An environmentally benign cascade reaction of chromone-3-carboxaldehydes with ethyl 2-(pyridine-2-yl)acetate derivatives for highly site-selective synthesis of quinolizines and quinolizinium salts in water

Li Chen, Rong Huang, Kun Li, Xing-Han Yun, Chang-Long Yang and Shengjiao Yan*

Key Laboratory of Medicinal Chemistry for Natural Resources (Yunnan University), Ministry of Education, School of Chemical Science and Technology, Yunnan University, Kunming, 650091, P. R. China

Supporting Information

Table of Contents:
General Information.. S4
General Procedure for the Preparation of 3 and 4 .. S4
Spectroscopic Data of 3–4 ... S5
X-ray Structure and Data of 4a .. S20
Figure S1. X-Ray crystal structure of 4a ... S20
Table S1. Crystal data and structure refinement for 4a... S20
Table S2. Bond lengths [Å] and angles [deg] for 4a ... S21
Figure S2. 1H NMR (600 MHz, DMSO- d_6) spectra of compound 3a................................. S23
Figure S3. 13C NMR (150 MHz, DMSO- d_6) spectra of compound 3a................................. S24
Figure S4. 19F NMR (564 MHz, DMSO- d_6) spectra of compound 3a................................. S25
Figure S5. 1H NMR (600 MHz, DMSO- d_6) spectra of compound 3b................................. S26
Figure S6. 13C NMR (150 MHz, DMSO- d_6) spectra of compound 3b................................. S27
Figure S7. 19F NMR (564 MHz, DMSO- d_6) spectra of compound 3b................................. S28
Figure S8. 1H NMR (600 MHz, DMSO- d_6) spectra of compound 3c................................. S29
Figure S9. 13C NMR (150 MHz, DMSO- d_6) spectra of compound 3c................................. S30
Figure S10. 19F NMR (564 MHz, DMSO- d_6) spectra of compound 3c................................. S31
Figure S11. 1H NMR (600 MHz, DMSO- d_6) spectra of compound 3d................................. S32
Figure S12. 13C NMR (150 MHz, DMSO- d_6) spectra of compound 3d................................. S33
Figure S13. 19F NMR (564 MHz, DMSO- d_6) spectra of compound 3d................................. S34
Figure S14. 1H NMR (600 MHz, DMSO- d_6) spectra of compound 3e................................. S35
Figure S15. 13C NMR (150 MHz, DMSO- d_6) spectra of compound 3e................................. S36
Figure S16. 19F NMR (564 MHz, DMSO- d_6) spectra of compound 3e................................. S37
Figure S17. 1H NMR (600 MHz, DMSO- d_6) spectra of compound 3f................................. S38
Figure S18. 13C NMR (150 MHz, DMSO-d_6) spectra of compound 3f S39
Figure S19. 1H NMR (600 MHz, DMSO-d_6) spectra of compound 3g S40
Figure S20. 13C NMR (150 MHz, DMSO-d_6) spectra of compound 3g S41
Figure S21. 1H NMR (600 MHz, DMSO-d_6) spectra of compound 3h S42
Figure S22. 13C NMR (150 MHz, DMSO-d_6) spectra of compound 3h S43
Figure S23. 1H NMR (600 MHz, DMSO-d_6) spectra of compound 3i S44
Figure S24. 13C NMR (150 MHz, DMSO-d_6) spectra of compound 3i S45
Figure S25. 1H NMR (600 MHz, DMSO-d_6+HClO$_4$) spectra of compound 4a S46
Figure S26. 13C NMR (150 MHz, DMSO-d_6+HClO$_4$) spectra of compound 4a S47
Figure S27. 19F NMR (564 MHz, DMSO-d_6+HClO$_4$) spectra of compound 4a S48
Figure S28. 1H NMR (600 MHz, DMSO-d_6+HClO$_4$) spectra of compound 4b S49
Figure S29. 13C NMR (150 MHz, DMSO-d_6+HClO$_4$) spectra of compound 4b S50
Figure S30. 19F NMR (564 MHz, DMSO-d_6+HClO$_4$) spectra of compound 4b S51
Figure S31. 1H NMR (600 MHz, DMSO-d_6+HClO$_4$) spectra of compound 4c S52
Figure S32. 13C NMR (150 MHz, DMSO-d_6+HClO$_4$) spectra of compound 4c S53
Figure S33. 19F NMR (564 MHz, DMSO-d_6+HClO$_4$) spectra of compound 4c S54
Figure S34. 1H NMR (600 MHz, DMSO-d_6+HClO$_4$) spectra of compound 4d S55
Figure S35. 13C NMR (150 MHz, DMSO-d_6+HClO$_4$) spectra of compound 4d S56
Figure S36. 19F NMR (564 MHz, DMSO-d_6+HClO$_4$) spectra of compound 4d S57
Figure S37. 1H NMR (600 MHz, DMSO-d_6+HClO$_4$) spectra of compound 4e S58
Figure S38. 13C NMR (150 MHz, DMSO-d_6+HClO$_4$) spectra of compound 4e S59
Figure S39. 19F NMR (564 MHz, DMSO-d_6+HClO$_4$) spectra of compound 4e S60
Figure S40. 1H NMR (600 MHz, DMSO-d_6+HClO$_4$) spectra of compound 4f S61
Figure S41. 13C NMR (150 MHz, DMSO-d_6+HClO$_4$) spectra of compound 4f S62
Figure S42. 19F NMR (564 MHz, DMSO-d_6+HClO$_4$) spectra of compound 4f S63
Figure S43. 1H NMR (600 MHz, DMSO-d_6+HClO$_4$) spectra of compound 4g S64
Figure S44. 13C NMR (150 MHz, DMSO-d_6+HClO$_4$) spectra of compound 4g S65
Figure S45. 1H NMR (600 MHz, DMSO-d_6+HClO$_4$) spectra of compound 4h S66
Figure S46. 13C NMR (150 MHz, DMSO-d_6+HClO$_4$) spectra of compound 4h S67
Figure S47. 1H NMR (600 MHz, DMSO-d_6+HClO$_4$) spectra of compound 4i S68
Figure S48. 13C NMR (150 MHz, DMSO-d_6+HClO$_4$) spectra of compound 4i S69
Figure S49. 1H NMR (600 MHz, DMSO-d_6+HClO$_4$) spectra of compound 4j S70
Figure S50. 13C NMR (150 MHz, DMSO-d_6+HClO$_4$) spectra of compound 4j S71
Figure S51. 1H NMR (600 MHz, DMSO-d_6+HClO$_4$) spectra of compound 4k S72
Figure S52. 13C NMR (150 MHz, DMSO-d_6+HClO$_4$) spectra of compound 4k S73
Figure S53. 1H NMR (600 MHz, DMSO-d_6+HClO$_4$) spectra of compound 4l S74
Figure S54. 13C NMR (150 MHz, DMSO-d_6+HClO$_4$) spectra of compound 4l S75
Figure S55. 1H NMR (600 MHz, DMSO-d_6+HClO$_4$) spectra of compound 4m S76
Figure S56. 13C NMR (150 MHz, DMSO-d_6+HClO$_4$) spectra of compound 4m S77
Figure S57. 1H NMR (600 MHz, DMSO-d_6+HClO$_4$) spectra of compound 4n S78
Figure S58. 13C NMR (150 MHz, DMSO-d_6+HClO$_4$) spectra of compound 4n S79
Figure S59. 1H NMR (600 MHz, DMSO-d_6+HClO$_4$) spectra of compound 4o S80
Figure S60. 13C NMR (150 MHz, DMSO-d_6+HClO$_4$) spectra of compound 4o S81
Figure S61. 1H NMR (600 MHz, DMSO-d_6+HClO$_4$) spectra of compound 4p S82
Figure S62. 13C NMR (150 MHz, DMSO-d_6+HClO$_4$) spectra of compound 4p.............S83
Figure S63. 1H NMR (600 MHz, DMSO-d_6+HClO$_4$) spectra of compound 4q...........S84
Figure S64. 13C NMR (150 MHz, DMSO-d_6+HClO$_4$) spectra of compound 4r...........S85
Figure S65. 1H NMR (600 MHz, DMSO-d_6+HClO$_4$) spectra of compound 4sS86
Figure S66. 13C NMR (150 MHz, DMSO-d_6+HClO$_4$) spectra of compound 4t...........S87
Figure S67. 1H NMR (600 MHz, DMSO-d_6+HClO$_4$) spectra of compound 4u.............S88
Figure S68. 13C NMR (150 MHz, DMSO-d_6+HClO$_4$) spectra of compound 4v...........S89
Figure S69. 1H NMR (600 MHz, DMSO-d_6+HClO$_4$) spectra of compound 4w.............S90
Figure S70. 13C NMR (150 MHz, DMSO-d_6+HClO$_4$) spectra of compound 4x...........S91
Figure S71. 1H NMR (600 MHz, DMSO-d_6+HClO$_4$) spectra of compound 4y.............S92
Figure S72. 13C NMR (150 MHz, DMSO-d_6+HClO$_4$) spectra of compound 4z...........S93
Figure S73. 1H NMR (600 MHz, DMSO-d_6+HClO$_4$) spectra of compound 4a'...........S94
Figure S74. 13C NMR (150 MHz, DMSO-d_6+HClO$_4$) spectra of compound 4b'...........S95
Figure S75. 1H NMR (600 MHz, DMSO-d_6+HClO$_4$) spectra of compound 4c'...........S96
Figure S76. 13C NMR (150 MHz, DMSO-d_6+HClO$_4$) spectra of compound 4d'...........S97
Figure S77. 1H NMR (600 MHz, DMSO-d_6+HClO$_4$) spectra of compound 4e'...........S98
Figure S78. 13C NMR (150 MHz, DMSO-d_6+HClO$_4$) spectra of compound 4f'...........S99
Figure S79. 1H NMR (600 MHz, DMSO-d_6+HClO$_4$) spectra of compound 4g'...........S100
Figure S80. 13C NMR (150 MHz, DMSO-d_6+HClO$_4$) spectra of compound 4h'...........S101
Figure S81. 1H NMR (600 MHz, DMSO-d_6+HClO$_4$) spectra of compound 4i'...........S102
Figure S82. 13C NMR (150 MHz, DMSO-d_6+HClO$_4$) spectra of compound 4j'...........S103
Figure S83. 1H NMR (600 MHz, DMSO-d_6+HClO$_4$) spectra of compound 4k'...........S104
Figure S84. 13C NMR (150 MHz, DMSO-d_6+HClO$_4$) spectra of compound 4l'...........S105
Figure S85. 1H NMR (600 MHz, DMSO-d_6+HClO$_4$) spectra of compound 4m'...........S106
Figure S86. 13C NMR (150 MHz, DMSO-d_6+HClO$_4$) spectra of compound 4n'...........S107
Figure S87. 1H NMR (600 MHz, DMSO-d_6+HClO$_4$) spectra of compound 4o'...........S108
Figure S88. 13C NMR (150 MHz, DMSO-d_6+HClO$_4$) spectra of compound 4p'...........S109
Figure S89. 1H NMR (600 MHz, DMSO-d_6+HClO$_4$) spectra of compound 4q'...........S110
Figure S90. 13C NMR (150 MHz, DMSO-d_6+HClO$_4$) spectra of compound 4r'...........S111
Figure S91. 1H NMR (600 MHz, DMSO-d_6+HClO$_4$) spectra of compound 4s'...........S112
Figure S92. 13C NMR (150 MHz, DMSO-d_6+HClO$_4$) spectra of compound 4t'...........S113
Figure S93. HPLC of the reaction mixture ...S114
Figure S94. HRMS of substrate 2a ...S115
Figure S95. HRMS of intermediate 5a ...S116
Figure S96. HRMS of intermediate 6a/7a/8a ..S117
Figure S97. HRMS of intermediate 6a/7a/8a ...S118
Figure S98. HRMS of intermediate 6a/7a/8a ...S119
Figure S99. HRMS of compound 3a ..S120
Figure S100. HRMS of compound 4a/9a ...S121
Figure S101. HRMS of compound 4a/9a ...S122
Figure S102. HRMS of compound 4a/9a ...S123
General Information

All compounds were fully characterised by spectroscopic data. The NMR spectra were recorded on a Bruker DRX600. Chemical shifts (δ) are expressed in ppm, J values are given in Hz, and deuterated DMSO-d6 were used as solvent. IR spectra were recorded on a FT-IR Thermo Nicolet Avatar 360 using a KBr pellet. The reactions were monitored by thin layer chromatography (TLC) using silica gel GF254. The melting points were determined on a XT-4A melting point apparatus and are uncorrected. HRMs were performed on an Agilent LC/Msd TOF instrument. Materials used were purchased from Adamas-beta Corporation Limited.

