Supplementary Information

Sodium Pyruvate as a Peroxide Scavenger in Aerobic Oxidation

under Carbene Catalysis

Guanjie Wang, ^[a] Chenlong Wei, ^[a] Xianfang Hong, ^[a] Zhenqian Fu,^{*, [a][b]} and Wei Huang^{*, [a][b]}

^[a] Key Laboratory of Flexible Electronics & Institute of Advanced Materials, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, China.

^[b] Shaanxi Institute of Flexible Electronics (SIFE), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an 710072, China. E-mail: <u>iamwhuang@njtech.edu.cn</u>; <u>iamzqfu@njtech.edu.cn</u>

Ι	General information.
П	 a) Condition Optimization. b) General procedure for the synthesis of imidate product 2. c) General procedure for the synthesis of amidine product 3. d) Experimental procedure for the scale-up reaction of 2a, 3d, 5b. e) Characterizations of products
III	¹ H, and ¹³ C NMR data.

I: General Information

Chemicals were purchased as reagent grade and used without further purification. Solvents (THF, toluene) were distilled from appropriate drying agents prior to use. In addition, more solvents were purchased from commercial suppliers and dried over molecular sieves. Proton nuclear magnetic resonance (1H NMR) spectra were recorded on a Bruker (400 MHz) spectrometer. Chemical shifts were recorded in parts per million (ppm, δ) relative to tetramethylsilane (δ 0.00) or chloroform (δ = 7.26, singlet). 1H NMR splitting patterns are designated as singlet (s), doublet (d), triplet (t), quartet (q), dd (doublet of doublets); m (multiplets), and etc. All first-order splitting patterns were assigned on the basis of the appearance of the multiplet. Splitting patterns that could not be easily interpreted are designated as multiplet (m) or broad (br). Carbon nuclear magnetic resonance (¹³C NMR) spectra were recorded on a Bruker (400 MHz) (100 MHz) spectrometer. Fourier transform infrared spectroscopy (FT-IR, a Bruker model VECTOR-22 Fourier transform spectrometer). High resolution mass spectral analysis (HRMS) was performed on a Waters Q-TOF Permier Spectrometer. X-ray crystallography analysis was performed on Bruker X8 APEX X-ray diffractionmeter. Analytical thin-layer chromatography (TLC) was carried out on Merck 60 F254 precoated silica gel plate (0.2 mm thickness). Aldimines 1 was prepared as as a single isomer according to the literature. 1

II.

a) Condition Optimization.

Table S1. Screening of modified reaction conditions for nitrogen nucleophiles.

	−N → Ph + <i>n</i> Bu H	I-NH ₂ 20 mol % N SP (1.0 equipation of the solution of the s	IHC nB Jiv) quiv) air.	u-HN Ph N 3
N C	BF ₄	Ð, Ph N ⊖ BF₄ ∕N ∕∽	I ⊕ /─ N ← I [⊕] Mes ∕ N ∕ ∕	v ⊕ Cl [⊖] N∼ _{Mes}
A	В	U	E	
entry ^a	NHC	solvent	base(equiv)	yield $(\%)^b$
1	Α	THF	K ₂ CO ₃	55
2	Α	1,4-dioxane	K_2CO_3	49
3	Α	DCM	K_2CO_3	31
4	Α	DMF	K_2CO_3	26
5	Α	CH ₃ CN	K_2CO_3	<10
6	В	THF	K_2CO_3	48
7	С	THF	K_2CO_3	42
8	D	THF	K_2CO_3	30
9	Α	THF	Cs_2CO_3	50
10	Α	THF	DBU	20
11	Α	THF	KO ^t Bu	<10
12	Α	THF	NaOAc	66
13^c	Α	THF	NaOAc	70
14^d	Α	THF	NaOAc	77
15^e	Α	THF	NaOAc	69
16^d	Α	2-MeTHF	NaOAc	68

^{*a*} Standard condition: aldimine (0.1 mmol) **NHC** precursor (20 mol %), base (1.5 equiv), *n*-Butylamine (3.0 equiv), solvent (0.1 M), **SP** (1.0 equiv), MgSO₄ (50 mg), rt, 6 h. ^{*b*} Isolated yields after column chromatography. ^{*c*} 2.0 equiv *n*-Butylamine was used. ^{*d*} Replace 50mg MgSO₄ with 100mg 4Å MS. ^{*e*} Without addition of **SP**. "**SP**" = Sodium pyruvate.

b) General procedure for the synthesis of imidate product 2.

To an oven-dried screw-capped test tube equipped with a magnetic stir bar the triazolium salt NHC A (6.3 mg, 20 mol %), K_2CO_3 (21.0 mg, 0.15 mmol), Sodium pyruvate (11.0 mg, 0.10 mmol), anhydrous MgSO₄ (50 mg) and aldimine 1 (0.10 mmol, 1.0 equiv) were added. To this mixture was added anhydrous methanol (1.0 mL, 0.1M). The resultant reaction mixture was kept stirring at room temperature for 6 h. When the reaction is complete, the crude residue was purified by flash column

chromatography on silica gel using Petroleum ether/EtOAc (10:1) as eluent to afford the desired product 2.

2ab-2ad was synthesized based on the modified reaction conditions (Table S1, entry 14).

c) General procedure for the synthesis of aldimine product 3.

To an oven-dried screw-capped test tube equipped with a magnetic stir bar the triazolium salt NHC A (6.3 mg, 20 mol %), anhydrous NaOAc (12.3 mg, 0.15 mmol), Sodium pyruvate (11.0 mg, 0.10 mmol), anhydrous 4Å MS (100 mg) and aldimine 1 (0.10 mmol, 1.0 equiv) were added. To this mixture was added anhydrous THF (1.0 mL, 0.1M) and then amine (0.20 mmol, 2.0 equiv). The resultant reaction mixture was kept stirring at room temperature for 6 h. When the reaction is complete, the crude residue was purified by flash column chromatography on silica gel using Petroleum ether/EtOAc (10:1) as eluent to afford the desired product **3**.

d) Experimental procedure for the scale-up reaction.

A dry 25 mL Schlenk tube equipped with a magnetic stirring bar was successively charged with aldimine **1a** (476 mg, 2.0 mmol), NHC pre-catalyst **A** (63.0 mg, 0.20 mmol), K_2CO_3 (414 mg, 3.0 mmol), Sodium pyruvate (220 mg, 2.0 mmol), anhydrous MgSO₄ (500 mg). To this reaction mixture was added anhydrous methanol (8.0 mL). Upon completion of the reaction, which was monitored by TLC, the crude residue was purified by flash column chromatography on silica gel using eluent Petroleum ether/EtOAc (10:1) to afford **2a** as yellow oil (365 mg, 68% yield).

