Electronic Supplementary Information

Non-catalytic oxidative depolymerization of lignin in perfluorodecalin to produce phenolic monomers

Parinaz Hafezisefat,^a Jake K. Lindstrom, ^a Robert C. Brown, ^{*a} Long Qi*^b

^a Department of Mechanical Engineering, Iowa State University, Ames, Iowa, USA, 50011

^b U.S. DOE Ames Laboratory, Iowa State University, Ames, Iowa, USA, 50011

Physical properties of the evaluated solvents

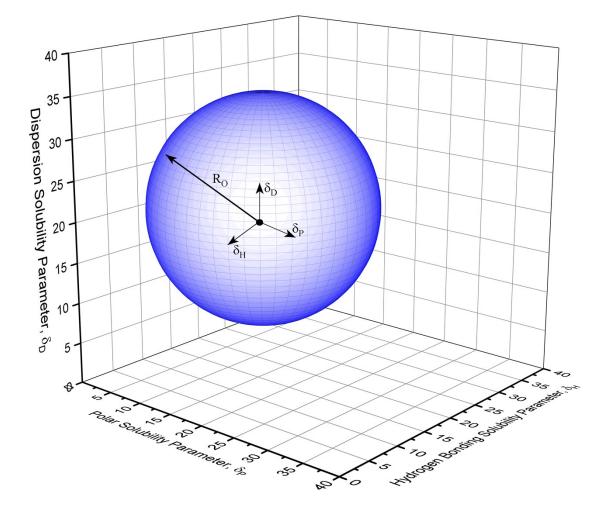

	Perfluorodecalin	Acetonitrile	Ethyl acetate	Butanol	Methanol
Molecular weight (g/mol)	463	41.05	88.11	74.12	32.04
Density (g/ml) 1.93		0.786	0.9	0.810	0.79
Boiling point(°C)	140	81.6	77	117.6	64.7
Vapor pressure (bar @ 20 °C)	0.008	0.12	0.126	0.0067	0.169

Table. S1 Physical properties of evaluated solvents.¹

Hansen solubility parameters

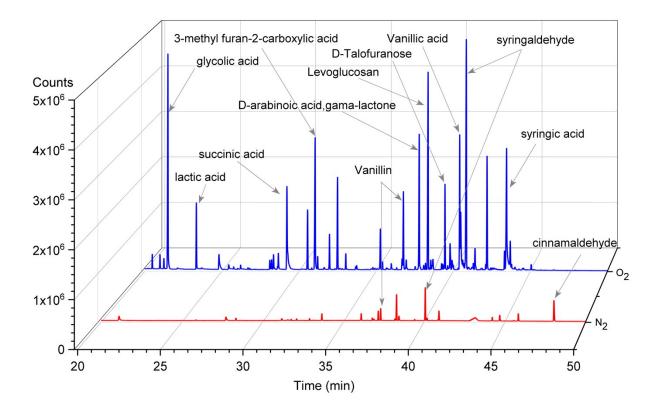

	Oxygen	Perfluorodecalin	Ethyl acetate	Benzene	Butanol	Acetonitrile	Methanol	Water
δ_D	11.7	13.15	15.8	18.4	16	15.3	15.1	15.5
δ_P	0	0	5.3	0	5.7	18	12.3	16
δ_{H}	0	0	7.2	2	15.8	6.1	22.3	42
δ_t	11.7	13.15	18.15	18.5	23.2	24.4	29.6	47.86
R_a	-	2.9	12.1	13.5	18.87	20.3	26.35	45.86

Table. S2 Hansen solubility parameters of $oxygen^2$, perfluorodecalin³ and organic solvents⁴ and the solubility distance (R_a) of oxygen and solvents⁴.

Fig. S1 Hansen solubility sphere of lignin ⁴ (δ_D = 21.9 MPa^{0.5}. δ_P =14.1 MPa^{0.5}, δ_H =16.9 MPa^{0.5}, R_o =13.7 MPa^{0.5})

Gas chromatograms of lignin oils produced from oxidation in various solvents

Fig. S2 Gas chromatograms of acetone-extracted lignin oil from reaction in perfluorodecalin under O_2 and N_2 at 250 °C and, 300 psi pressure for 10 min. Deep oxidation of lignin and carbohydrates produced acids like lactic acid, glycolic acid, and succinic acid.