The materials were purchased from Adamas-beta Corporation Limited. All chemicals and solvents were used as received without further purification unless otherwise stated. Column chromatography was performed on silica gel (200–300 mesh). The chromone-3-carboxaldehydes 1 and ethyl 2-(pyridine-2-yl)acetates 2 were commercially available reagents.

General Procedure for the Preparation of 3 and 4

First, chromone-3-carboxaldehydes 1 (1.0 ml) was charged into a round-bottom flask. Then, water (5 ml) and ethyl 2-(pyridine-2-yl)acetate derivatives 2 (1.1 mmol) were added to the mixture. The mixture was stirred at reflux for approximately 3 hours and monitored by TLC until the intermediate was completely consumed. The reaction mixture was cooled to room temperature and then was filtered by a suction funnel and washing with a few drops of water or recrystallized by EtOH or acetone. Finally, the obtained red solid was dried using an infrared lamp. As a result, we obtained the target compounds 3 with good to excellent yields (85–96%).
hours and monitored by TLC until the intermediate was completely consumed, and then was filtered by a suction funnel and washing with a few drops of water or recrystallized by EtOH or acetone. We can obtain the target compounds 3. Then compounds 3 and H$_2$O were charged in a round-bottom flask. Then, the mixture was added a few drops of perchloric acid and make the value of pH of the mixture is up to 1–2 at room temperature under the magneton agitation. Then, the mixture was filtered by suction funnel and washed by small of water. We obtained the target compounds 4 (yellow solid) with good to excellent yields. It should be noted that compounds 4 are in equilibrium with compounds 3 in the solution. The cascade reaction produces compounds 4 at strong acidic conditions (pH < 3) and obtains compounds 3 at neutral or basic conditions.

Spectroscopic Data of 3-4

Ethyl 2-fluoro-13-oxo-5a,13-dihydrochromeno[2,3-b]quinolizine-6-carboxylate (3a)

Red solid; Mp: 266.3-267.1 °C; IR (KBr): 2928, 1671, 1648, 1597, 1528, 1492, 1478, 1385, 1366, 1196, 823, 801, 777, 765 cm$^{-1}$; 1H NMR (600 MHz, DMSO-d_6): δ = 1.28 (t, J = 7.0 Hz, 3H, CH$_3$), 4.18 (d, J = 7.0 Hz, 2H, CH$_2$), 7.17 (s, 2H, ArH), 7.47 (s, 1H, ArH), 7.51 (d, J = 7.5 Hz, 2H, ArH), 7.85 (t, J = 7.7 Hz, 1H, ArH), 7.94 (s, 1H, ArH), 8.38 (d, J = 5.5 Hz, 1H, ArH), 8.82 (d, J = 8.5 Hz, 1H, ArH); 13C NMR (150 MHz, DMSO-d_6): δ = 15.0, 59.7, 89.1, 91.2, 106.3, 112.0, 112.2, 116.6, 120.7, 122.0, 123.3 (d, J_2 = 24.0 Hz), 125.1, 133.6, 139.4, 140.0, 148.0, 151.0, 165.2, 177.3. HRMS (TOF ES$^+$): m/z calcd for C$_{19}$H$_{14}$FNO$_4$ [(M+H)$^+$], 340.0980; found, 340.0979.

Ethyl-9-ethyl-2-fluoro-13-oxo-5a,13-dihydrochromeno[2,3-b]quinolizine-6-carboxylate (3b)

Red solid; Mp: 234.4-235.1 °C; IR (KBr): 2962, 2927, 1655, 1616, 1574, 1492, 1355, 1275, 1247, 1201, 1171, 1137, 837, 785, 758 cm$^{-1}$; 1H NMR (600 MHz, DMSO-d_6): δ = 1.22 (t, J =
7.6 Hz, 3H, CH$_3$), 1.27 (t, J = 7.1 Hz, 3H, CH$_3$), 2.61-2.65 (m, 2H, CH$_2$), 4.15-4.19 (m, 2H, CH$_2$), 7.21 (s, 2H, ArH), 7.43 (s, 1H, ArH), 7.50 (s, 1H, ArH), 7.51 (s, 1H, ArH), 7.85 (d, J = 9.2 Hz, 1H, ArH), 7.93 (s, 1H, ArH), 8.25 (s, 1H, ArH), 8.81 (d, J = 9.0 Hz, 1H, ArH); 13C NMR (150 MHz, DMSO-d_6): δ = 14.7, 14.9, 24.8, 59.6, 89.3, 90.9, 105.8, 112.0 (d, J_2 = 24.0 Hz), 120.9, 122.0, 123.1 (d, J_2 = 25.5 Hz), 125.3, 132.2, 133.6, 136.4, 141.2, 146.7, 151.0, 158.8, 165.2, 177.2. HRMS (TOF ES$^+$): m/z calcd for C$_{21}$H$_{19}$FNO$_4$ [(M+H)$^+$], 368.1293; found, 368.1289.

Methyl 2-fluoro-13-oxo-5a,13-dihydrochromeno[2,3-b]quinolizine-6-carboxylate (3c)

Red solid; Mp: 283.0-283.6 °C; IR (KBr): 2950, 1686, 1644, 1593, 1533, 1491, 1459, 1390, 1367, 1220, 1173, 878, 832, 777, 761 cm$^{-1}$; 1H NMR (600 MHz, DMSO-d_6): δ = 3.71 (s, 3H, CH$_3$), 7.18 (d, J = 5.5 Hz, 2H, ArH), 7.48-7.52 (m, 3H, ArH), 7.87 (t, J = 7.9 Hz, 1H, ArH), 7.94 (s, 1H, ArH), 8.39 (d, J = 6.3 Hz, 1H, ArH), 8.82 (d, J = 8.9 Hz, 1H, ArH); 13C NMR (150 MHz, DMSO-d_6): δ = 51.4, 89.1, 91.0, 106.5, 112.1 (d, J_2 = 22.5 Hz), 116.6, 120.8, 122.0, 123.3 (d, J_2 = 24.0 Hz), 125.2, 133.5, 139.5, 140.1, 148.0, 151.0, 158.0 (d, J_1 = 241.5 Hz), 165.6, 177.4. HRMS (TOF ES$^+$): m/z calcd for C$_{19}$H$_{12}$FNO$_4$ [(M+H)$^+$], 326.0823; found, 326.0821.

2-Fluoro-13-oxo-5a,13-dihydrochromeno[2,3-b]quinolizine-6-carbonitrile (3d)

Red solid; Mp: 256.3-257.1 °C; IR (KBr): 2201, 1647, 1619, 1533, 1481, 1396, 1368, 1288, 1208, 1181, 875, 782, 766 cm$^{-1}$; 1H NMR (600 MHz, DMSO-d_6): δ = 7.14-7.19 (m, 2H, ArH), 7.40 (t, J = 5.9 Hz, 2H, ArH), 7.50-7.54 (m, 3H, ArH), 7.86 (t, J = 7.6 Hz, 1H, ArH), 8.38 (d, J = 6.7 Hz, 1H, ArH); 13C NMR (150 MHz, DMSO-d_6): δ = 79.7, 89.0, 112.1 (d, J_2 = 22.5 Hz), 116.9, 119.4, 120.9 (d, J_3 = 7.5 Hz), 121.3, 123.5, 123.7, 125.0 (d, J_3 = 6.0 Hz), 132.7, 139.6, 140.7, 148.4, 150.9, 158.9, 176.7. HRMS (TOF ES$^+$): m/z calcd for C$_{17}$H$_9$ FN$_2$O$_2$ [(M+H)$^+$], 293.0721; found, 293.0720.

6-Acetyl-2-fluorochromeno[2,3-b]quinoliniz-13(5aH)-one (3e)
Red solid; Mp: 269.5-270.3 °C; IR (KBr): 2925, 1642, 1561, 1519, 1484, 1437, 1360, 1316, 1276, 1211, 1172, 1114, 780 cm⁻¹; ¹H NMR (600 MHz, DMSO-d₆): δ = 2.37 (s, 3H, CH₃), 7.19 (d, J = 4.7 Hz, 1H, ArH), 7.28 (t, J = 6.3 Hz, 1H, ArH), 7.45 (s, 1H, ArH), 7.52 (t, J = 7.3 Hz, 2H, ArH), 7.89 (s, 1H, ArH), 7.94 (t, J = 7.5 Hz, 1H, ArH), 8.49 (d, J = 6.2 Hz, 1H, ArH), 9.19 (d, J = 8.8 Hz, 1H, ArH); ¹³C NMR (150 MHz, DMSO-d₆): δ = 28.6, 88.8, 101.2, 105.6, 112.1 (d, J₂ = 21.0 Hz), 117.9, 120.7, 123.0, 123.2 (d, J₂ = 24.0 Hz), 125.1, 134.9, 139.5, 141.1, 147.4, 151.0, 158.0 (d, J₁ = 244.5 Hz), 177.0, 192.4. HRMS (TOF ES⁻): m/z calcd for C₁₈H₁₂FNO₃ [(M+H)⁺], 310.0874; found, 310.0873.

6-Acetyl-2-chlorochromeno[2,3-b]quinolizin-13(5aH)-one (3f)

Red solid; Mp: 269.3-269.9 °C; IR (KBr): 2923, 1647, 1604, 1567, 1474, 1453, 1359, 1269, 1217, 1205, 1186, 1150, 1006, 817, 779, 733 cm⁻¹; ¹H NMR (600 MHz, DMSO-d₆): δ = 2.38 (s, 3H, CH₃), 7.18 (d, J = 8.6 Hz, 1H, ArH), 7.30 (s, 1H, ArH), 7.48 (s, 1H, ArH), 7.67 (t, J = 1.8 Hz, 1H, ArH), 7.76 (s, 1H, ArH), 7.90 (s, 1H, ArH), 7.95 (s, 1H, ArH), 8.49 (d, J = 6.2 Hz, 1H, ArH), 9.19 (d, J = 8.9 Hz, 1H, ArH); ¹³C NMR (150 MHz, DMSO-d₆): δ = 28.6, 88.9, 101.3, 105.4, 118.0, 120.9, 123.0, 125.4, 126.0, 127.5, 135.0, 135.6, 139.5, 141.2, 147.4, 153.5, 176.8, 192.5. HRMS (TOF ES⁺): m/z calcd for C₁₈H₁₃ClNO₃ [(M+H)⁺], 326.0578; found, 326.0576.

6-Acetyl-2-bromochromeno[2,3-b]quinolizin-13(5aH)-one (3g)

Red solid; Mp: 234.6-235.5 °C; IR (KBr): 2925, 1644, 1597, 1566, 1514, 1478, 1358, 1331, 1269, 1218, 1183, 814, 779, 713 cm⁻¹; ¹H NMR (600 MHz, DMSO-d₆): δ = 2.37 (s, 3H, CH₃), 7.11 (d, J = 8.6 Hz, 1H, ArH), 7.29 (t, J = 7.2 Hz, 1H, ArH), 7.48 (s, 1H, ArH), 7.77-7.78 (m, 1H, ArH), 7.89 (d, J = 6.4 Hz, 2H, ArH), 7.95 (t, J = 7.2 Hz, 1H, ArH), 8.49 (d, J = 6.1 Hz, 1H, ArH), 9.19 (d, J = 8.9 Hz, 1H, ArH); ¹³C NMR (150 MHz, DMSO-d₆): δ = 28.6, 88.9, 101.3, 105.3, 115.1, 118.0, 121.2, 123.0, 125.8, 129.0, 135.0, 138.3, 139.5, 141.2, 147.4, 153.9, 176.6, 192.5. HRMS (TOF ES⁻): m/z calcd for C₁₈H₁₃BrNO₃ [(M+H)⁺], 370.0073; found, 370.0071.