To a 25 mL oven-dried Schlenk tube equipped with a magnetic stir bar the triazolium salt NHC A (63.0 mg, 10 mol %), anhydrous NaOAc (246 mg, 1.5 equiv), sodium pyruvate (220 mg, 2.0 mmol), anhydrous 4Å MS (500 mg) and aldimine **1a**

(476 mg, 1.0 equiv) were added. To this mixture was added anhydrous THF (8.0 mL) and then amine (3.0 mmol, 1.5 equiv). The resultant reaction mixture was kept stirring at room temperature. After completition, the resulting mixture was filtrated, concentrated in vacuo and purified by column chromatography on silica gel using Petroleum ether/EtOAc (8:1) as eluent to afford the desired product as a white solid (418 mg, 61% yield).

To a 25 mL oven-dried Schlenk tube equipped with a magnetic stir bar the triazolium salt NHC **A** (63.0 mg, 10 mol %), anhydrous K_2CO_3 (414 mg, 3.0 mmol), sodium pyruvate (220 mg, 2.0 mmol) and 4-Bromobenzaldehyde **4b** (370 mg, 1.0 equiv) were added. To this mixture was added anhydrous methanol (8.0 mL). The resultant reaction mixture was kept stirring at room temperature. After completition, the resulting mixture was filtrated, concentrated in vacuo and purified by column chromatography on silica gel using Petroleum ether/EtOAc (8:1) as eluent to afford the desired ester product **5b** as a white solid (280 mg, 65% yield). The yield for the reaction without the presence of the sodium pyruvate under otherwise identical conditions is 34%.

e) Characterizations of products

Methyl (Z)-*N*-(**benzo**[*d*]**thiazol-2-yl)benzimidate (2a):** colorless oil, 24.7mg, 92% yield. ¹H NMR (400 MHz, CDCl₃) δ = 7.79 (d, *J* = 8.0 Hz, 1H), 7.64 (d, *J* = 8.0 Hz, 1H), 7.53–7.56 (m, 2H), 7.35–7.43 (m, 2H), 7.27–7.32 (m, 2H), 7.20–7.25 (m, 1H), 4.09 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 168.1, 164.6, 151.8, 134.4, 131.5, 130.0, 129.3, 128.4, 125.8, 123.7, 121.8, 121.2, 55.5; HRMS (ESI) Calcd for C₁₅H₁₃N₂OS⁺ [M+H]⁺ 269.0743; Found: 269.0741.

Methyl (*Z*)-*N*-(**benzo**[*d*]**thiazol-2-yl**)-**2-chlorobenzimidate** (**2b**): colorless oil, 25.7mg, 85% yield. ¹H NMR (400 MHz, CDCl₃) δ = 7.79 (d, *J* = 8.0 Hz, 1H), 7.58 (d, *J* = 8.0 Hz, 1H), 7.32–7.40 (m, 4H), 7.23–7.28 (m, 1H), 7.18–7.22 (m, 1H), 4.14 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 166.3, 165.0, 151.2, 134.4, 132.2, 131.7, 131.2, 129.9, 129.8, 126.9, 125.8, 124.0, 122.1, 121.1, 55.8; HRMS (ESI) Calcd for C₁₅H₁₂ClN₂OS⁺ [M+H]⁺ 303.0353; Found: 303.0348.

Methyl (*Z*)-*N*-(benzo[*d*]thiazol-2-yl)-3-chlorobenzimidate (2c): colorless oil, 22.1mg, 73% yield. ¹H NMR (400 MHz, CDCl₃) δ = 7.78 (d, *J* = 8.0 Hz, 1H), 7.66 (d, *J* = 8.0 Hz, 1H), 7.62 (t, *J* = 1.6 Hz, 1H), 7.33–7.40 (m, 3H), 7.22–7.26 (m, 1H), 7.17 (t, *J* = 8.0 Hz, 1H), 4.08 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 167.5, 163.0, 151.7, 134.6, 134.4, 131.7, 131.6, 129.6, 129.3, 127.3, 125.9, 123.9, 121.9, 121.2, 55.7; HRMS (ESI) Calcd for C₁₅H₁₂ClN₂OS⁺ [M+H]⁺ 303.0353; Found: 303.0351.

2d

Methyl (*Z*)-*N*-(benzo[*d*]thiazol-2-yl)-4-chlorobenzimidate (2d): colorless oil, 23.0mg, 76% yield. ¹H NMR (400 MHz, CDCl₃) $\delta = 7.78$ (d, J = 8.0 Hz, 1H), 7.66 (d, J = 8.0 Hz, 1H), 7.47–7.50 (m, 2H), 7.36–7.40 (m, 1H), 7.22–7.28 (m, 3H), 4.07 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 167.8, 163.3, 151.7, 137.8, 134.3, 130.7, 128.8, 128.4, 125.9, 123.8, 121.8, 121.2, 55.6; HRMS (ESI) Calcd for C₁₅H₁₂ClN₂OS⁺ [M+H]⁺ 303.0353; Found: 303.0349.

2e

Methyl (Z)-*N***-(benzo**[*d*]**thiazol-2-yl)-4-nitrobenzimidate (2e):** colorless oil, 13.2mg, 42% yield. ¹H NMR (400 MHz, CDCl₃) $\delta = 8.13$ (d, J = 8.8 Hz, 2H), 7.66–7.75 (m, 4H), 7.38 (t, J = 8.4 Hz, 1H), 7.23–7.27 (m, 1H), 4.12 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 167.1, 162.3, 151.5, 149.1, 136.1, 134.3, 130.3, 126.2, 124.2, 123.6, 122.0, 121.3, 56.0; HRMS (ESI) Calcd for C₁₅H₁₂N₃O₃S⁺ [M+H]⁺ 314.0594; Found: 314.0599.

