 MHz, DMSO-*d*₆) spectra of compound 3f

Figure S18. ¹³C NMR (150 MHz, DMSO-*d*₆) spectra of compound 3f

Figure S20. ¹³C NMR (150 MHz, DMSO-*d*₆) spectra of compound 3g

Figure S21. ¹H NMR (600 MHz, DMSO-*d*₆) spectra of compound 3h

YUNNAN UNIVERSITY ASCEND AVIIIHD600 CLB-12 Dec25-2019-chenli C13CPD DMSO -178.46 139.67 139.35 136.23 132.95 127.07 124.17 123.24 121.98 118.56 116.28 - 107.30 -165.26 - 154.78 148.00 - 90.68 -14.94 62 59. 0000 \backslash ----200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 ppm

Figure S22. ¹³C NMR (150 MHz, DMSO-*d*₆) spectra of compound **3h**

Figure S23. ¹H NMR (600 MHz, DMSO-*d*₆) spectra of compound 3i

Figure S24. ¹³C NMR (150 MHz, DMSO-*d*₆) spectra of compound 3i

-124.21

Figure S27. ¹⁹F NMR (564 MHz, DMSO-*d*₆+HClO4) spectra of compound 4a

Figure S30. ¹⁹F NMR (564 MHz, DMSO-*d*₆+HClO₄) spectra of compound **4b**

Figure S31. ¹H NMR (600 MHz, DMSO-*d*₆+HClO₄) spectra of compound **4c**

Figure S33. ¹⁹F NMR (564 MHz, DMSO-*d*₆+HClO₄) spectra of compound 4c

Figure S39. ¹⁹F NMR (564 MHz, DMSO-*d*₆+HClO₄) spectra of compound **4e**

Figure S63. ¹H NMR (600 MHz, DMSO-*d*₆+HClO₄) spectra of compound 4q

Figure S64. ¹³C NMR (150 MHz, DMSO-*d*₆+HClO₄) spectra of compound 4q

S85

Figure S65. ¹H NMR (600 MHz, DMSO- d_6 +HClO₄) spectra of compound 4r

Figure S67. ¹H NMR (600 MHz, DMSO-*d*₆+HClO₄) spectra of compound 4s

Figure S69. ¹H NMR (600 MHz, DMSO-*d*₆+HClO₄) spectra of compound 4t

Figure S71. ¹H NMR (600 MHz, DMSO-*d*₆+HClO₄) spectra of compound **4**u

Figure S75. ¹H NMR (600 MHz, DMSO-*d*₆+HClO₄) spectra of compound 4w

Figure S80. ¹³C NMR (150 MHz, DMSO-*d*₆+HClO₄) spectra of compound **4**y

Figure S81. ¹H NMR (600 MHz, DMSO- d_6 +HClO₄) spectra of compound **4z**

Figure S82. ¹³C NMR (150 MHz, DMSO-*d*₆+HClO₄) spectra of compound 4z

Figure S83. ¹H NMR (600 MHz, DMSO-*d*₆+HClO₄) spectra of compound 4a'

Figure S84. ¹³C NMR (150 MHz, DMSO-*d*₆+HClO₄) spectra of compound 4a'

Figure S85. ¹H NMR (600 MHz, DMSO-*d*₆+HClO₄) spectra of compound 4b'

Figure S86. ¹³C NMR (150 MHz, DMSO-*d*₆+HClO₄) spectra of compound 4b'

Figure S87. ¹H NMR (600 MHz, DMSO-*d*₆+HClO₄) spectra of compound **4c'**

Figure S88. ¹³C NMR (150 MHz, DMSO-*d*₆+HClO₄) spectra of compound **4c'**

DEPT135

Figure S89. ¹H NMR (600 MHz, DMSO-*d*₆+HClO₄) spectra of compound 4d'

Figure S90. ¹³C NMR (150 MHz, DMSO-*d*₆+HClO₄) spectra of compound 4d'

Figure S91. ¹H NMR (600 MHz, DMSO-*d*₆+HClO₄) spectra of compound **4e'**

Figure S92. ¹³C NMR (150 MHz, DMSO-*d*₆+HClO₄) spectra of compound 4e'

DEPT135

Figure S93. HPLC of the reaction mixture

Figure S94. HRMS of substrate 2a

Figure S95. HRMS of intermediate 5a

Figure S96. HRMS of intermediate 6a/7a/8a

2 #52 RT: 0.97 AV: 1 NL: 5.85E6 T: FTMS + c ESI Full ms [100.00-400.00]

Figure S97. HRMS of intermediate 6a/7a/8a

2 #79 RT: 1.38 AV: 1 NL: 6.17E5 T: FTMS + c ESI Full ms [100.00-400.00]

Figure S98. HRMS of intermediate 6a/7a/8a

Figure S99. HRMS of compound 3a

Figure S100. HPLC of the reaction mixture

3 #43 RT: 0.83 AV: 1 NL: 1.63E7 T: FTMS + c ESI Full ms [100.00-400.00]

Figure S101. HRMS of compound 4a/9a

3 #46 RT: 0.87 AV: 1 NL: 8.62E6 T: FTMS + c ESI Full ms [100.00-400.00]

Figure S102. HRMS of compound 4a/9a