Ethyl 13-oxo-5a,13-dihydrochromeno[2,3-b]quinolizine-6-carboxylate (3h)
Red solid; Mp: 231.5-232.3 °C; IR (KBr): 2928, 1674, 1641, 1593, 1526, 1489, 1384, 1338, 1222, 1192, 1043, 773 cm⁻¹; ¹H NMR (600 MHz, DMSO-d₆): δ = 1.21 (t, J = 7.0 Hz, 3H, CH₃), 4.16-4.19 (m, 2H, CH₂), 7.11-7.15 (m, 2H, ArH), 7.19 (t, J = 7.4 Hz, 1H, ArH), 7.48 (s, 1H, ArH), 7.63 (t, J = 7.4 Hz, 1H, ArH), 7.82-7.84 (m, 2H, ArH), 7.92 (s, 1H, ArH), 8.35 (d, J = 6.5 Hz, 1H, ArH), 8.83 (d, J = 9.1 Hz, 1H, ArH); ¹³C NMR (150 MHz, DMSO-d₆): δ = 14.9, 59.6, 89.0, 90.7, 107.3, 116.3, 118.6, 122.0, 123.2, 124.2, 127.1, 133.0, 136.2, 139.4, 139.7, 148.0, 154.8, 165.3, 178.5. HRMS (TOF ES⁺): m/z calcd for C₁₀H₁₆NO₄ [(M+H)+], 322.1074; found, 322.1071.

6-Acetyl-2-methylchromeno[2,3-b]quinolin-13(5aH)-one (3i)

Red solid; Mp: 280.0-280.9 °C; IR (KBr): 2923, 1652, 1611, 1569, 1527, 1491, 1473, 1400, 1328, 1283, 1203, 1179, 1020, 813, 767, 703 cm⁻¹; ¹H NMR (600 MHz, DMSO-d₆): δ = 2.33 (s, 3H, CH₃), 2.37 (s, 3H, CH₃), 7.03 (d, J = 7.2 Hz, 1H, ArH), 7.25 (s, 1H, ArH), 7.40 (s, 1H, ArH), 7.44 (d, J = 6.8 Hz, 1H, ArH), 7.64 (s, 1H, ArH), 7.86 (s, 1H, ArH), 7.91 (s, 1H, ArH), 8.44 (d, J = 4.2 Hz, 1H, ArH), 9.19 (d, J = 8.5 Hz, 1H, ArH); ¹³C NMR (150 MHz, DMSO-d₆): δ = 20.6, 28.6, 88.5, 100.7, 106.7, 117.6, 118.3, 122.9, 123.8, 126.7, 132.4, 134.1, 136.9, 139.4, 140.8, 147.4, 152.9, 178.3, 192.3. HRMS (TOF ES⁺): m/z calcd for C₁₉H₁₈NO₅ [(M+H)+], 306.1125; found, 306.1122.

1-(Ethoxycarbonyl)-3-(5-fluoro-2-hydroxybenzoyl) quinolin-5-ium (4a)

Yellow solid; Mp: 278.2-283.9 °C; IR (KBr): 3445, 2925, 1731, 1652, 1625, 1482, 1367, 1343, 1257, 1206, 1121, 1107, 1079, 792, 624 cm⁻¹; ¹H NMR (600 MHz, DMSO-d₆+HClO₄): δ = 1.37 (t, J = 7.1 Hz, 3H, CH₃), 4.46-4.50 (m, 2H, CH₂), 7.04-7.07 (m, 1H, ArH), 7.38-7.44 (m, 2H, ArH), 8.23 (t, J = 6.8 Hz, 1H, ArH), 8.60 (t, J = 8.0 Hz, 1H, ArH), 8.89 (s, 1H, ArH), 9.24 (d, J = 8.9 Hz, 1H, ArH), 9.58 (d, J = 1H, ArH), 9.86 (s, 1H, ArH); ¹³C NMR (150 MHz, DMSO-d₆+HClO₄): δ = 14.3, 63.6, 117.1, 117.2, 119.4 (d, J = 7.5 Hz), 122.8 (d, J = 22.5 Hz), 123.3 (d, J = 7.5 Hz), 125.3, 127.2, 131.5, 138.1, 140.1, 141.4, 142.3, 142.7, 154.4, 155.6 (d, J = 235.5 Hz), 163.2, 190.1. HRMS (ESI-TOF, [M-CI0₄]⁺): calcd for C₁₉H₁₃FNO₄⁺, 340.0980; found, 340.0979.
1-(Ethoxycarbonyl)-7-ethyl-3-(5-fluoro-2-hydroxybenzoyl)quinolizin-5-ium (4b)

Yellow solid; Mp: 171.3-172.1 °C; IR (KBr): 3438, 2938, 1730, 1652, 1631, 1482, 1348, 1258, 1158, 1098, 1032, 855, 793, 678, 623 cm⁻¹; ¹H NMR (600 MHz, DMSO-d₆+HClO₄): δ = 1.35 (t, J = 7.5 Hz, 3H, CH₃), 1.42 (t, J = 7.1 Hz, 3H, CH₃), 2.95-2.99 (m, 2H, CH₂), 4.50-4.54 (m, 2H, CH₂), 7.09-7.11 (m, 1H, ArH), 7.43-7.49 (m, 2H, ArH), 8.63 (d, J = 9.6 Hz, 1H, ArH), 8.88 (s, 1H, ArH), 9.19 (d, J = 9.2 Hz, 1H, ArH), 9.58 (s, 1H, ArH), 9.81(s, 1H, ArH); ¹³C NMR (150 MHz, DMSO-d₆+HClO₄): δ = 14.0, 14.4, 25.6, 63.5, 117.1 (d, J₂ = 24.0 Hz), 119.4 (d, J₂ = 7.5 Hz), 122.6 (d, J₂ = 22.5 Hz), 123.6 (d, J₃ = 7.5 Hz), 124.9, 127.1, 131.5, 137.2, 137.7, 140.8, 142.4, 142.6, 154.3, 155.6 (d, J₄ = 234.0 Hz), 163.3, 190.1. HRMS (ESI-TOF, [M-ClO₄]⁺): calcd for C₂₁H₁₉FNO₄⁺, 368.1293; found, 368.1289.

3-(5-Fluoro-2-hydroxybenzoyl)-1-(methoxycarbonyl)quinolizin-5-ium (4c)

Yellow solid; Mp: 165.8-166.4 °C; IR (KBr): 3439, 2961, 2023, 1733, 1630, 1486, 1425, 1346, 1247, 1210, 1120, 1109, 801, 712, 624 cm⁻¹; ¹H NMR (600 MHz, DMSO-d₆+HClO₄): δ = 4.05 (s, 3H, CH₃), 7.08-7.11 (m, 1H, ArH), 7.44-7.46 (m, 1H, ArH), 7.48 (d, J = 3.0 Hz, 1H, ArH), 8.31 (t, J = 7.0 Hz, 1H, ArH), 8.67 (t, J = 8.2 Hz, 1H, ArH), 8.93 (s, 1H, ArH), 9.27 (d, J = 9.0 Hz, 1H, ArH), 9.66 (d, J = 6.7 Hz, 1H, ArH), 9.95 (s, 1H, ArH); ¹³C NMR (150 MHz, DMSO-d₆+HClO₄): δ = 54.3, 117.2 (d, J₂ = 24.0 Hz), 119.4, 122.8 (d, J₂ = 22.5 Hz), 123.4, 125.4, 125.5, 126.9, 131.6, 138.2, 140.3, 141.5, 142.2, 142.8, 154.4, 155.7 (d, J₄ = 234.0 Hz), 163.7, 190.1. HRMS (ESI-TOF, [M-ClO₄]⁺): calcd for C₁₈H₁₅FNO₄⁺, 326.0823; found, 326.0820.

1-Acetyl-3-(5-fluoro-2-hydroxybenzoyl)quinolizin-5-ium (4d)

Yellow solid; Mp: > 300 °C; IR (KBr): 3439, 2927, 2021, 1694, 1630, 1581, 1486, 1363, 1347, 1279, 1218, 1121, 1108, 784, 683, 623 cm⁻¹; ¹H NMR (600 MHz, DMSO-d₆+HClO₄): δ = 2.86 (s, 3H, CH₃), 7.09-7.11 (m, 1H, ArH), 7.48 (t, J = 9.0 Hz, 2H, ArH), 8.29 (t, J = 6.8 Hz, 1H, ArH), 8.63 (t, J = 8.0 Hz, 1H, ArH), 8.97 (d, J = 8.9 Hz, 1H, ArH), 9.00 (s, 1H, ArH), 9.66 (d, J = 6.6 Hz, 1H, ArH), 9.87 (s, 1H, ArH); ¹³C NMR (150 MHz,
DMSO-d$_6$+HClO$_4$): δ = 30.6, 117.2 (d, J_2 = 24.0 Hz), 119.5 (d, J_3 = 7.5 Hz), 122.9 (d, J_2 = 24.0 Hz), 123.4 (d, J_3 = 7.5 Hz), 125.3, 125.7, 131.8, 134.1, 136.4, 140.0, 141.3, 141.4, 141.8, 154.6, 155.7 (d, J_1 = 235.5 Hz), 190.3, 198.5. HRMS (ESI-TOF, [M-C10H4ClO$_4$]$^+$): caled for C$_{10}$H$_{13}$FNO$_3$+, 310.0874; found, 310.0871.

1-Acetyl-3-(5-fluoro-2-hydroxybenzoyl)-7-methylquinoliniz-5-iium (4e)

![Chemical structure](image)

Yellow solid; Mp: > 300 °C; IR (KBr): 3439, 2933, 1701, 1650, 1624, 1487, 1365, 1346, 1284, 1211, 1108, 836, 789, 684, 624 cm$^{-1}$; 1H NMR (600 MHz, DMSO-d$_6$+HClO$_4$): δ = 2.61 (s, 3H, CH$_3$), 2.86 (s, 3H, CH$_3$), 7.09-7.11 (m, 1H, ArH), 7.45-7.50 (m, 2H, ArH), 8.52 (d, J = 9.2 Hz, 1H, ArH), 8.90 (d, $J = 9.1$ Hz, 1H, ArH), 8.95 (s, 1H, ArH), 9.52 (s, 1H, ArH), 9.69 (s, 1H, ArH); 13C NMR (150 MHz, DMSO-d$_6$+HClO$_4$): δ = 18.4, 30.5, 117.1 (d, J_3 = 22.5 Hz), 119.5 (d, J_1 = 7.5 Hz), 122.7 (d, J_2 = 24.0 Hz), 123.5 (d, J_3 = 6.0 Hz), 125.0, 131.8, 134.0, 135.5, 136.1, 139.7, 141.2, 143.3, 154.4, 155.7 (d, J_1 = 234.0 Hz), 190.3, 198.5. HRMS (ESI-TOF, [M-C10H4ClO$_4$]$^+$): caled for C$_{10}$H$_{13}$FNO$_3$+, 324.1030; found, 324.1031.