Methyl (*Z*)-*N*-(benzo[*d*]thiazol-2-yl)-4-(trifluoromethyl)benzimidate (2f): colorless oil, 18.8mg, 56% yield. ¹H NMR (400 MHz, CDCl₃) δ = 7.78 (d, *J* = 8.0 Hz, 1H), 7.66–7.68 (m, 3H), 7.56 (d, *J* = 8.4 Hz, 2H), 7.37–7.41 (m, 1H), 7.23–7.27 (m, 1H), 4.11 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 167.4, 163.0, 151.7, 134.4, 129.6, 126.0, 125.5, 125.5, 125.4, 125.4, 124.0, 121.9, 121.3, 55.8; HRMS (ESI) Calcd for C₁₆H₁₂F₃N₂OS⁺[M+H]⁺ 337.0617; Found: 337.0620.

Methyl (*Z*)-*N*-(benzo[*d*]thiazol-2-yl)-4-bromobenzimidate (2g): colorless oil, 28.1mg, 81% yield. ¹H NMR (400 MHz, CDCl₃) δ = 7.78 (d, *J* = 8.0 Hz, 1H), 7.65 (d, *J* = 8.0 Hz, 1H), 7.35–7.41 (m, 5H), 7.21–7.26 (m, 1H), 4.07 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 167.8, 163.4, 151.7, 134.3, 131.8, 130.8, 128.9, 126.4, 125.9, 123.9, 121.8, 121.2, 55.6; HRMS (ESI) Calcd for C₁₅H₁₂BrN₂OS⁺ [M+H]⁺ 346.9848; Found: 346.9849.

2h

Methyl (*Z*)-*N*-(**benzo**[*d*]**thiazol-2-yl**)-**4**-methoxybenzimidate (**2h**): colorless oil, 27.4mg, 92% yield. ¹H NMR (400 MHz, CDCl₃) δ = 7.80 (d, *J* = 8.4 Hz, 1H), 7.64 (d, *J* = 8.8 Hz, 1H), 7.49–7.53 (m, 2H), 7.37 (t, *J* = 7.2 Hz, 1H), 7.22 (t, *J* = 7.2 Hz, 1H), 6.75–6.79 (m, 2H), 4.05 (s, 3H), 3.75 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 168.5, 164.0, 162.1, 151.9, 134.4, 131.4, 125.7, 123.6, 121.8, 121.7, 121.2, 113.7, 55.3, 55.3; HRMS (ESI) Calcd for C₁₆H₁₅N₂O₂S⁺ [M+H]⁺ 299.0849; Found: 299.0851.

Methyl (*Z*)-*N*-(benzo[*d*]thiazol-2-yl)-4-methylbenzimidate (2i): colorless oil, 26.3mg, 93% yield. ¹H NMR (400 MHz, CDCl₃) δ = 7.80 (d, *J* = 8.0 Hz, 1H), 7.63 (d, *J* = 8.0 Hz, 1H), 7.44 (d, *J* = 8.0 Hz, 2H), 7.35–7.39 (m, 1H), 7.20–7.24 (m, 1H), 7.09 (d, *J* = 7.6 Hz, 2H), 4.07 (s, 3H), 2.31 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 168.3, 164.6, 151.9, 142.1, 134.4, 129.3, 129.1, 127.0, 125.7, 123.6, 121.7, 121.2, 55.4, 21.5; HRMS (ESI) Calcd for C₁₆H₁₅N₂OS⁺ [M+H]⁺ 283.0900; Found: 283.0905.

Methyl (Z)-4-((benzo[d]thiazol-2-ylimino)(methoxy)methyl)benzoate (2j): colorless oil, 23.2mg, 71% yield. ¹H NMR (400 MHz, CDCl₃) δ = 7.94 (d, J = 8.4 Hz, 2H), 7.66 (d, J = 8.0 Hz, 1H), 7.58–7.64 (m, 3H), 7.36 (t, J = 8.4 Hz, 1H), 7.22 (t, J = 8.4 Hz, 1H), 4.09 (s, 3H), 3.86 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 167.6, 166.1, 163.7, 151.7, 134.3, 134.2, 132.5, 129.6, 129.2, 125.9, 123.9, 121.9, 121.2, 55.7, 52.4; HRMS (ESI) Calcd for C₁₇H₁₅N₂O₃S⁺[M+H]⁺ 327.0798; Found: 327.0799.

2k

Methyl (Z)-*N*-(**benzo**[*d*]**thiazol-2-yl**)-**2-naphthimidate (2k):** colorless oil, 28.0mg, 88% yield. ¹H NMR (400 MHz, CDCl₃) δ = 8.19 (s, 1H), 7.75–7.83 (m, 3H), 7.69 (d, *J* = 8.8 Hz, 1H), 7.60 (d, *J* = 8.0 Hz, 1H), 7.44–7.53 (m, 3H), 7.37 (t, *J* = 8.0 Hz, 1H), 7.21 (t, *J* = 7.6 Hz, 1H), 4.15 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 168.1, 164.8, 151.8, 134.4, 134.4, 132.5, 130.5, 129.1, 128.1, 128.1, 127.7, 127.4, 126.7, 125.8, 125.1, 123.7, 121.7, 121.2, 55.7; HRMS (ESI) Calcd for C₁₉H₁₅N₂OS⁺ [M+H]⁺ 319.0900; Found: 319.0904.

Methyl (*Z*)-*N*-(**benzo**[*d*]**thiazol-2-yl**)**thiophene-2-carbimidate** (**2l**): colorless oil, 18.4mg, 67% yield. ¹H NMR (400 MHz, CDCl₃) δ = 7.85 (d, *J* = 8.0 Hz, 1H), 7.75 (d, *J* = 8.0 Hz, 1H), 7.40–7.44 (m, 2H), 7.27–7.31 (m, 2H), δ = 6.90 (dd, *J* = 5.2, 4.0 Hz, 1H), 4.05 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 168.0, 157.1, 151.9, 134.7, 133.2, 131.5, 130.5, 127.6, 125.9, 123.9, 121.9, 121.4, 55.3; HRMS (ESI) Calcd for C₁₃H₁₁N₂OS₂⁺ [M+H]⁺ 275.0307; Found: 275.0309.

Methyl (*Z*)-*N*-(benzo[*d*]thiazol-2-yl)furan-2-carbimidate (2m): colorless oil, 10.9mg, 42% yield. ¹H NMR (400 MHz, CDCl₃) δ = 7.83 (d, *J* = 8.0 Hz, 1H), 7.75 (d, *J* = 8.0 Hz, 1H), 7.38–7.43 (m, 2H), 7.26–7.30 (m, 1H), 6.73–6.74 (m, 1H), δ = 6.36 (dd, *J* = 3.6, 1.6 Hz, 1H), 4.05 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 167.9, 153.5, 151.8, 145.85, 142.7, 134.6, 125.8, 123.7, 121.8, 121.3, 118.1, 111.8, 55.0; HRMS (ESI) Calcd for C₁₃H₁₁N₂O₂S⁺ [M+H]⁺ 259.0536; Found: 259.0538.