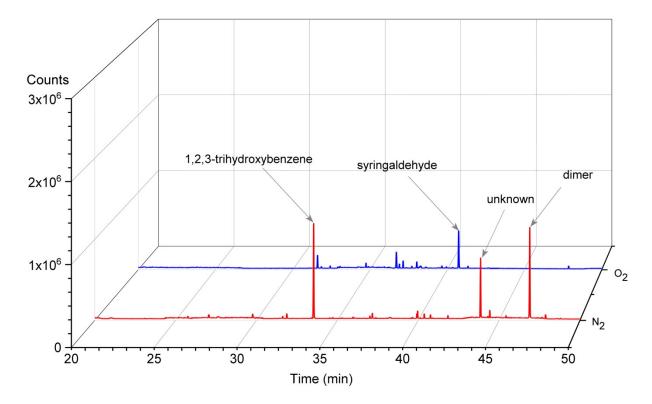


Fig. S3 Gas chromatograms of acetone-extracted lignin oil from reaction in acetonitrile under O_2 and N_2 at 250 °C and 300 psi pressure for 10 min.

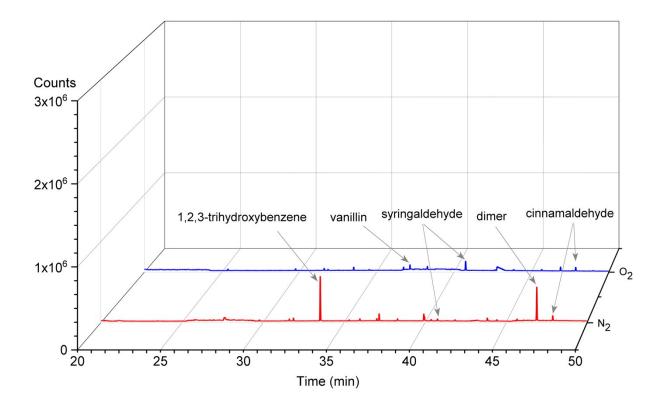


Fig. S4 Gas chromatograms of acetone-extracted lignin oil from reaction in ethyl acetate under O_2 and N_2 at 250 °C and, 300 psi pressure for 10 min.

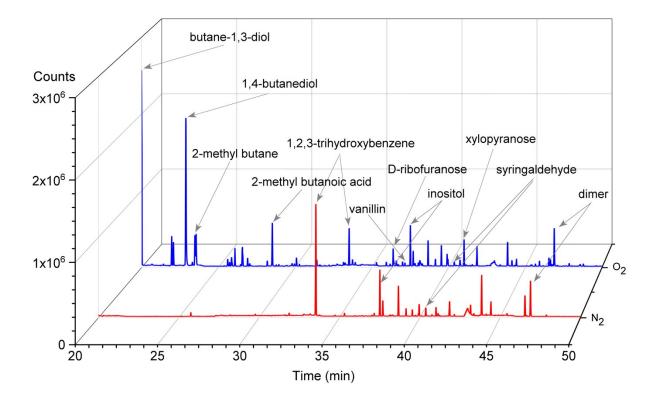


Fig. S5 Gas chromatograms of acetone-extracted lignin oil from reaction in butanol under O_2 and N_2 at 250 °C and, 300 psi pressure for 10 min.

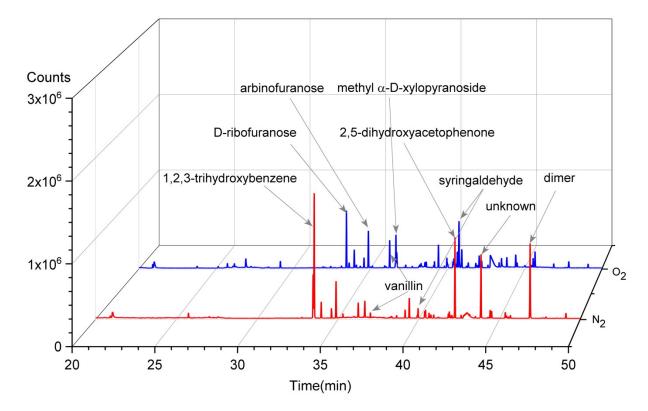
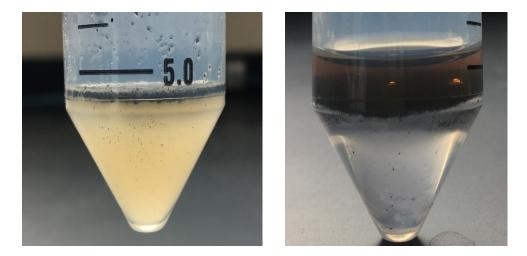


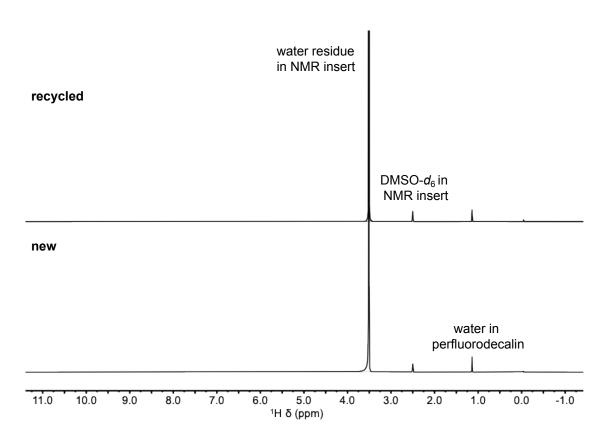
Fig. S6 Gas chromatograms of acetone-extracted lignin oil from reaction in methanol under O_2 and N_2 at 250 °C and 300 psi pressure for 10 min.