1-Cyano-3-(5-fluoro-2-hydroxybenzoyl)quinoliniz-5-iium (4f)

![Chemical structure](image)

Yellow solid; Mp: 276.2-277.1 °C; IR (KBr): 3439, 2023, 1693, 1636, 1482, 1437, 1345, 1283, 1249, 1213, 1121, 1108, 1001, 784, 681, 624 cm$^{-1}$; 1H NMR (600 MHz, DMSO-d$_6$+HClO$_4$): δ = 7.05-7.08 (m, 1H, ArH), 7.38-7.39 (m, 1H, ArH), 7.43-7.45 (m, 1H, ArH), 8.34-8.35 (m, 1H, ArH), 8.72 (t, $J = 2.8$ Hz, 2H, ArH), 9.24 (d, $J = 1.2$ Hz, 1H, ArH), 9.66 (d, $J = 6.8$ Hz, 1H, ArH), 9.97 (s, 1H, ArH); 13C NMR (150 MHz, DMSO-d$_6$+HClO$_4$): δ = 110.7, 113.8, 117.1 (d, J_2 = 24.0 Hz), 119.6, 123.0 (d, J_3 = 22.5 Hz), 123.2, 125.2, 126.3, 132.0, 140.4, 142.6, 142.8, 142.9, 143.0, 154.5, 154.9, 189.2. HRMS (ESI-TOF, [M-C10H4ClO$_4$]$^+$): caled for C$_{17}$H$_{16}$F$_3$O$_5$+, 293.0721; found, 293.0720.

3-(5-Chloro-2-hydroxybenzoyl)-1-(ethoxycarbonyl)quinoliniz-5-iium (4g)

![Chemical structure](image)

Yellow solid; Mp: 169.2-170.6 °C; IR (KBr): 3439, 2924, 2024, 1726, 1632, 1467, 1438, 1405, 1343, 1261, 1225, 1096, 785, 622 cm$^{-1}$; 1H NMR (600 MHz, DMSO-d$_6$+HClO$_4$): δ = 1.39 (t, $J = 7.1$ Hz, 3H, CH$_3$), 4.47-4.51 (m, 2H, CH$_2$), 7.07 (d, $J = 9.1$ Hz, 1H, ArH), 7.59 (t, $J = 2.6$ Hz, 2H, ArH), 8.27 (t, $J = 6.9$ Hz, 1H, ArH), 8.63 (t, $J = 7.9$ Hz, 1H, ArH), 8.90 (s,
1H, ArH), 9.24 (d, J = 9.0 Hz, 1H, ArH), 9.61 (d, J = 6.7 Hz, 1H, ArH), 9.90 (s, 1H, ArH); 13C NMR (150 MHz, DMSO-d6+HClO4): δ = 14.3, 63.6, 119.7, 123.8, 124.6, 125.3, 125.5, 127.2, 130.6, 131.4, 135.1, 138.0, 140.2, 141.4, 142.3, 142.9, 156.6, 163.2, 190.0. HRMS (ESI-TOF, [M-CIO4]+): calcd for C19H15ClNO4+, 356.0684; found, 356.0686.

3-(5-Chloro-2-hydroxybenzoyl)-1-(ethoxycarbonyl)-7-ethylquinolizin-5-ium (4h)

Yellow solid; Mp: 150.3-151.1 °C; IR (KBr): 3433, 2924, 1726, 1631, 1465, 1356, 1267, 1188, 1082, 776, 695, 623 cm⁻¹; 1H NMR (600 MHz, DMSO-d6+HClO4): δ = 1.35 (t, J = 7.5 Hz, 3H, CH₃), 1.42 (t, J = 7.1 Hz, 3H, CH₃), 2.95-2.99 (m, 2H, CH₂), 4.50-4.54 (m, 2H, CH₂), 7.10 (d, J = 8.6 Hz, 1H, ArH), 7.61 (d, J = 2.6 Hz, 1H, ArH), 7.63 (d, J = 2.5 Hz, 1H, ArH), 8.62 (d, J = 9.2 Hz, 1H, ArH), 8.88 (s, 1H, ArH), 9.19 (d, J = 9.2 Hz, 1H, ArH), 9.57 (s, 1H, ArH), 9.81 (s, 1H, ArH); 13C NMR (150 MHz, DMSO-d6+HClO4): δ = 14.0, 14.3, 25.6, 63.5, 119.7, 123.7, 124.8, 124.9, 127.1, 130.5, 131.4, 135.0, 137.1, 137.6, 140.8, 141.4, 142.4, 142.6, 156.5, 163.3, 190.0. HRMS (ESI-TOF, [M-CIO4]+): calcd for C21H19ClNO4+, 384.0997; found, 384.0996.

3-(5-Chloro-2-hydroxybenzoyl)-1-(methoxycarbonyl)quinolizin-5-ium (4i)

Yellow solid; Mp: > 300 °C; IR (KBr): 3439, 2926, 2025, 1735, 1654, 1637, 1470, 1426, 1341, 1280, 1266, 1102, 1002, 798, 780, 625 cm⁻¹; 1H NMR (600 MHz, DMSO-d6+HClO4): δ = 4.02 (s, 3H, CH₃), 7.08 (d, J = 9.4 Hz, 1H, ArH), 7.59 (s, 1H, ArH), 7.60 (s, 1H, ArH), 8.28 (t, J = 6.8 Hz, 1H, ArH), 8.64 (t, J = 7.9 Hz, 1H, ArH), 8.90 (s, 1H, ArH), 9.25 (d, J = 8.9 Hz, 1H, ArH), 9.63 (d, J = 6.6 Hz, 1H, ArH), 9.92 (s, 1H, ArH); 13C NMR (150 MHz, DMSO-d6+HClO4): δ = 54.3, 119.7, 123.8, 124.6, 125.4, 125.5, 126.9, 130.6, 131.5, 135.1, 138.1, 140.2, 141.5, 142.3, 142.8, 156.6, 163.7, 189.9. HRMS (ESI-TOF, [M-CIO4]+): calcd for C18H13ClNO4+, 342.0528; found, 342.0529.

1-Acetyl-3-(5-chloro-2-hydroxybenzoyl)quinolizin-5-ium (4j)

Yellow solid; Mp: 138.8–139.4 °C; IR (KBr): 3433, 2923, 2022, 1694, 1632, 1510, 1472, 1359, 1343, 1284, 1208, 1176, 1097, 784, 697, 622 cm⁻¹; 1H NMR (600 MHz,
DMSO-d$_6$+HClO$_4$: $\delta = 2.82$ (s, 3H, CH$_3$), 7.08 (d, $J = 8.5$ Hz, 1H, ArH), 7.59 (d, $J = 7.9$ Hz, 1H, ArH), 7.60 (s, 1H, ArH), 8.24 (t, $J = 6.9$ Hz, 1H, ArH), 8.59 (t, $J = 7.8$ Hz, 1H, ArH), 8.94 (s, 1H, ArH), 8.95 (s, 1H, ArH), 9.59 (d, $J = 6.7$ Hz, 1H, ArH), 9.82 (s, 1H, ArH); 13C NMR (150 MHz, DMSO-d$_6$+HClO$_4$): $\delta = 30.5, 119.9, 123.8, 124.6, 125.3, 125.7, 130.7, 131.7, 134.1, 135.2, 136.3, 139.9, 141.3, 141.4, 141.8, 156.8, 190.1, 198.5. HRMS (ESI-TOF, [M-ClO$_4$]$^+$): cycled for C$_{18}$H$_{13}$ClNO$_3$+, 326.0578; found, 326.0576.

1-Acetyl-3-(5-chloro-2-hydroxybenzoyl)-7-methylquinolinizin-5-ium (4k)

Yellow solid; Mp: 236.1-237.2 °C; IR (KBr): 3430, 2925, 1695, 1631, 1420, 1352, 1320, 1280, 1237, 1194, 1121, 1076, 824, 777, 621 cm$^{-1}$; 1H NMR (600 MHz, DMSO-d$_6$+HClO$_4$): $\delta = 2.60$ (s, 3H, CH$_3$), 2.85 (s, 3H, CH$_3$), 7.10 (t, $J = 4.7$ Hz, 1H, ArH), 7.62 (d, $J = 2.3$ Hz, 2H, ArH), 8.51 (d, $J = 9.0$ Hz, 1H, ArH), 8.51 (d, $J = 9.1$ Hz, 1H, ArH), 8.93 (s, 1H, ArH), 9.51 (s, 1H, ArH), 9.68 (s, 1H, ArH); 13C NMR (150 MHz, DMSO-d$_6$+HClO$_4$): $\delta = 18.4, 30.5, 119.8, 123.8, 124.8, 125.0, 130.6, 131.7, 134.0, 135.1, 135.4, 136.1, 138.0, 139.8, 141.3, 143.3, 156.7, 190.1, 198.5. HRMS (ESI-TOF, [M-ClO$_4$]$^+$): cycled for C$_{18}$H$_{13}$ClNO$_3$+, 340.0735; found, 340.0732.

3-(5-Chloro-2-hydroxybenzoyl)-1-cyanoquinolinizin-5-ium (4l)

Yellow solid; Mp: > 300 °C; IR (KBr): 3440, 2199, 1637, 1472, 1438, 1402, 1351, 1289, 1213, 1121, 1097, 848, 787, 702, 625 cm$^{-1}$; 1H NMR (600 MHz, DMSO-d$_6$+HClO$_4$): $\delta = 7.10$ (d, $J = 8.8$ Hz, 1H, ArH), 7.60-7.63 (m, 1H, ArH), 7.64 (d, $J = 2.6$ Hz, 1H, ArH), 8.39-8.41 (m, 1H, ArH), 8.76 (t, $J = 2.6$ Hz, 2H, ArH), 9.30 (s, 1H, ArH), 9.70 (d, $J = 6.7$ Hz, 1H, ArH), 10.03 (s, 1H, ArH); 13C NMR (150 MHz, DMSO-d$_6$+HClO$_4$): $\delta = 110.6, 113.9, 119.9, 123.8, 124.4, 125.3, 126.3, 130.6, 132.0, 135.3, 140.5, 142.7, 142.8, 142.9, 143.0, 156.8, 189.1. HRMS (ESI-TOF, [M-ClO$_4$]$^+$): cycled for C$_{17}$H$_{16}$Cl$_2$O$_2$+, 309.0425; found, 309.0421.

3-(5-Bromo-2-hydroxybenzoyl)-1-(ethoxycarbonyl) quinolinizin-5-ium (4m)

Yellow solid; Mp: 164.0-164.9 °C; IR (KBr): 3439, 2923, 1729, 1663, 1630, 1594, 1416, 1389, 1278, 1259, 1094, 982, 781, 662, 624 cm$^{-1}$; 1H NMR (600 MHz, DMSO-d$_6$+HClO$_4$): δ
= 1.40 (t, J = 7.1 Hz, 3H, CH₃), 4.49-4.53 (m, 2H, CH₂), 7.04 (d, J = 8.9 Hz, 1H, ArH), 7.71 (s, 1H, ArH), 7.73 (d, J = 2.4 Hz, 1H, ArH), 8.29 (t, J = 7.0 Hz, 1H, ArH), 8.65 (t, J = 8.2 Hz, 1H, ArH), 8.91 (s, 1H, ArH), 9.25 (d, J = 9.0 Hz, 1H, ArH), 9.64 (d, J = 6.7 Hz, 1H, ArH), 9.92 (s, 1H, ArH); ¹³C NMR (150 MHz, DMSO-d₆+HClO₄): δ = 14.3, 63.6, 111.1, 120.2, 125.2, 125.4, 125.5, 127.2, 131.5, 133.5, 137.9, 138.0, 140.2, 141.5, 142.3, 142.8, 157.0, 163.2, 189.9. HRMS (ESI-TOF, [M-CIO₄]⁺): calcd for C₁₅H₁₃BrNO₄⁺, 400.0179; found, 400.0177.