Methyl (Z)-*N***-(benzo**[*d*]**thiazol-2-yl)nicotinimidate (2n):** colorless oil, 15.1mg, 56% yield. ¹HNMR (400 MHz, CDCl₃) δ = 8.79 (s, 1H), 8.61 (d, *J* = 5.2 Hz, 1H), 7.75 (dt, *J* = 8.0 Hz, 2.0 Hz, 1H), 7.75 (d, *J* = 8.0 Hz, 1H), 7.66 (d, *J* = 8.4 Hz, 1H), 7.36 (t, *J* = 8.0 Hz, 1H), 7.20–7.26 (m, 2H), 4.10 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 167.4, 162.1, 152.0, 151.6, 150.0, 136.6, 134.4, 126.4, 126.0, 124.0, 123.1, 121.9, 121.3, 55.8; HRMS (ESI) Calcd for C₁₄H₁₂N₃OS⁺ [M+H]⁺ 270.0696; Found: 270.0699.

20

Methyl (Z)-*N***-(benzo**[*d*]**thiazol-2-yl)cinnamimidate** (**2**o)**:** colorless oil, 18.0mg, 61% yield. ¹HNMR (400 MHz, CDCl₃) δ = 7.88 (d, *J* = 8.0 Hz,1H), 7.77 (d, *J* = 8.4 Hz, 1H), 7.60 (d, *J* = 15.6 Hz, 1H), 7.41–7.46 (m, 3H), 7.28–7.35 (m, 4H), 6.89 (d, *J* = 16 Hz, 1H), 4.02 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 168.5, 162.6, 152.1, 142.4, 134.9, 130.2, 128.8, 128.2, 126.0, 123.8, 121.9, 121.2, 114.5, 54.7; HRMS (ESI) Calcd for C₁₇H₁₅N₂OS⁺ [M+H]⁺ 295.0900; Found: 295.0903.

2р

Methyl (*Z*)-*N*-(**benzo**[*d*]**thiazol-2-yl**)-9-methyl-9H-carbazole-3-carbimidate (2p): colorless oil, 35.7mg, 96% yield. ¹HNMR (400 MHz, CDCl₃) δ = 8.43 (s, 1H), 7.96 (d, *J* = 7.6 Hz, 1H), 7.85 (d, *J* = 8.0 Hz, 1H), 7.60 (t, *J* = 8.8 Hz, 2H), 7.46 (t, *J* = 8.0 Hz, 1H), 7.38 (t, *J* = 8.0 Hz, 1H), 7.32 (d, *J* = 8.4 Hz, 1H), 7.18-7.25 (m, 2H), 7.16 (d, *J* = 8.8 Hz, 1H), 4.17 (s, 3H), 4.17 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 168.9, 165.6, 152.0, 142.5, 141.5, 134.4, 127.1, 126.5, 125.7, 123.5, 122.6, 122.5, 121.6, 121.2, 120.5, 120.0, 119.9, 108.9, 108.2, 55.5, 29.1; HRMS (ESI) Calcd for C₂₂H₁₈N₃OS⁺ [M+H]⁺ 372.1165; Found: 372.1167.

Methyl (*Z*)-*N*-(benzo[*d*]thiazol-2-yl)-1-benzyl-1H-indole-3-carbimidate (2q): colorless oil, 36.2mg, 91% yield. ¹HNMR (400 MHz, CDCl₃) δ = 7.98–8.02 (m, 1H), 7.76 (d, *J* = 8.0 Hz, 1H), 7.65 (d, *J* = 8.4 Hz, 1H), 7.38 (d, *J* = 8.8 Hz, 1H), 7.20–7.26 (m, *J* = 8.0 Hz, 4H), 7.16 (s, 1H), 7.07–7.14 (m, 3H), 6.89 (d, *J* = 8.8 Hz, 2H), 5.04 (s, 2H), 4.12 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ = 169.4, 161.5, 152.0, 135.9, 135.0, 134.4, 133.7, 128.8, 128.1, 127.3, 126.7, 125.7, 123.5, 123.1, 122.1, 122.0, 121.6, 121.3, 110.3, 105.2, 54.7, 50.6; HRMS (ESI) Calcd for C₂₄H₂₀N₃OS⁺ [M+H]⁺ 398.1322; Found: 398.1321.

Methyl (Z)-*N***-(1H-benzo**[*d*]**imidazol-2-yl**)**-4-chlorobenzimidate (2r):** colorless oil, 18.0mg, 63% yield. ¹H NMR (400 MHz, DMSO) $\delta = 11.90$ (s, 1H), 7.27–7.39 (m, 6H), 6.98–7.01 (m, 2H), 3.96 (s, 3H); ¹³C NMR (100 MHz, DMSO) δ 163.6, 153.8, 136.5, 130.7, 130.2, 129.0, 121.2, 55.6; HRMS (ESI) Calcd for C₁₅H₁₃ClN₃O⁺ [M+H]⁺ 286.0742; Found: 286.0749.

Methyl (Z)-*N*-(benzo[*d*]oxazol-2-yl)-4-chlorobenzimidate (2s): colorless oil, 18.6mg, 65% yield. ¹H NMR (400 MHz, CDCl₃) δ = 7.50–7.53 (m, 1H), 7.41–7.45 (m, 2H), 7.35–7.37 (m, 1H), 7.18–7.30 (m, 4H), 4.12 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 166.8, 161.7, 149.5, 142.1, 138.3, 130.0, 128.9, 128.8, 124.1, 123.4, 118.8, 109.9, 56.0; HRMS (ESI) Calcd for C₁₅H₁₂ClN₂O₂⁺ [M+H]⁺ 287.0582; Found: 287.0587.

Methyl (Z)-4-chloro-*N***-(thiazol-2-yl)benzimidate (2t):** colorless oil, 23.2mg, 92% yield. ¹H NMR (400 MHz, CDCl₃) δ = 7.36–7.40 (m, 3H), 7.27–7.30 (m, 2H), 6.92 (d, J = 3.6 Hz, 1H), 4.03 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 169.1, 163.3, 140.2, 137.4, 130.5, 128.8, 128.6, 115.4, 55.4; HRMS (ESI) Calcd for C₁₁H₁₀ClN₂OS⁺ [M+H]⁺ 253.0197; Found: 253.0190.

