Supplementary Information

Roles of acidic sites in alumina catalysts for efficient D-xylose conversion to lactic acid

Sirapassorn Kiatphuengporn, ^a Anchalee Junkaew, **^a Chuleeporn Luadthong, ^a Sutarat

Thongratkaew,^a Chakrit Yimsukanan,^a Siripit Songtawee,^a Teera Butburee,^a Pongtanawat

Khemthong,^a Supawadee Namuangruk,^a Manaschai Kunaseth^{a,b} and

Kajornsak Faungnawakij *a

^aNational Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani 12120, Thailand ^bThaiSC, National Electronics and Computer Technology Center (NECTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani 12120, Thailand

* Corresponding author: Tel.: +66 2 564 7100 ext. 6638, Fax: +66 2 564 6981,

E-mail address: kajornsak@nanotec.or.th (K. Faungnawakij).

** Corresponding author: *E-mail address:* anchalee@nanotec.or.th (A. Junkaew)

1. Lactic acid production from xylose over the different kinds of catalysts.

Figure S1 Lactic acid production from xylose over the different kinds of catalysts. Reaction conditions: D-xylose solution, 0.2 M; catalyst weight, 0.5 g; reaction temperature, 170 °C; initial N₂ pressure, 15 bar and reaction time, 4 h.

2. Lactic acid production from sugars over γ-Al₂O₃ catalyst

Figure S2 Lactic acid production from sugars including xylose, glucose and fructose over γ -Al₂O₃ catalyst. Reaction conditions: Sugar solution, 0.2 M; catalyst weight, 0.5 g; reaction temperature, 170 °C; initial N₂ pressure, 15 bar and reaction time, 4 h.

3. Proposed reaction pathway of D-xylose conversion to lactic acid

(a) Lactic acid production (Path A)

Figure S3 Proposed reaction pathway of D-xylose conversion to lactic acid and furfural modified from literatures [1-3].

4. XRD pattern of the catalysts before and after uses

Figure S4 XRD patterns of fresh and spent Al-RT catalyst after the 3rd cycle of the reaction test. Reaction conditions: D-xylose concentration, 0.2 M; catalyst weight, 0.5 g; reaction temperature, 170 °C; and reaction time, 4 h.

5. Computational details

5.1 γ-Al₂O₃ (110) surface

The bulk γ -Al₂O₃ was fully optimized by using 7×5×5 of k-point generated by the Monkhorst-Pack scheme. The (110) surface was cleaved from the optimized bulk, which has a= 5.708 Å, b= 8.186 Å, c= 7.861 Å and β= 90.22°. A size of (1×1) γ -Al₂O₃ (110) surface is 7.861 Å×8.186 Å×22.305 Å. The (110) slab is separated by 15 Å of vacuum. Two bottom atomic layers of six atomic layers were fixed during the calculation.

5.2 Ab initio molecular dynamics simulation of hydroxylated γ -Al₂O₃ (110) surface

Ab- initio Molecular Dynamics (AIMD) simulation was conducted to obtain the hydroxylated Al₂O₃ (110) surface with the OH coverage (Θ) of ~12.4 OH/nm². The preoptimized surface of four water molecules on Al₂O₃ (110) was simulated by Nosé-Hoover thermostat for 5 ps with a time step of 0.5 fs. Γ -point sampling of the Brillouin zone was used for the AIMD calculation. For the pre- optimized configuration, three water molecules dissociate and one molecule is in the molecular form at the Al^{4a**} site. During AIMD simulation around 300K, that molecular water dissociates as shown in **Figure S5**. The change of O-H bond distance of H₂O adsorbed on the Al^{4a**} site is demonstrated in **Figure S5**c. Therefore, all adsorbed water molecules completely dissociate at low temperature. The final configuration at 5000 fs was re-optimized for using in further adsorption calculations.

Figure S5 (a) Temperature, (b) Total energy and (c) O-H bond distance of H₂O adsorbed on the Al^{4a**} site during AIMD simulation of four water molecules γ -Al₂O₃ (110) surface. The top view of configurations at (d) 0 fs, (e) 4600 fs and (f) 5000 fs. The red and orange balls represent the oxygen atoms of the catalyst and the water molecules, respectively.