3-(5-Bromo-2-hydroxybenzoyl)-1-(ethoxycarbonyl)-7-ethylquinolizin-5-ium (4n)

Yellow solid; Mp: 110.1–110.8 °C; IR (KBr): 3433, 2920, 1710, 1630, 1611, 1587, 1515, 1427, 1330, 1311, 1246, 1221, 1093, 989, 847, 772, 624 cm⁻¹; ¹H NMR (600 MHz, DMSO-d₆+HClO₄): δ = 1.35 (t, J = 7.5 Hz, 3H, CH₃), 1.41 (t, J = 7.1 Hz, 3H, CH₃), 2.96 (t, J = 7.5 Hz, 2H, CH₂), 4.51 (t, J = 7.1 Hz, 2H, CH₂), 7.05 (d, J = 8.8 Hz, 1H, ArH), 7.71 (d, J = 2.2 Hz, 1H, ArH), 7.72-7.74 (m, 1H, ArH), 8.61 (d, J = 9.2 Hz, 1H, ArH), 8.87 (s, 1H, ArH), 9.19 (d, J = 9.2 Hz, 1H, ArH), 9.56 (s, 1H, ArH), 9.80 (s, 1H, ArH); ¹³C NMR (150 MHz, DMSO-d₆+HClO₄): δ = 13.9, 14.3, 25.6, 63.5, 111.1, 120.1, 124.9, 125.3, 127.0, 131.4, 133.3, 137.1, 137.6, 137.8, 140.8, 141.5, 142.4, 142.6, 156.8, 163.2, 189.9. HRMS (ESI-TOF, [M-CIO₄]⁺): calcd for C₂₁H₁₀BrNO₄⁺, 428.0492; found, 428.0490.

3-(5-Bromo-2-hydroxybenzoyl)-1-(methoxycarbonyl)quinolizin-5-ium (4o)

Yellow solid; Mp: 172.7–173.8 °C; IR (KBr): 3439, 2959, 1734, 1655, 1621, 1470, 1339, 1280, 1265, 1225, 1101, 1026, 798, 687, 624 cm⁻¹; ¹H NMR (600 MHz, DMSO-d₆+HClO₄): δ = 4.05 (s, 3H, CH₃), 7.06 (t, J = 1.6 Hz, 1H, ArH), 7.73 (s, 1H, ArH), 7.74 (d, J = 2.5 Hz, 1H, ArH), 8.31-8.33 (m, 1H, ArH), 8.68 (t, J = 8.5 Hz, 1H, ArH), 8.92 (d, J = 1.3 Hz, 1H, ArH), 9.26 (d, J = 9.0 Hz, 1H, ArH), 9.67 (d, J = 6.7 Hz, 1H, ArH), 9.95 (s, 1H, ArH); ¹³C NMR (150 MHz, DMSO-d₆+HClO₄): δ = 54.3, 111.2, 120.2, 125.3, 125.4, 125.5, 127.0, 131.5, 133.5, 137.9, 138.2, 140.3, 141.5, 142.3, 142.8, 157.0, 163.7, 189.8. HRMS (ESI-TOF, [M-CIO₄]⁺): calcd for C₁₇H₁₀BrNO₄⁺, 386.0022; found, 386.0020.

1-Acetyl-3-(5-bromo-2-hydroxybenzoyl)quinolizin-5-ium (4p)
Yellow solid; Mp: >300 °C; IR (KBr): 3440, 2924, 1698, 1625, 1599, 1469, 1439, 1352, 1291, 1210, 1121, 1107, 1092, 790, 699, 636, 624 cm⁻¹; ¹H NMR (600 MHz, DMSO-δ6+HClO₄): δ = 2.86 (s, 3H, CH₃), 7.06 (d, J = 8.4 Hz, 1H, ArH), 7.75 (s, 1H, ArH), 7.76 (s, 1H, ArH), 8.30 (t, J = 6.8 Hz, 1H, ArH), 8.64 (t, J = 7.9 Hz, 1H, ArH), 8.97 (d, J = 8.9 Hz, 1H, ArH), 9.01 (s, 1H, ArH), 9.63 (d, J = 6.6 Hz, 1H, ArH), 9.88 (s, 1H, ArH), 10.97 (s, 1H, ArOH); ¹³C NMR (150 MHz, DMSO-δ6+HClO₄): δ = 30.7, 111.2, 120.3, 125.3, 125.4, 125.7, 131.8, 133.5, 134.1, 136.3, 138.0, 140.0, 141.3, 141.4, 141.9, 157.2, 190.0, 198.6. HRMS (ESI-TOF, [M-CIOT₄]⁺): calcd for C₁₈H₁₃BrNO₃⁺, 370.0073; found, 370.0073.

3-(5-Bromo-2-hydroxybenzoyl)-1-cyanoquinolinizin-5-ium (4q)

Yellow solid; Mp: >300 °C; IR (KBr): 3443, 2201, 1637, 1605, 1498, 1469, 1351, 1289, 1199, 1121, 1095, 809, 698, 625 cm⁻¹; ¹H NMR (600 MHz, DMSO-δ6+HClO₄): δ = 6.95 (s, 1H, ArH), 7.61 (d, J = 6.5 Hz, 1H, ArH), 7.63 (d, J = 6.7 Hz, 1H, ArH), 8.28 (s, 1H, ArH), 8.65 (s, 2H, ArH), 9.18 (s, 1H, ArH), 9.59 (s, 1H, ArH), 9.91 (s, 1H, ArH); ¹³C NMR (150 MHz, DMSO-δ6+HClO₄): δ = 110.6, 111.2, 113.9, 120.3, 125.0, 125.3, 126.3, 132.0, 133.4, 138.1, 140.4, 142.6, 142.8, 142.9, 143.1, 157.2, 189.0. HRMS (ESI-TOF, [M-CIOT₄]⁺): calcd for C₁₇H₁₀BrN₂O₂⁺, 352.9920; found, 352.9917.

1-(Ethoxycarbonyl)-3-(2-hydroxy-5-nitrobenzoyl)quinolinizin-5-ium (4r)

Yellow solid; Mp: 118.5–119.3 °C; IR (KBr): 3440, 2923, 1729, 1676, 1636, 1496, 1338, 1252, 1115, 1035, 984, 802, 736, 634 cm⁻¹; ¹H NMR (600 MHz, DMSO-δ6+HClO₄): δ = 1.40 (t, J = 9.1 Hz, 3H, CH₃), 4.49-4.52 (m, 2H, CH₂), 7.24 (d, J = 8.8 Hz, 1H, ArH), 8.29 (t, J = 6.9 Hz, 1H, ArH), 8.42 (d, J = 2.6 Hz, 1H, ArH), 8.68 (s, 1H, ArH), 8.66 (t, J = 8.0 Hz, 1H, ArH), 8.94 (s, 1H, ArH), 9.25 (d, J = 8.9 Hz, 1H, ArH), 9.60 (d, J = 6.7 Hz, 1H, ArH), 9.94 (s, 1H, ArH); ¹³C NMR (150 MHz, DMSO-δ6+HClO₄): δ = 14.3, 63.6, 118.5, 123.8, 125.4, 125.6, 127.3, 127.8, 130.2, 131.1, 137.6, 140.2, 140.3, 141.7, 142.4, 143.3, 163.0, 163.2, 189.2. HRMS (ESI-TOF, [M-CIOT₄]⁺): calcd for C₁₅H₁₀N₂O₆⁺, 367.0925; found, 367.0922.

1-(Ethoxycarbonyl)-7-ethyl-3-(2-hydroxy-5-nitrobenzoyl)quinolinizin-5-ium (4s)
Yellow solid; Mp: 169.3–170.2 °C; IR (KBr): 3439, 2925, 1732, 1664, 1632, 1613, 1591, 1523, 1433, 1338, 1315, 1247, 1228, 1097, 1083, 989, 852, 777, 624 cm⁻¹; ¹H NMR (600 MHz, DMSO-dma+HClO₄): δ = 1.34 (t, J = 7.5 Hz, 3H, CH₃), 1.42 (t, J = 7.1 Hz, 3H, CH₃), 2.96 (d, J = 7.5 Hz, 2H, CH₂), 4.52 (t, J = 7.1 Hz, 2H, CH₂), 7.26 (d, J = 9.7 Hz, 1H, ArH), 8.44 (d, J = 2.5 Hz, 1H, ArH), 8.45 (s, 1H, ArH), 8.63 (d, J = 9.2 Hz, 1H, ArH), 8.91 (s, 1H, ArH), 9.19 (d, J = 9.2 Hz, 1H, ArH), 9.52 (s, 1H, ArH), 9.82 (s, 1H, ArH); ¹³C NMR (150 MHz, DMSO-dma+HClO₄): δ = 140.0, 143.3, 25.6, 63.6, 118.5, 123.9, 125.0, 127.2, 127.7, 130.1, 131.1, 136.7, 137.7, 140.2, 140.9, 141.5, 142.8, 142.8, 162.9, 163.2, 189.3. HRMS (ESI-TOF, [M+ClO₄]⁺): calcd for C₂₁H₁₉N₂O₆⁺, 395.1238; found, 395.1235.

3-(2-Hydroxy-5-nitrobenzoyl)-1-(methoxycarbonyl)quinolizin-5-ium (4t)

Yellow solid; Mp: 122.8–123.6 °C; IR (KBr): 3439, 2923, 1729, 1658, 1634, 1621, 1515, 1437, 1357, 1336, 1292, 1263, 1147, 1121, 1102, 1027, 998, 805, 685, 624 cm⁻¹; ¹H NMR (600 MHz, DMSO-dma+HClO₄): δ = 4.05 (s, 3H, CH₃), 7.26 (d, J = 9.1 Hz, 1H, ArH), 8.33 (t, J = 6.9 Hz, 1H, ArH), 8.44-8.47 (m, 2H, ArH), 8.70 (t, J = 8.0 Hz, 1H, ArH), 8.96 (s, 1H, ArH), 9.26 (d, J = 8.9 Hz, 1H, ArH), 9.63 (d, J = 6.7 Hz, 1H, ArH), 9.98 (s, 1H, ArH); ¹³C NMR (150 MHz, DMSO-dma+HClO₄): δ = 54.4, 118.5, 123.9, 125.5, 125.6, 127.1, 127.9, 130.2, 131.2, 137.8, 140.2, 140.4, 141.7, 142.4, 143.3, 163.0, 163.7, 189.2. HRMS (ESI-TOF, [M+ClO₄]⁺): calcd for C₁₉H₁₃N₂O₆⁺, 353.0768; found, 353.0767.

1-Acetyl-3-(2-hydroxy-5-nitrobenzoyl)quinolizin-5-ium (4u)

Yellow solid; Mp: 242.8-243.6 °C; IR (KBr): 3439, 2924, 1703, 1654, 1630, 1475, 1344, 1289, 1247, 1206, 1121, 1094, 906, 782, 747, 624 cm⁻¹; ¹H NMR (600 MHz, DMSO-dma+HClO₄): δ = 2.84 (s, 3H, CH₃), 7.24 (d, J = 9.0 Hz, 1H, ArH), 8.27 (t, J = 6.9 Hz, 1H, ArH), 8.42 (d, J = 2.8 Hz, 1H, ArH), 8.43-8.45 (m, 1H, ArH), 8.62 (t, J = 8.0 Hz, 1H, ArH), 8.95 (d, J = 8.9 Hz, 1H, ArH), 9.0 (s, 1H, ArH), 9.57 (d, J = 6.7 Hz, 1H, ArH), 9.87 (s, 1H, ArH); ¹³C NMR (150 MHz, DMSO-dma+HClO₄): δ = 30.6, 118.6, 123.9, 125.4, 125.8, 127.8, 130.2, 131.3, 134.3, 134.3, 135.9, 140.0, 140.2, 141.5, 142.3, 163.1, 189.4, 198.6. HRMS (ESI-TOF, [M+ClO₄]⁺): calcd for C₁₉H₁₃N₂O₆⁺, 337.0819; found, 337.0818.
1-Cyano-3-(2-hydroxy-5-nitrobenzoyl)quinolinizin-5-ium (4v)

Yellow solid; Mp: >300 °C; IR (KBr): 3432, 2245, 1683, 1634, 1525, 1498, 1438, 1339, 1296, 1261, 1121, 1102, 898, 837, 627 cm⁻¹; ¹H NMR (600 MHz, DMSO-d₆+HClO₄): δ = 7.25-7.26 (m, 1H, ArH), 8.40-8.43 (m, 2H, ArH), 8.45-8.46 (m, 1H, ArH), 8.76 (s, 1H, ArH), 8.78 (d, J = 3.4 Hz, 1H, ArH), 9.37 (d, J = 1.1 Hz, 1H, ArH), 9.69 (d, J = 6.7 Hz, 1H, ArH), 10.07 (s, 1H, ArH); ¹³C NMR (150 MHz, DMSO-d₆+HClO₄): δ = 110.6, 113.9, 118.7, 123.6, 125.3, 126.4, 127.9, 130.3, 131.6, 140.3, 140.5, 142.6, 143.2, 163.2, 188.6. HRMS (ESI-TOF, [M-CI₂O₄⁺]): calc'd for C₁₇H₁₁N₃O₄⁺, 320.0666; found, 320.0660.