Methyl (Z)-4-chloro-*N***-(pyridin-2-yl)benzimidate (2u):** colorless oil, 9.70mg, 40% yield. ¹H NMR (400 MHz, CDCl₃) δ = 8.32 (d, *J* = 6.0 Hz, 1H), 7.50 (t, *J* = 7.6 Hz, 1H), 7.18–7.26 (m, 4H), 6.91 (t, *J* = 5.6 Hz, 1H), 8.59 (d, *J* = 8.0 Hz, 1H), 4.01 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 160.8, 160.1, 148.9, 137.9, 136.5, 130.5, 129.6, 128.4, 118.5, 116.3, 54.6; HRMS (ESI) Calcd for C₁₃H₁₂ClN₂O⁺ [M+H]⁺ 247.0633; Found: 247.0634.

Methyl (**Z**)-4-chloro-*N*-(5-methylisoxazol-3-yl)benzimidate (2v): colorless oil, 20.3mg, 81% yield. ¹H NMR (400 MHz, CDCl₃) δ = 7.29–7.46 (m, 5H), 5.37 (s, 1H), 4.00 (s, 3H), 2.27 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 169.6, 166.4, 164.1, 131.1, 130.9, 128.8, 128.2, 97.7, 54.8, 12.7; HRMS (ESI) Calcd for C₁₂H₁₂ClN₂O₂⁺[M+H]⁺ 251.0582; Found: 251.0584.

2w

Methyl (Z)-*N*-(6-chlorobenzo[*d*]thiazol-2-yl)benzimidate (2w): colorless oil, 25.1mg, 83% yield. ¹HNMR (400 MHz, CDCl₃) δ = 7.68 (d, *J* = 8.4 Hz, 1H), 7.60 (s, 1H), 7.53 (s, 1H), 7.51 (s, 1H), 7.42 (t, *J* = 7.6 Hz, 1H), 7.26–7.33(m, 3H), 4.09 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 168.4, 165.0, 150.3, 135.5, 131.7, 129.8, 129.3, 129.2, 128.5, 126.5, 122.5, 120.8, 55.2; HRMS (ESI) Calcd for C₁₅H₁₂ClN₂OS⁺ [M+H]⁺ 303.0353; Found: 303.0353.

Methyl (*Z*)-*N*-(6-methylbenzo[*d*]thiazol-2-yl)benzimidate (2x): colorless oil, 23.2mg, 82% yield. ¹HNMR (400 MHz, CDCl₃) δ = 7.68 (d, *J* = 8.0 Hz, 1H), 7.52-7.55 (m, 2H), 7.38-7.43 (m, 2H), 7.29 (t, *J* = 7.6 Hz, 2H), 7.18 (d, *J* = 9.2 Hz, 1H), 4.08 (s, 3H), 2.42 (s, 3H); ¹³CNMR (100 MHz, CDCl₃) δ 167.2, 164.6, 149.8, 134.5, 133.6, 131.4, 130.1, 129.3, 128.4, 127.2, 121.3, 121.2, 55.4, 21.4; HRMS (ESI) Calcd for C₁₆H₁₅N₂OS⁺ [M+H]⁺ 283.0900; Found: 283.0903.

Methyl (*Z*)-*N*-(6-methoxybenzo[*d*]thiazol-2-yl)benzimidate (2y): colorless oil, 25.4mg, 85% yield. ¹HNMR (400 MHz, CDCl₃) δ = 7.67 (d, *J* = 8.8 Hz, 1H), 7.52–7.55 (m, 2 H), 7.41 (d, *J* = 7.6 Hz, 1H), 7.29 (t, *J* = 7.6 Hz, 2H), 7.12 (d, *J* = 2.4 Hz, 1H), 7.00 (dd, *J* = 8.8, 2.4 Hz, 1H), 4.07 (s, 3H), 3.81 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 165.8, 164.7, 156.6, 146.0, 135.5, 131.4, 130.2, 129.2, 128.4, 122.2, 114.3, 104.6, 55.8, 55.4; HRMS (ESI) Calcd for C₁₆H₁₅N₂O₂S⁺ [M+H]⁺ 299.0849; Found: 299.0850.

2z

Methvl

(Z)-N-(5-chloro-4-(trifluoromethyl)thiazol-2-yl)-3-

(trifluoromethyl)benzimidate (2z): colorless oil, 26.4mg, 68% yield. ¹HNMR (400 MHz, CDCl₃) δ = 7.82 (s, 1H), 7.74 (d, *J* = 8.0 Hz, 1H), 7.65 (d, *J* = 8.0 Hz, 2H), 7.52 (t, *J* = 8.0 Hz, 1H), 4.06 (s, 3H); ¹⁹F NMR (376 MHz, CDCl₃) δ -62.0, -63.0; ¹³C NMR (100 MHz, CDCl₃) δ 165.6, 164.6, 136.9 (q, 36.4 Hz), 132.3, 131.4 (q, 33.0 Hz), 130.5, 129.2, 128.5, 126.3, 123.5 (q, 271.0 Hz), 122.5 (q, 214.4 Hz), 118.7, 56.2; HRMS (ESI) Calcd for C₁₃H₈ClF₆N₂OS⁺ [M+H]⁺ 388.9945; Found: 388.9951.

Ethyl (*Z*)-*N*-(benzo[*d*]thiazol-2-yl)benzimidate (2aa): colorless oil, 22.9mg, 81% yield. ¹HNMR (400 MHz, CDCl₃) δ = 7.77–7.80 (m, 1H), 7.62–7.64 (m, 1H), 7.54–7.56 (m, 2H), 7.34–7.43 (m, 2H), 7.20–7.32 (m, 3H), 4.50–4.56 (q, *J* = 7.2 Hz, 2H), 1.48 (t, *J* = 16.0 Hz, 3H); ¹³CNMR (100 MHz, CDCl₃) δ 168.2, 164.2, 151.8, 134.4, 131.4, 130.3, 129.3, 128.4, 125.7, 123.6, 121.7, 121.2, 100.0, 64.4, 14.2; HRMS (ESI) Calcd for C₁₆H₁₅N₂OS⁺ [M+H]⁺ 283.0900; Found: 283.0905.