GPC results

Table. S3 Number averaged molecular weight (M_n) , weight averaged molecular weight (M_w) and polydispersity (PD) of reaction under O_2 or N_2 . Reaction conditions: 100 mg red oak, 5 ml solvent, 250 °C, 300 psi pressure for 10 min.


solvent	Gas	M _n	Mw	PD
Acetonitrile	O ₂	440	599	1.36
	N_2	497	783	1.58
Ethyl acetate	O ₂	460	600	1.3
	N_2	456	583	1.28
Butanol	O ₂	597	1385	2.32
	N ₂	624	1434	2.3
Methanol	O ₂	565	1356	2.4
	N_2	668	1746	2.61

Proximate and ultimate analysis


Table. S4 Proximate and ultimate analysis of red oak

Proximate analysis (% wt)				Ultimate analysis (% wt)				
Volatile	Fixed carbon	Ash	Moisture	С	Н	Ν	S	0
80.1535	15.8484	0.5757	3.4255	46.39	4.988	0.25	.052	48.32

Liquid-liquid separation from perfluorodecalin

Fig. S7 Phase separation of oxidation products and residual solid biomass from perfluorodecalin before (left) and after (right) addition of acetone.

Fig. S8 ¹H NMR spectra of new and recycled perfluorodecalin. The spectra were collected with 4 scans and 1 s as the relaxation delay.

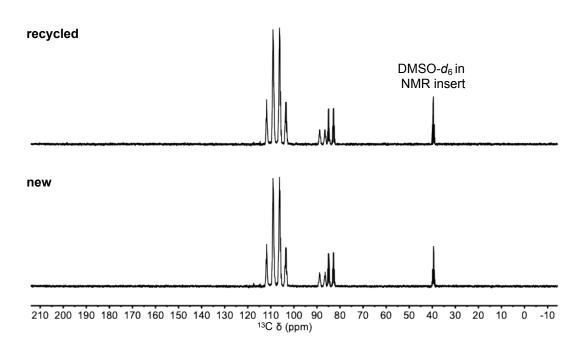
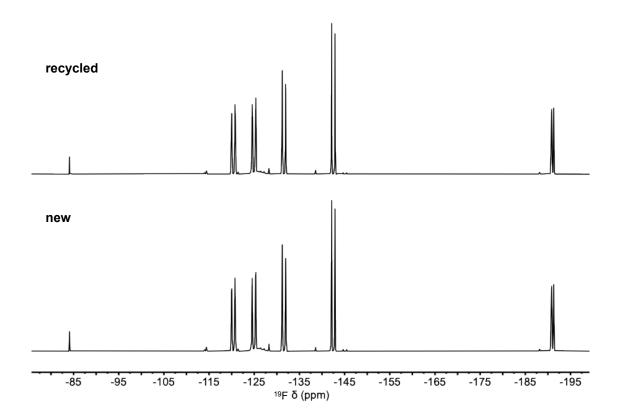



Fig. S9 13 C NMR spectra of new and recycled perfluorodecalin. The spectra were collected with 256 scans and 2 s as the relaxation delay.

Fig. S10 ¹⁹F NMR spectra of new and recycled perfluorodecalin. The spectra were collected with 4 scans and 10 s as the relaxation delay.

The ¹⁹F NMR spectra before and after recycling are identical to the literature results^{5,6}, indicating the decomposition does not occur under our reaction conditions.

Supplementary References

- 1 D. R. Lide, Ed., *CRC handbook of chemistry and physics*, CRC press.
- 2 D. . Lawson, *Appl. Energy*, 1980, **6**, 241–255.
- 3 A. Wypych and G. Wypych, *Databook of solvents*, .
- 4 C. M. Hansen, *Hansen solubility parameters: a user's handbook.*, CRC press, 2002.
- 5 V. A. Ivlev, G. A. Kalabin and I. A. Maslennikov, *Pharm. Chem. J.*, 2016, **50**, 270–274.
- 6 L. S. Chin, M. Lim, T. T. Hung, C. P. Marquis and R. Amal, *RSC Adv.*, 2014, **4**, 13052–13060.