1-(Ethoxycarbonyl)-3-(2-hydroxybenzoyl) quinolinizin-5-ium (4w)

Yellow solid; Mp: 170.3–171.1 °C; IR (KBr): 3439, 2925, 1730, 1647, 1635, 1620, 1487, 1342, 1258, 1222, 1156, 1104, 1078, 769, 665, 624 cm⁻¹; ¹H NMR (600 MHz, DMSO-d₆+HClO₄): δ = 1.42 (t, J = 7.1 Hz, 3H, CH₃), 4.51-4.54 (m, 2H, CH₂), 7.05-7.10 (m, 2H, ArH), 7.60-7.66 (m, 2H, ArH), 8.31 (t, J = 7.0 Hz, 1H, ArH), 8.66-8.68 (m, 1H, ArH), 8.93 (s, 1H, ArH), 9.27 (d, J = 8.9 Hz, 1H, ArH), 9.66 (d, J = 6.5 Hz, 1H, ArH), 9.93 (s, 1H, ArH); ¹³C NMR (150 MHz, DMSO-d₆+HClO₄): δ = 14.4, 63.5, 117.9, 120.3, 122.9, 125.3, 125.5, 127.1, 132.0, 132.0, 136.2, 138.3, 140.2, 141.3, 142.2, 142.5, 158.4, 163.3, 191.4. HRMS (ESI-TOF, [M-CI₂O₄⁺]): calc'd for C₁₉H₁₆NO₄⁺, 322.1074; found, 322.1071.

1-Cyano-3-(2-hydroxybenzoyl)quinolinizin-5-ium (4x)

Yellow solid; Mp: >300 °C; IR (KBr): 3439, 2197, 1637, 1611, 1485, 1436, 1351, 1319, 1287, 1242, 1174, 1121, 1096, 810, 705, 625 cm⁻¹; ¹H NMR (600 MHz, DMSO-d₆+HClO₄): δ = 7.06 (d, J = 7.1 Hz, 1H, ArH), 7.09 (d, J = 8.3 Hz, 1H, ArH), 7.61 (d, J = 7.4 Hz, 1H, ArH), 7.64 (d, J = 8.0 Hz, 1H, ArH), 8.39 (s, 1H, ArH), 8.76 (s, 2H, ArH), 9.28 (s, 1H, ArH), 9.70 (d, J = 6.1 Hz, 1H, ArH), 10.01 (s, 1H, ArH); ¹³C NMR (150 MHz, DMSO-d₆+HClO₄): δ = 110.6, 113.9, 118.0, 120.3, 122.7, 125.2, 126.3, 132.1, 132.6, 136.4, 140.4, 142.5, 142.8, 142.9, 158.5, 190.5. HRMS (ESI-TOF, [M-CI₂O₄⁺]): calc'd for C₁₇H₁₁N₂O₄⁺, 275.0815; found, 275.0814.
1-Cyano-3-(2-hydroxy-5-methylbenzoyl)quinolin-5-ium (4y)

Yellow solid; Mp: >300 °C; IR (KBr): 3438, 2925, 2022, 1637, 1489, 1435, 1353, 1289, 1248, 1196, 1173, 1094, 919, 790, 678, 625 cm⁻¹; ¹H NMR (600 MHz, DMSO-d₆+HClO₄): δ = 2.26 (s, 3H, CH₃), 6.96 (d, J = 9.0 Hz, 1H, ArH), 7.41 (d, J = 7.0 Hz, 2H, ArH), 8.33–8.36 (m, 1H, ArH), 8.70 (s, 1H, ArH), 8.72 (d, J = 6.4 Hz, 1H, ArH), 9.22 (s, 1H, ArH), 9.66 (d, J = 6.7 Hz, 1H, ArH), 9.96 (s, 1H, ArH); ¹³C NMR (150 MHz, DMSO-d₆+HClO₄): δ = 20.2, 110.6, 113.9, 117.9, 122.2, 125.2, 126.2, 129.2, 131.8, 132.6, 137.3, 140.3, 142.4, 142.6, 142.7, 142.9, 156.4, 190.6. HRMS (ESI-TOF, [M-Clo₄⁺]⁺): calcd for C₁₁H₁₂N₂O₅⁺, 289.0972; found, 289.0970.

1-Acetyl-3-(2-hydroxy-5-methylbenzoyl)quinolin-5-ium (4z)

Yellow solid; Mp: 206.5–207.3 °C; IR (KBr): 3432, 2925, 1702, 1634, 1488, 1460, 1438, 1356, 1294, 1251, 1177, 1121, 1094, 785, 677, 624 cm⁻¹; ¹H NMR (600 MHz, DMSO-d₆+HClO₄): δ = 2.34 (s, 3H, CH₃), 2.89 (s, 3H, CH₃), 7.04 (d, J = 8.4 Hz, 1H, ArH), 7.47–7.49 (m, 1H, ArH), 7.52 (s, 1H, ArH), 8.31 (t, J = 6.5 Hz, 1H, ArH), 8.64–8.66 (m, 1H, ArH), 9.02 (s, 1H, ArH), 9.04 (s, 1H, ArH), 9.65 (d, J = 6.7 Hz, 1H, ArH), 9.87(s, 1H, ArH); ¹³C NMR (150 MHz, DMSO-d₆+HClO₄): δ = 20.2, 30.5, 117.9, 122.3, 125.2, 125.6, 129.2, 131.9, 132.4, 134.0, 136.7, 137.2, 139.9, 141.1, 141.3, 141.3, 156.6, 191.7, 198.5. HRMS (ESI-TOF, [M-Clo₄⁺]⁺): calcd for C₁₀H₁₆NO₃⁺, 306.1125; found, 306.1122.

1-Cyano-3-(2-hydroxy-4,6-dimethylbenzoyl)quinolin-5-ium (4a')

Yellow solid; Mp: 283.5–284.5 °C; IR (KBr): 3437, 2198, 1643, 1563, 1468, 1399, 1305, 1256, 1222, 1109, 837, 788, 624 cm⁻¹; ¹H NMR (600 MHz, DMSO-d₆+HClO₄): δ = 2.19 (s, 3H, CH₃), 2.31 (s, 3H, CH₃), 6.68 (s, 1H, ArH), 6.73 (s, 1H, ArH), 8.34–8.37 (m, 1H, ArH), 8.74 (d, J = 4.1 Hz, 2H, ArH), 9.18 (d, J = 1.3 Hz, 1H, ArH), 9.77 (d, J = 6.8 Hz, 1H, ArH), 9.90(s, 1H, ArH); ¹³C NMR (150 MHz, DMSO-d₆+HClO₄): δ = 19.6, 21.6, 111.2, 113.8, 114.8, 121.3, 123.5, 125.2, 126.2, 132.2, 138.6, 140.6, 141.8, 142.9, 143.2, 143.2, 143.2, 156.4, 192.0. HRMS (ESI-TOF, [M-Clo₄⁺]⁺): calcd for C₁₀H₁₃N₂O₄⁺, 303.1128; found,
1-Acetyl-3-(2-hydroxy-4,6-dimethylbenzoyl)quinolizin-5-ium (4b′)

Yellow solid; Mp: 226.5–227.5 °C; IR (KBr): 3430, 1701, 1635, 1553, 1473, 1400, 1375, 1256, 1163, 1120, 1008, 804, 665, 625 cm⁻¹; ¹H NMR (600 MHz, DMSO-d₆+HClO₄): δ = 2.21 (s, 3H, CH₃), 2.31 (s, 3H, CH₃), 2.86 (s, 3H, CH₃), 6.68 (s, 1H, ArH), 6.73 (s, 1H, ArH), 8.23-8.25 (m, 1H, ArH), 8.59-8.62 (m, 1H, ArH), 8.94-8.97 (m, 2H, ArH), 9.69 (d, J = 6.8 Hz, 1H, ArH), 9.71 (s, 1H, ArH); ¹³C NMR (150 MHz, DMSO-d₆+HClO₄): δ = 19.6, 21.6, 30.5, 114.8, 121.6, 123.4, 125.3, 125.7, 131.9, 134.6, 135.4, 138.4, 140.2, 141.4, 141.6, 142.0, 142.9, 156.3, 198.5. HRMS (ESI-TOF, [M-ClO₄]⁺): calcd for C₂₀H₁₈NO₅⁺, 320.1281; found, 320.1273.

3-(5-Chloro-2-hydroxy-4-methylbenzoyl)-1-cyanoquinolizin-5-ium (4c′)

Yellow solid; Mp: >300 °C; IR (KBr): 3439, 2194, 1637, 1561, 1483, 1401, 1325, 1246, 1210, 1122, 1108, 824, 785, 625 cm⁻¹; ¹H NMR (600 MHz, DMSO-d₆+HClO₄): δ = 2.37 (s, 3H, CH₃), 7.04 (s, 1H, ArH), 7.60 (s, 1H, ArH), 8.36-8.39 (m, 1H, ArH), 8.72-8.75 (m, 2H, ArH), 9.26 (d, J = 1.1 Hz, 1H, ArH), 9.66 (d, J = 6.7 Hz, 1H, ArH), 9.99 (s, 1H, ArH); ¹³C NMR (150 MHz, DMSO-d₆+HClO₄): δ = 20.6, 110.6, 113.9, 120.4, 122.1, 124.5, 125.2, 126.3, 131.3, 132.3, 140.3, 142.6, 142.7, 142.8, 143.0, 144.2, 157.0, 188.9. HRMS (ESI-TOF, [M-ClO₄]⁺): calcd for C₁₈H₁₂ClN₂O₂⁺, 323.0582; found, 323.0573.

3-(3,5-Dichloro-2-hydroxybenzoyl)-1-(ethoxycarbonyl)quinolizin-5-ium (4d′)

Yellow solid; Mp: >300 °C; IR (KBr): 3432, 3065, 1709, 1656, 1640, 1462, 1394, 1318, 1278, 1237, 1088, 1035, 919, 872, 797, 624 cm⁻¹; ¹H NMR (600 MHz, DMSO-d₆+HClO₄): δ = 1.41 (t, J = 7.1 Hz, 3H, CH₃), 4.49-4.53 (m, 2H, CH₂), 7.61 (d, 1H, J = 2.6 Hz, ArH), 7.92 (d, J = 2.5 Hz, 1H, ArH), 8.28-8.31 (m, 1H, ArH), 8.65-8.68 (m, 1H, ArH), 8.93 (d, J = 1.5 Hz, 1H, ArH), 9.27 (d, J = 8.9 Hz, 1H, ArH), 9.58 (d, J = 6.7 Hz, 1H, ArH), 9.88 (s, 1H, ArH); ¹³C NMR (150 MHz, DMSO-d₆+HClO₄): δ = 14.3, 63.6, 124.3, 125.5, 125.5, 126.4, 127.5, 129.8, 129.8, 130.9, 134.4, 137.6, 140.3, 141.7, 142.3, 143.2, 152.5, 163.1, 190.0.