Isopropyl (Z)-*N***-(benzo**[*d*]**thiazol-2-yl)benzimidate (2ab):** colorless oil, 13.3mg, 45% yield. ¹HNMR (400 MHz, CDCl₃) δ = 7.78 (d, *J* = 8.4 Hz, 1H), 7.62 (d, *J* = 4.0 Hz, 1H), 7.53–7.55 (m, 2H), 7.34–7.41 (m, 2H), 7.19–7.30 (m, 3H), 5.44–5.50 (m, 1H), 1.46–1.48 (d, *J* = 6.0 Hz, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 168.4, 163.7, 151.8, 134.4, 131.3, 130.7, 129.3, 128.4, 125.7, 123.5, 121.6, 121.1, 71.5, 21.8; HRMS (ESI) Calcd for C₁₇H₁₇N₂OS⁺ [M+H]⁺ 297.1056; Found: 297.1060.

2ac

Benzyl (Z)-*N***-(benzo[d]thiazol-2-yl)benzimidate (2ac):** colorless oil, 22.7mg, 66% yield. ¹HNMR (400 MHz, CDCl₃) δ = 7.81 (d, *J* = 10.4 Hz, 1H), 7.65 (d, *J* = 8.4 Hz, 1H), 7.58 (d, *J* = 7.2 Hz, 2H), 7.51 (d, *J* = 9.6 Hz, 2H), 7.35–7.44 (m, 5H), 7.22–7.31 (m, 3H), 5.51 (s, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 167.9, 163.8, 151.8, 135.7, 134.4, 131.6, 129.9, 129.4, 128.7, 128.5, 128.4, 128.4, 125.8, 123.7, 121.8, 121.2, 70.1; HRMS (ESI) Calcd for C₂₁H₁₇N₂OS⁺ [M+H]⁺ 345.1056; Found: 345.1058.

2ad

Prop-2-yn-1-yl (*Z*)-*N*-(**benzo**[*d*]**thiazol-2-yl**)**benzimidate** (2ad): colorless oil, 20.5mg, 70% yield. ¹HNMR (400 MHz, CDCl₃) δ = 7.80 (d, *J* = 8.0 Hz, 1H), 7.65 (d, *J* = 7.2 Hz, 1H), 7.58 (d, *J* = 7.2 Hz, 2H), 7.36–7.45 (m, 2H), 7.22–7.32 (m, 3H), 5.09 (d, *J* = 2.4Hz, 2H), 2.59(t, 1H); ¹³C NMR (100 MHz, CDCl₃) δ 167.2, 162.8, 151.7, 134.4, 131.8, 129.4, 129.2, 128.5, 125.9, 123.8, 121.9, 121.2, 77.5, 75.6, 55.7; HRMS (ESI) Calcd for C₁₇H₁₃N₂OS⁺ [M+H]⁺ 293.0743; Found: 293.0740.

Cyclohexyl (*Z*)-*N*-(**benzo**[*d*]**thiazol-2-yl**)**benzimidate** (2ae): colorless oil, 22.9mg, 68% yield. ¹HNMR (400 MHz, CDCl₃) δ = 7.78 (d, *J* = 8.0 Hz, 1H), 7.61 (d, *J* = 8.4 Hz, 1H), 7.55 (d, *J* = 7.2 Hz, 2H), 7.33–7.41 (m, 2H), 7.18–7.30 (m, 3H), 5.22–5.28 (m, 1H), 2.08–2.13 (m, 2H), 1.79–1.86 (m, 2H), 1.59–1.74 (m, 3H), 1.31–1.52 (m, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 168.4, 163.6, 151.9, 134.4, 131.3, 130.8, 129.3, 128.3, 125.7, 123.5, 121.6, 121.1, 76.2, 31.4, 25.5, 23.8; HRMS (ESI) Calcd for C₂₀H₂₁N₂OS⁺[M+H]⁺ 337.1369; Found: 337.1367.

(Z)-N'-(benzo[d]thiazol-2-yl)-N-butylbenzimidamide (3a): colorless oil, 23.8mg, 77% yield. ¹HNMR (400 MHz, CDCl₃) δ = 11.25 (s, 1H), 7.74 (t, *J* = 8.4 Hz, 2H), 7.58 (s, 2H), 7.47 (s, 3H), 7.38 (t, *J* = 7.6 Hz, 1H), 7.24 (t, *J* = 7.6 Hz, 1H), 3.38 (q, *J* = 6.0 Hz, 2H), 1.62 (m, 2H), 1.44 (m, 2H), 0.94 (t, *J* = 7.6 Hz, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 173.9, 164.0, 151.2, 135.0, 132.5, 130.0, 128.6, 128.2, 125.6, 123.4, 121.1, 120.5, 45.2, 32.8, 19.9, 13.7; HRMS (ESI) Calcd for C₁₈H₂₀N₃S⁺ [M+H]⁺ 310.1372; Found: 310.1375.

(*Z*)-*N*'-(benzo[*d*]thiazol-2-yl)-*N*-(cyclopropylmethyl)benzimidamide (3b): colorless oil, 24.0mg, 78% yield. ¹HNMR (400 MHz, CDCl₃) δ = 11.30 (s, 1H), 7.70– 7.76 (m, 2H), 7.57 (s, 2H), 7.46 (s, 3H), 7.37 (t, *J* = 7.6 Hz, 1H), 7.23 (t, *J* = 6.4 Hz, 1H), 3.28 (s, 2H), 1.08 (s, 1H), 0.60 (q, *J* = 5.6Hz, 2H), 0.27 (q, *J* = 5.2 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 163.7, 151.3, 135.0, 130.1, 128.6, 128.2, 125.6, 123.4, 121.1, 120.5, 50.3, 11.7, 3.5; HRMS (ESI) Calcd for C₁₈H₁₈N₃S⁺ [M+H]⁺ 308.1216; Found: 308.1218.

(Z)-N'-(benzo[*d*]thiazol-2-yl)-N-cyclohexylbenzimidamide (3c): colorless oil, 24.2mg, 72% yield. ¹HNMR (400 MHz, CDCl₃) δ = 11.39 (s, 1H), 7.71–7.76 (m, 2H), 7.57 (s, 2H), 7.47 (s, 3H), 7.38 (t, *J* = 7.6 Hz, 1H), 7.23 (t, *J* = 7.6 Hz, 1H), 3.53 (s, 1H), 1.85–1.89 (m, 2H), 1.76–1.79 (m, 2H), 1.48–1.54 (m, 3H), 1.27–1.39 (m, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 173.8, 163.2, 151.3, 135.4, 132.4, 129.9, 128.6, 127.8, 125.6, 123.4, 121.1, 120.5, 53.3, 34.1, 25.3, 24.0; HRMS (ESI) Calcd for C₂₀H₂₂N₃S⁺ [M+H]⁺ 336.1529; Found: 336.1533.

3d

(Z)-N'-(benzo[d]thiazol-2-yl)-N-benzylbenzimidamide (3d): colorless oil, 31.6mg, 92% yield. ¹H NMR (400 MHz, CDCl₃) δ = 11.63 (s, 1H), 7.69–7.74 (m, 2H), 7.58 (s, 2H), 7.46 (s, 3H), 7.38 (t, *J* = 7.6 Hz, 3H), 7.32 (d, *J* = 6.4 Hz, 3H), 7.24 (t, *J* = 6.8 Hz, 1H), 4.63 (s, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 164.2 151.1, 138.0, 134.7, 132.6,

130.2, 128.9, 128.7, 128.2, 127.7, 126.7, 125.6, 123.5, 121.1, 120.7, 49.1; HRMS (ESI) Calcd for $C_{21}H_{18}N_3S^+[M+H]^+$ 344.1216; Found: 344.1213.

(Z)-*N*-(2-(1H-indol-3-yl)ethyl)-*N*'-(benzo[*d*]thiazol-2-yl)benzimidamide (3e): colorless oil, 23.8mg, 60% yield. ¹H NMR (400 MHz, CDCl₃) δ = 11.19 (s, 1H), 8.23 (s, 1H), 7.71 (s, 1H), 7.55 (s, 1H), 7.34–7.45 (m, 8H), 7.18–7.26 (m, 2H), 7.08 (t, *J* = 7.2 Hz, 1H), 7.00 (s, 1H), 3.71 (s, 2H), 3.06 (s, 2H); ¹³C NMR (101 MHz, CDCl₃) δ 164.0, 164.0, 151.2, 136.4, 135.0, 132.6, 130.0, 128.6, 128.1, 127.1, 125.6, 123.4, 122.8, 122.2, 121.1, 120.5, 119.5, 118.4, 111.9, 111.4, 46.0, 26.9; HRMS (ESI) Calcd for C₂₄H₂₁N₄S⁺ [M+H]⁺ 397.1481; Found: 397.1480.

(Z)-*N*-(benzo[*d*]thiazol-2-yl)-1-phenyl-1-(piperidin-1-yl)methanimine (3f): colorless oil, 26.4mg, 82% yield. ¹HNMR (400 MHz, CDCl₃) δ = 7.65 (d, *J* = 8.0 Hz, 1H), 7.36–7.45 (m, 4H), 7.30–7.33 (m, 2H), 7.20-7.24 (m, 1H), 7.02-7.07 (m, 1H), 3.97 (s, 2H), 3.20 (s, 2H), 1.70-1.76 (m, 4H), 1.51 (s, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 170.3, 163.4, 151.3, 134.3, 132.2, 130.1, 129.0, 128.6, 125.1, 122.4, 120.7, 120.6, 49.2, 45.8, 26.7, 25.5, 24.6; HRMS (ESI) Calcd for C₁₉H₂₀N₃S⁺ [M+H]⁺ 322.1372; Found: 322.1370.

3g

(Z)-N'-(benzo[*d*]thiazol-2-yl)-N-phenylbenzimidamide (3g): colorless oil, 22.4mg, 68% yield. ¹HNMR (400 MHz, CDCl₃) δ = 12.92 (s, 1H), 7.77–7.84 (dd, *J* = 8.0, 21.2 Hz, 2H), 7.61 (d, *J* = 7.2 Hz, 2H), 7.38–7.45 (m, 2H), 7.23–7.35 (m, 5H), 7.13 (t, *J* = 7.6 Hz 1H), 7.00 (s, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 159.9, 150.8, 137.6, 134.3, 130.6, 129.5, 129.2, 128.5, 126.0, 124.0, 121.3, 121.0; HRMS (ESI) Calcd for C₂₀H₁₆N₃S⁺ [M+H]⁺ 330.1059; Found: 330.1063.

(Z)-N'-(benzo[*d*]thiazol-2-yl)-*N*-(*p*-tolyl)benzimidamide (3h): colorless oil, 26.1mg, 76% yield. ¹HNMR (400 MHz, CDCl₃) δ = 12.83 (s, 1H), 7.80 (t, *J* = 9.2 Hz, 2H), 7.58 (d, *J* = 6.8 Hz, 2H), 7.38–7.42 (m, 2H), 7.25–7.31 (m, 3H), 7.03 (d, *J* = 8.0 Hz, 2H), 6.88 (s, 2H), 2.29 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 160.3, 151.0, 136.3, 135.1, 130.3, 129.6, 129.5, 128.3, 125.8, 124.3, 123.8, 121.2, 120.9, 20.9; HRMS (ESI) Calcd for C₂₁H₁₈N₃S⁺ [M+H]⁺ 344.1216; Found: 344.1210.

3i

(*Z*)-*N*'-(benzo[*d*]thiazol-2-yl)-*N*-(4-methoxyphenyl)benzimidamide (3i): colorless oil, 28.0mg, 78% yield. ¹HNMR (400 MHz, CDCl₃) δ = 12.78 (s, 1H), 7.77 (t, *J* = 8.0 Hz, 2H), 7.56 (d, *J* = 6.8 Hz, 2H), 7.34–7.42 (m, 2H), 7.25–7.32 (m, 3H), 6.93 (d, *J* = 8.4 Hz, 2H), 6.76 (d, *J* = 8.8 Hz, 2H), 3.76 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 160.5, 157.3, 151.0, 134.7, 131.9, 130.2, 129.5, 128.2, 126.0, 125.8, 123.7, 121.2, 120.8, 114.2, 55.4; HRMS (ESI) Calcd for C₂₁H₁₈N₃OS⁺ [M+H]⁺ 360.1165; Found: 360.1168.

(*Z*)-*N*'-(benzo[*d*]thiazol-2-yl)-*N*-(4-chlorophenyl)benzimidamide (3j): colorless oil, 20.7mg, 57% yield. ¹HNMR (400 MHz, CDCl₃) δ = 12.87 (s, 1H), 7.76–7.82 (m, 2H), 7.56 (d, *J* = 7.2 Hz, 2H), 7.29–7.43 (m, 5H), 7.19 (d, *J* = 8.8 Hz, 2H), 6.89 (d, *J* = 8.0 Hz, 2H); ¹³C NMR (100 MHz, CDCl₃) δ 159.9, 150.8, 137.6, 134.3, 130.6, 129.5, 129.2, 128.5, 126.0, 124.0, 121.3, 121.0; HRMS (ESI) Calcd for C₂₀H₁₅ClN₃S⁺ [M+H]⁺ 364.0670; Found: 364.0675.