1-Cyano-3-(3,5-dichloro-2-hydroxybenzoyl)quinolizin-5-ium (4e')

Yellow solid; Mp: >300 °C; IR (KBr): 3440, 2197, 1637, 1600, 1560, 1483, 1401, 1325, 1217, 1189, 1103, 875, 848, 767, 700 cm⁻¹; ¹H NMR (600 MHz, DMSO-⁶+HClO₄): δ = 7.53 (d, J = 2.5 Hz, 1H, ArH), 7.87 (d, J = 2.5 Hz, 1H, ArH), 8.34-8.36 (m, 1H, ArH), 8.73 (d, J = 4.2 Hz, 2H, ArH), 9.22 (d, J = 1.0 Hz, 1H, ArH), 9.62 (d, J = 6.6 Hz, 1H, ArH), 9.95 (s, 1H, ArH); ¹³C NMR (150 MHz, DMSO-⁶+HClO₄): δ = 111.0, 113.7, 124.5, 125.2, 126.2, 126.4, 129.7, 129.7, 131.3, 134.5, 140.5, 142.1, 143.0, 143.1, 152.5, 189.2. HRMS (ESI-TOF, [M-ClO₄]⁺): calcd for C₁₉H₉Cl₂N₂O₂⁺, 343.0036; found, 343.0031.
X-ray Structure and Data of 4a.

Figure S1. X-Ray crystal structure of 4a

Table S1. Crystal data and structure refinement for 4a

<table>
<thead>
<tr>
<th>Property</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Identification code</td>
<td>1</td>
</tr>
<tr>
<td>Empirical formula</td>
<td>C19 H15 Cl F N O8</td>
</tr>
<tr>
<td>Formula weight</td>
<td>439.77</td>
</tr>
<tr>
<td>Temperature</td>
<td>296.15 K</td>
</tr>
<tr>
<td>Wavelength</td>
<td>0.71073 Å</td>
</tr>
<tr>
<td>Crystal system</td>
<td>Monoclinic</td>
</tr>
<tr>
<td>Space group</td>
<td>P 1 21/n 1</td>
</tr>
<tr>
<td>Unit cell dimensions</td>
<td>a = 8.1097(12) Å, α = 90°.</td>
</tr>
<tr>
<td></td>
<td>b = 14.3670(19) Å, β = 98.194(2)°.</td>
</tr>
<tr>
<td></td>
<td>c = 16.622(2) Å, γ = 90°.</td>
</tr>
<tr>
<td>Volume</td>
<td>1916.9(4) Å³</td>
</tr>
<tr>
<td>Z</td>
<td>4</td>
</tr>
<tr>
<td>Density (calculated)</td>
<td>1.524 Mg/m³</td>
</tr>
<tr>
<td>Absorption coefficient</td>
<td>0.258 mm⁻¹</td>
</tr>
<tr>
<td>F(000)</td>
<td>904</td>
</tr>
<tr>
<td>Theta range for data collection</td>
<td>2.660 to 27.867°</td>
</tr>
<tr>
<td>Index ranges</td>
<td>-10<=h<=10, -18<=k<=15, -21<=l<=20</td>
</tr>
<tr>
<td>Reflections collected</td>
<td>11596</td>
</tr>
<tr>
<td>Independent reflections</td>
<td>4491 [R(int) = 0.0209]</td>
</tr>
<tr>
<td>Completeness to theta = 25.242°</td>
<td>99.9 %</td>
</tr>
<tr>
<td>Absorption correction</td>
<td>Semi-empirical from equivalents</td>
</tr>
<tr>
<td>Max. and min. transmission</td>
<td>0.7456 and 0.6873</td>
</tr>
<tr>
<td>Refinement method</td>
<td>Full-matrix least-squares on F²</td>
</tr>
<tr>
<td>Data / restraints / parameters</td>
<td>4491 / 0 / 273</td>
</tr>
<tr>
<td>Goodness-of-fit on F²</td>
<td>1.034</td>
</tr>
<tr>
<td>Final R indices [I>2sigma(I)]</td>
<td>R1 = 0.0431, wR2 = 0.1061</td>
</tr>
<tr>
<td></td>
<td>R1 = 0.0628, wR2 = 0.1193</td>
</tr>
<tr>
<td>Extinction coefficient</td>
<td>n/a</td>
</tr>
<tr>
<td>Largest diff. peak and hole</td>
<td>0.256 and -0.467 e.Å⁻³</td>
</tr>
</tbody>
</table>
Table S2. Bond lengths [Å] and angles [deg] for 4a

<table>
<thead>
<tr>
<th>Bond</th>
<th>Length</th>
<th>Angle</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cl(1)-O(1)</td>
<td>1.4236(16)</td>
<td>C(1)-C(2)-H(2)</td>
</tr>
<tr>
<td>Cl(1)-O(2)</td>
<td>1.4209(17)</td>
<td>C(1)-C(2)-C(3)</td>
</tr>
<tr>
<td>Cl(1)-O(3)</td>
<td>1.4207(17)</td>
<td>C(3)-C(2)-H(2)</td>
</tr>
<tr>
<td>Cl(1)-O(4)</td>
<td>1.398(2)</td>
<td>C(2)-C(3)-C(4)</td>
</tr>
<tr>
<td>F(1)-C(1)</td>
<td>1.362(2)</td>
<td>C(2)-C(3)-C(17)</td>
</tr>
<tr>
<td>O(5)-C(4)</td>
<td>1.228(2)</td>
<td>C(17)-C(3)-C(4)</td>
</tr>
<tr>
<td>O(6)-C(9)</td>
<td>1.319(2)</td>
<td>O(5)-C(4)-C(5)</td>
</tr>
<tr>
<td>O(7)-C(9)</td>
<td>1.197(2)</td>
<td>C(3)-C(4)-C(5)</td>
</tr>
<tr>
<td>O(8)-H(8)</td>
<td>0.82</td>
<td>C(6)-C(5)-C(4)</td>
</tr>
<tr>
<td>O(8)-H(8)</td>
<td>1.345(3)</td>
<td>C(6)-C(5)-C(12)</td>
</tr>
<tr>
<td>N(1)-C(6)</td>
<td>1.379(2)</td>
<td>C(12)-C(5)-C(4)</td>
</tr>
<tr>
<td>N(1)-C(7)</td>
<td>1.387(2)</td>
<td>N(1)-C(6)-H(6)</td>
</tr>
<tr>
<td>N(1)-C(16)</td>
<td>1.380(2)</td>
<td>C(5)-C(6)-N(1)</td>
</tr>
<tr>
<td>C(1)-C(2)</td>
<td>1.361(3)</td>
<td>C(5)-C(6)-H(6)</td>
</tr>
<tr>
<td>C(1)-C(19)</td>
<td>1.378(3)</td>
<td>N(1)-C(7)-C(8)</td>
</tr>
<tr>
<td>C(2)-H(2)</td>
<td>0.93</td>
<td>N(1)-C(7)-C(13)</td>
</tr>
<tr>
<td>C(2)-C(3)</td>
<td>1.405(3)</td>
<td>C(13)-C(7)-C(8)</td>
</tr>
<tr>
<td>C(3)-C(4)</td>
<td>1.464(3)</td>
<td>C(7)-C(8)-C(9)</td>
</tr>
<tr>
<td>C(3)-C(17)</td>
<td>1.405(2)</td>
<td>C(12)-C(8)-C(7)</td>
</tr>
<tr>
<td>C(4)-C(5)</td>
<td>1.501(2)</td>
<td>C(12)-C(8)-C(9)</td>
</tr>
<tr>
<td>C(5)-C(6)</td>
<td>1.352(2)</td>
<td>O(6)-C(9)-C(8)</td>
</tr>
<tr>
<td>C(5)-C(12)</td>
<td>1.407(2)</td>
<td>O(7)-C(9)-O(6)</td>
</tr>
<tr>
<td>C(6)-H(6)</td>
<td>0.93</td>
<td>O(7)-C(9)-C(8)</td>
</tr>
<tr>
<td>C(7)-C(8)</td>
<td>1.428(2)</td>
<td>O(6)-C(10)-H(10A)</td>
</tr>
<tr>
<td>C(7)-C(13)</td>
<td>1.402(3)</td>
<td>O(6)-C(10)-H(10B)</td>
</tr>
<tr>
<td>C(8)-C(9)</td>
<td>1.503(2)</td>
<td>O(6)-C(10)-C(11)</td>
</tr>
<tr>
<td>C(8)-C(12)</td>
<td>1.365(2)</td>
<td>H(10A)-C(10)-H(10B)</td>
</tr>
<tr>
<td>C(10)-H(10A)</td>
<td>0.97</td>
<td>C(11)-C(10)-H(10A)</td>
</tr>
<tr>
<td>C(10)-H(10B)</td>
<td>0.97</td>
<td>C(11)-C(10)-H(10B)</td>
</tr>
<tr>
<td>C(10)-C(11)</td>
<td>1.488(3)</td>
<td>C(10)-C(11)-H(11A)</td>
</tr>
<tr>
<td>C(11)-H(11A)</td>
<td>0.96</td>
<td>C(10)-C(11)-H(11B)</td>
</tr>
<tr>
<td>C(11)-H(11B)</td>
<td>0.96</td>
<td>C(10)-C(11)-H(11C)</td>
</tr>
<tr>
<td>C(11)-H(11C)</td>
<td>0.96</td>
<td>H(11A)-C(11)-H(11B)</td>
</tr>
<tr>
<td>Bond</td>
<td>Distance</td>
<td>Bond</td>
</tr>
<tr>
<td>---------------------</td>
<td>------------</td>
<td>---------------------</td>
</tr>
<tr>
<td>C(12)-H(12)</td>
<td>0.93</td>
<td>H(11A)-C(11)-H(11C)</td>
</tr>
<tr>
<td>C(13)-H(13)</td>
<td>0.93</td>
<td>H(11B)-C(11)-H(11C)</td>
</tr>
<tr>
<td>C(13)-C(14)</td>
<td>1.360(3)</td>
<td>C(5)-C(12)-H(12)</td>
</tr>
<tr>
<td>C(14)-H(14)</td>
<td>0.93</td>
<td>C(8)-C(12)-C(5)</td>
</tr>
<tr>
<td>C(14)-C(15)</td>
<td>1.393(3)</td>
<td>C(8)-C(12)-H(12)</td>
</tr>
<tr>
<td>C(15)-H(15)</td>
<td>0.93</td>
<td>C(7)-C(13)-H(13)</td>
</tr>
<tr>
<td>C(15)-C(16)</td>
<td>1.342(3)</td>
<td>C(14)-C(13)-C(7)</td>
</tr>
<tr>
<td>C(16)-H(16)</td>
<td>0.93</td>
<td>C(14)-C(13)-H(13)</td>
</tr>
<tr>
<td>C(17)-C(18)</td>
<td>1.392(3)</td>
<td>C(13)-C(14)-H(14)</td>
</tr>
<tr>
<td>C(18)-H(18)</td>
<td>0.93</td>
<td>C(13)-C(14)-C(15)</td>
</tr>
<tr>
<td>C(19)-H(19)</td>
<td>1.370(3)</td>
<td>C(15)-C(14)-H(14)</td>
</tr>
<tr>
<td>O(2)-Cl(1)-O(1)</td>
<td>109.03(10)</td>
<td>C(16)-C(15)-C(14)</td>
</tr>
<tr>
<td>O(3)-Cl(1)-O(1)</td>
<td>109.07(12)</td>
<td>C(16)-C(15)-H(15)</td>
</tr>
<tr>
<td>O(3)-Cl(1)-O(2)</td>
<td>108.68(12)</td>
<td>N(1)-C(16)-H(16)</td>
</tr>
<tr>
<td>O(4)-Cl(1)-O(1)</td>
<td>109.14(15)</td>
<td>C(15)-C(16)-N(1)</td>
</tr>
<tr>
<td>O(4)-Cl(1)-O(2)</td>
<td>110.89(16)</td>
<td>C(15)-C(16)-H(16)</td>
</tr>
<tr>
<td>O(4)-Cl(1)-O(3)</td>
<td>110.00(15)</td>
<td>O(8)-C(17)-C(3)</td>
</tr>
<tr>
<td>C(9)-O(6)-C(10)</td>
<td>117.01(16)</td>
<td>O(8)-C(17)-C(18)</td>
</tr>
<tr>
<td>C(17)-O(8)-H(8)</td>
<td>109.5</td>
<td>C(18)-C(17)-C(3)</td>
</tr>
<tr>
<td>C(6)-N(1)-C(7)</td>
<td>122.04(15)</td>
<td>C(17)-C(18)-H(18)</td>
</tr>
<tr>
<td>C(6)-N(1)-C(16)</td>
<td>117.23(15)</td>
<td>C(19)-C(18)-C(17)</td>
</tr>
<tr>
<td>C(16)-N(1)-C(7)</td>
<td>120.73(15)</td>
<td>C(19)-C(18)-H(18)</td>
</tr>
<tr>
<td>F(1)-C(1)-C(19)</td>
<td>118.62(18)</td>
<td>C(1)-C(19)-H(19)</td>
</tr>
<tr>
<td>C(2)-C(1)-F(1)</td>
<td>118.56(19)</td>
<td>C(18)-C(19)-C(1)</td>
</tr>
<tr>
<td>C(2)-C(1)-C(19)</td>
<td>122.8(2)</td>
<td>C(18)-C(19)-H(19)</td>
</tr>
</tbody>
</table>
Figure S2. 1H NMR (600 MHz, DMSO-d_6) spectra of compound 3a
Figure S3. 13C NMR (150 MHz, DMSO-d_6) spectra of compound 3a
Figure S4. 19F NMR (564 MHz, DMSO-d_6) spectra of compound 3a
Figure S5. 1H NMR (600 MHz, DMSO-d_6) spectra of compound 3b
Figure S6. 13C NMR (150 MHz, DMSO-d_6) spectra of compound 3b
Figure S7. 19F NMR (564 MHz, DMSO-d_6) spectra of compound 3b
Figure S8. 1H NMR (600 MHz, DMSO-d_6) spectra of compound 3c
Figure S9. 13C NMR (150 MHz, DMSO-d_6) spectra of compound 3c
Figure S10. 19F NMR (564 MHz, DMSO-d_6) spectra of compound 3c
Figure S11. 1H NMR (600 MHz, DMSO-d_6) spectra of compound 3d
Figure S12. 13C NMR (150 MHz, DMSO-d_6) spectra of compound 3d
Figure S13. 19F NMR (564 MHz, DMSO-d_6) spectra of compound 3d