(Z)-N'-(benzo[d]thiazol-2-yl)-4-bromo-N-(*p*-tolyl)benzimidamide (3k): colorless oil, 34.6mg, 82% yield. ¹HNMR (400 MHz, CDCl₃) δ = 12.80 (s, 1H), 7.78 (t, *J* = 8.8 Hz, 2H), 7.39–7.47 (m, 5H), 7.27–7.30 (m, 1H), 7.06 (d, *J* = 8.4 Hz, 2H), 6.87 (d, *J* = 7.6 Hz, 2H), 2.31 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 159.1, 150.9, 136.1, 135.5, 133.7, 131.5, 131.2, 129.8, 125.9, 124.9, 124.4, 123.9, 121.3, 121.0, 21.0; HRMS (ESI) Calcd for C₂₁H₁₇BrN₃S⁺[M+H]⁺ 422.0321; Found: 422.0323.

(*Z*)-*N*'-(**benzo**[*d*]**thiazol-2-yl**)-**4-methyl-**N-(*p*-**tolyl**)**benzimidamide** (**3l**): colorless oil, 19.3mg, 54% yield. ¹HNMR (400 MHz, CDCl₃) δ = 12.79 (s, 1H), 7.76–7.80 (q, *J* = 8.0 Hz, 2H), 7.49 (d, *J* = 8.0 Hz, 2H), 7.40 (t, *J* = 7.6 Hz, 1H), 7.27 (t, *J* = 7.6 Hz, 1H), 7.03–7.13 (dd, *J* = 8.0, 30.4 Hz, 4H), 6.91 (s, 2H), 2.33 (d, *J* = 18.4 Hz, 6H); ¹³C NMR (100 MHz, CDCl₃) δ 173.3, 160.3, 151.1, 140.6, 136.6, 135.0, 132.8, 131.8, 129.6, 129.6, 129.0, 125.8, 124.2, 123.7, 121.2, 120.8, 21.5, 20.9; HRMS (ESI) Calcd for C₂₂H₂₀N₃S⁺ [M+H]⁺ 358.1372; Found: 358.1370.

3m

(Z)-N'-(benzo[*d*]thiazol-2-yl)-N-(*p*-tolyl)thiophene-2-carboximidamide (3m): colorless oil, 23.1mg, 66% yield. ¹H NMR (400 MHz, CDCl₃) δ = 12.70 (s, 1H), 7.76 (q, *J* = 4.4 Hz, 2H), 7.36–7.41 (m, 2H), 7.26 (t, *J* = 7.6 Hz, 1H), 7.17 (q, *J* = 8.4 Hz, 4H), 6.97 (d, *J* = 3.6 Hz, 1H), 6.88 (t, J = 4.4 Hz, 1H), 2.40 (s, 3H); ¹³C NMR (100 MHz, CDCl₃) δ 173.1, 154.4, 151.1, 137.8, 136.9, 136.1, 132.6, 131.9, 130.5, 130.0, 127.4, 126.2, 125.8, 123.6, 121.2, 120.7, 21.2; HRMS (ESI) Calcd for C₁₉H₁₆N₃S₂⁺ [M+H]⁺ 350.0780; Found: 350.0781.

(*Z*)-*N*'-(6-chlorobenzo[*d*]thiazol-2-yl)-*N*-(*p*-tolyl)benzimidamide (3n): colorless oil, 24.9mg, 66% yield. ¹H NMR (400 MHz, CDCl₃) δ = 12.67 (s, 1H), 7.71 (d, *J* = 2.0 Hz, 1H), 7.68 (d, *J* = 8.8 Hz, 1H), 7.57 (d, *J* = 7.2 Hz, 2H), 7.29–7.40 (m, 4H), 7.03 (d, *J* = 8.4 Hz, 2H), 6.87 (d, *J* = 7.6 Hz, 2H), 2.30 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 173.5, 160.5, 149.6, 136.2, 135.4, 134.6, 134.0, 130.4, 129.7, 129.5, 129.2, 128.3, 126.5, 124.3, 121.6, 120.9, 21.0; HRMS (ESI) Calcd for C₂₁H₁₇ClN₃S⁺ [M+H]⁺ 378.0826; Found: 378.0821.

(Z)-N'-(benzo[d]oxazol-2-yl)-4-chloro-N-(p-tolyl)benzimidamide (3o): colorless oil, 25.3mg, 70% yield. ¹H NMR (400 MHz, CDCl₃) δ = 12.33 (s, 1H), 7.51–7.57 (m, 3H), 7.44–7.46 (m, 1H), 7.21–7.29 (m, 4H), 7.05 (d, J = 8.0 Hz, 2H), 6.87 (d, J = 8.0 Hz, 2H), 2.30 (s, 3H); ¹³C NMR (101 MHz, CDCl₃) δ 164.4, 161.6, 147.7, 141.2, 136.8, 136.0, 135.9, 132.8, 131.1, 129.9, 128.5, 124.6, 124.0, 123.7, 117.9, 110.0, 21.0; HRMS (ESI) Calcd for C₂₁H₁₇ClN₃O⁺ [M+H]⁺ 362.1055; Found: 362.1056.

(a) M. Frias, A. C. Carrasco, A. Fraile and J. Aleman, *Chem.-Eur. J.*, **2018**, *24*, 3117; (b) H.-X. He, W. Yang and D.-M. Du, *Adv. Synth. Catal.*, **2013**, *355*, 1137; (c) Q. Ni, X. Song, J. Xiong, G. Raabe, D. Enders, *Chem. Commun.*, **2015**, *51*, 1263. (d) L. Jarrige, D. Glavac, G. Levitre, P. Retailleau, G. Bernadat, L. Neuville, G. Masson. *Chem. Sci.*, **2019**, *10*, 3765. (e) Q. Ni, X. Wang, F. Xu, X. Chen, X. Song. *Chem. Commun.*, **2020**, *56*, 3155.

100 90 f1 (ppm)

S44

11.194	8.275 7.706 7.553 7.553 7.453 7.453 7.412 7.429 7.260 7.260 7.261 7.262 7.094 7.005 7.005 7.005	3.712	3.060

S60