Figure S14. 1H NMR (600 MHz, DMSO-d_6) spectra of compound 3e
Figure S15. 13C NMR (150 MHz, DMSO-d_6) spectra of compound 3e
Figure S16. 19F NMR (564 MHz, DMSO-d_6) spectra of compound 3e
Figure S17. 1H NMR (600 MHz, DMSO-d_6) spectra of compound 3f
Figure S18. 13C NMR (150 MHz, DMSO-d_6) spectra of compound 3f
Figure S19. 1H NMR (600 MHz, DMSO-d_6) spectra of compound 3g
Figure S20. 13C NMR (150 MHz, DMSO-d_6) spectra of compound 3g
Figure S21. 1H NMR (600 MHz, DMSO-d_6) spectra of compound 3h
Figure S2. 13C NMR (150 MHz, DMSO-d_6) spectra of compound 3h
Figure S23. 1H NMR (600 MHz, DMSO-d_6) spectra of compound 3i
Figure S24. 13C NMR (150 MHz, DMSO-d_6) spectra of compound 3i
Figure S25. 1H NMR (600 MHz, DMSO-d_6+HClO$_4$) spectra of compound 4a
Figure S26. 13C NMR (150 MHz, DMSO-d_6+HClO$_4$) spectra of compound 4a
Figure S27. 19F NMR (564 MHz, DMSO-d_6+HClO4) spectra of compound 4a
Figure S28. 1H NMR (600 MHz, DMSO-d_6+HClO$_4$) spectra of compound 4b
Figure S29. 13C NMR (150 MHz, DMSO-d_6+HClO$_4$) spectra of compound 4b
Figure S30. 19F NMR (564 MHz, DMSO-d_6+HClO$_4$) spectra of compound 4b
Figure S31. 1H NMR (600 MHz, DMSO-d_6+HClO$_4$) spectra of compound 4c
Figure S32. 13C NMR (150 MHz, DMSO-d_6+HClO$_4$) spectra of compound 4c
Figure S33. 19F NMR (564 MHz, DMSO-d_6+HClO$_4$) spectra of compound 4c
Figure S34. 1H NMR (600 MHz, DMSO-d_6+HClO$_4$) spectra of compound 4d
Figure S35. 13C NMR (150 MHz, DMSO-d_6+HClO$_4$) spectra of compound 4d
Figure S36. 19F NMR (564 MHz, DMSO-d_6+HClO$_4$) spectra of compound 4d.
Figure S37. 1H NMR (600 MHz, DMSO-d_6+HClO$_4$) spectra of compound 4e
Figure S38. 13C NMR (150 MHz, DMSO-${d_6}+\text{HClO}_4$) spectra of compound 4e
Figure S39. 19F NMR (564 MHz, DMSO-d_6+HClO$_4$) spectra of compound 4e
Figure S40. 1H NMR (600 MHz, DMSO-d_6+HClO$_4$) spectra of compound 4f
Figure S41. 13C NMR (150 MHz, DMSO-d_6+HClO$_4$) spectra of compound 4f
Figure S42. 19F NMR (564 MHz, DMSO-d_6+HClO$_4$) spectra of compound 4f
Figure S43. 1H NMR (600 MHz, DMSO-d_6+HClO$_4$) spectra of compound 4g
Figure S44. 13C NMR (150 MHz, DMSO-d_6+HClO$_4$) spectra of compound 4g
Figure S45. 1H NMR (600 MHz, DMSO-d_6+HClO$_4$) spectra of compound 4h
Figure S46. 13C NMR (150 MHz, DMSO-d_6+HClO$_4$) spectra of compound 4h
Figure S47. 1H NMR (600 MHz, DMSO-d_6+HClO$_4$) spectra of compound 4i
Figure S48. 13C NMR (150 MHz, DMSO-d_6+HClO$_4$) spectra of compound 4i
Figure S49. 1H NMR (600 MHz, DMSO-d_6+HClO$_4$) spectra of compound 4j
Figure S50. 13C NMR (150 MHz, DMSO-d_6+HClO$_4$) spectra of compound 4j.
Figure S51. 1H NMR (600 MHz, DMSO-d_6+HClO$_4$) spectra of compound 4k
Figure S52. 13C NMR (150 MHz, DMSO-d_6+HClO$_4$) spectra of compound 4k
Figure S53. 1H NMR (600 MHz, DMSO-d$_6$+HClO$_4$) spectra of compound 4l
Figure S54. 13C NMR (150 MHz, DMSO-d_6+HClO$_4$) spectra of compound 4l
Figure S55. 1H NMR (600 MHz, DMSO-d_6+HClO$_4$) spectra of compound 4m
Figure S56. 13C NMR (150 MHz, DMSO-d_6+HClO$_4$) spectra of compound 4m
Figure S57. 1H NMR (600 MHz, DMSO-d_6+HClO$_4$) spectra of compound 4n
Figure S58. 13C NMR (150 MHz, DMSO-d_6+HClO$_4$) spectra of compound 4n
Figure S59. 1H NMR (600 MHz, DMSO-d_6+HClO$_4$) spectra of compound 4o
Figure S60. 13C NMR (150 MHz, DMSO-d_6+HClO$_4$) spectra of compound 4o
Figure S61. 1H NMR (600 MHz, DMSO-d_6+HClO$_4$) spectra of compound 4p
Figure S62. 13C NMR (150 MHz, DMSO-d_6+HClO$_4$) spectra of compound 4p
Figure S63. 1H NMR (600 MHz, DMSO-$_d_6$+HClO$_4$) spectra of compound 4q
Figure S6. 13C NMR (150 MHz, DMSO-d_6+HClO$_4$) spectra of compound 4q
Figure S65. 1H NMR (600 MHz, DMSO-d_6+HClO$_4$) spectra of compound 4r
Figure S66. 13C NMR (150 MHz, DMSO-d$_6$+HClO$_4$) spectra of compound 4r
Figure S67. 1H NMR (600 MHz, DMSO-d_6+HClO$_4$) spectra of compound 4s
Figure S68. 13C NMR (150 MHz, DMSO-d_6+HClO$_4$) spectra of compound 4s
Figure S69. 1H NMR (600 MHz, DMSO-d_6+HClO$_4$) spectra of compound 4t
Figure S70. 13C NMR (150 MHz, DMSO-d_6+HClO$_4$) spectra of compound 4t
Figure S71. 1H NMR (600 MHz, DMSO-d_6+HClO$_4$) spectra of compound 4u
Figure S72. 13C NMR (150 MHz, DMSO-d_6+HClO$_4$) spectra of compound 4u
Figure S73. 1H NMR (600 MHz, DMSO-d_6+HClO$_4$) spectra of compound 4v
Figure S74. 13C NMR (150 MHz, DMSO-d_6+HClO$_4$) spectra of compound 4v
Figure S75. 1H NMR (600 MHz, DMSO-d_6+HClO$_4$) spectra of compound 4w
Figure S76. 13C NMR (150 MHz, DMSO-d_6+HClO$_4$) spectra of compound 4w
Figure S77. 1H NMR (600 MHz, DMSO-d_6+HClO$_4$) spectra of compound 4x
Figure S78. 13C NMR (150 MHz, DMSO-d_6+HClO$_4$) spectra of compound 4x
Figure S79. 1H NMR (600 MHz, DMSO-d_6+HClO$_4$) spectra of compound 4y
Figure S80. 13C NMR (150 MHz, DMSO-d_6+HClO$_4$) spectra of compound 4y
Figure S81. 1H NMR (600 MHz, DMSO-d_6+HClO$_4$) spectra of compound 4z
Figure S82. 13C NMR (150 MHz, DMSO-d_6+HClO$_4$) spectra of compound 4z
Figure S83. 1H NMR (600 MHz, DMSO-d_6+HClO$_4$) spectra of compound 4a'}
Figure S84. 13C NMR (150 MHz, DMSO-d_6+HClO$_4$) spectra of compound 4a'}
Figure S85. 1H NMR (600 MHz, DMSO-d_6+HClO$_4$) spectra of compound 4b'
Figure S86. 13C NMR (150 MHz, DMSO-d_6+HClO$_4$) spectra of compound $4b'$
Figure S8. 1H NMR (600 MHz, DMSO-d_6+HClO$_4$) spectra of compound 4c'
Figure S8. 13C NMR (150 MHz, DMSO-d_6+HClO$_4$) spectra of compound 4c'
Figure S89. 1H NMR (600 MHz, DMSO-d_6+HClO$_4$) spectra of compound 4d'}
Figure S90. 13C NMR (150 MHz, DMSO-d_6+HClO$_4$) spectra of compound 4d'
Figure S91. 1H NMR (600 MHz, DMSO-d_6+HClO$_4$) spectra of compound 4e'
Figure S92. 13C NMR (150 MHz, DMSO-d_6+HClO$_4$) spectra of compound 4e'
Figure S93. HPLC of the reaction mixture
Figure S94. HRMS of substrate 2a
Figure S95. HRMS of intermediate 5a
Figure S96. HRMS of intermediate 6a/7a/8a
Figure S97. HRMS of intermediate 6a/7a/8a
2 79 RT: 1.38 AV: 1 NL: 6.17E5
T: FTMS + c ESI Full ms [100.00-400.00]

358.1082
C$_{19}$H$_{17}$O$_{5}$N F = 358.1085

357.2954
C$_{18}$H$_{23}$O$_{3}$N$_{2}$F Na = 357.1585

Figure S98. HRMS of intermediate 6a/7a/8a
Figure S99. HRMS of compound 3a
Figure S100. HPLC of the reaction mixture
Figure S101. HRMS of compound 4a/9a
Figure S102. HRMS of compound 4a/9a