5.3 Adsorption on hydroxylated γ -Al₂O₃ (110) in gas phase

The interaction between gas species and the hydroxylated Al₂O₃ (110) surface was further investigated via the adsorption calculation. The adsorption energy (E_{ads}) can be calculated from $E_{ads} = E_{molecule/surface} - E_{surface} - E_{molecule}$. $E_{molecule/surface}$ is a total energy of a molecule adsorbed surface, while $E_{surface}$ and $E_{molecule}$ are the total energies of a clean surface and an isolated molecule, respectively. The 1x1 slab was used for NH₃ and NH₄ adsorption calculations.

Figure S6 Adsorption configurations of (a) NH₃/Al (NH₃L), (b) NH₃/B and (ce) NH₄/B on hydroxylated γ -Al₂O₃ (110) (Θ = 12.4 OH/nm²) Al and O of the top two layers are represented by light blue and red balls, respectively. The blue and white balls represent N and H, respectively.

Figure S7 Selected possible configurations and E_{ads} values of (a)-(e) D-Xylose, (f)-(j) D-Xyluose, and (k)-(l) D-Lactic acid on hydroxylated γ -Al₂O₃ (110). The orange and green balls represent O and H of adsorbed molecules, respectively.

5.4 Effect of solvation on the stability of intermediates

Solvation energy

The implicit solvation method implemented in VASPsol, in which the solvent is treated as a continuum dielectric, was used in this work. To simulate the implicit aqueous system, the dielectric constant (ϵ), or relative permittivity, of water was used. This dielectric constant is typically expressed as a ratio relative to the vacuum permittivity (ϵ =1) and it is varied as a function of temperature. According Bradley and Pltzer's work [4], the dielectric constant of water at temperature T, ϵ (T), can be calculated by following equations.

$$\epsilon(T) = \epsilon(1000) + C\ln((B+P)/(B+1000))$$
(Eq. S-1)

$$\varepsilon(1000) = U_1 \exp[U_2 T + U_3 T^2]$$
 (Eq. S-2)

$$C = U_4 + U_5/(U_6 + T)$$
 (Eq. S-3)

$$B = U_7 + U_8 / T + U_9 T$$
 (Eq. S-4)

In Eq. S-1, $\epsilon(1000)$, C and B are temperature dependent parameters and they can be calculated by Eq. S-2 to S-4. The values of constants in Eq. S-2 to S-4 for the ϵ of water were given in [4].

The ε of water at 298 K (or room temperature) and 443 K (or 170 °C) are 78.4 and 39.9, respectively. These ε values were applied to simulate the implicit water systems at room temperature and the optimum temperature for the reaction observed in this work. The role of water towards the adsorption of molecules on the catalyst surface and also thermodynamic stability of intermediates are compared to vacuum calculations.

Energy profiles

An isolated molecule in catalyst free condition was calculated in a 20 Å×20 Å×20 Å box. The energy profiles of intermediates along the lactic acid- and furfural production pathways were investigated according the proposed scheme in **Figure S3**. In **Figure S8**, IS1, IS2, FS1 and FS2 states represent D-xylose, D-xylulose, D-lactic acid and furfural, respectively. Path A is the lactic acid production path. Following the Retro-aldol (RA) path, the INTa1 state represents the relative energy of glycolaldehyde and dihydroxyacetone (Eglycolaldehyde+ Edihydroxyacetone) compared to the reference state (IS1). INTa2 represents the relative energy of glycolaldehyde and glyceraldehyde compared to the reference state. For the C3 intermediates, dihydroxyacetone reveals more energetic stable than glyceraldehyde. In the next step, INTa3 represents the relative energy state of glycolaldehyde, 2-Hydroxypropenal and one water. INTa4 represents the relative energy state of glycolaldehyde, pyruvaldehyde and one water. Intermediates of two dehydration pathways are depicted in **Figure S9**. The possible structures of each molecule were optimized in gas phase first. Then the most stable form was further optimized in implicit solvent.

The relative energies of molecules and intermediates in gas phase and solution phase compared to energies of D-xylose in gas and solution, respectively. The solvation energy (ΔE_{sol}) is the total energy difference of solution and vacuum calculations. The calculated ΔE_{sol} values are given in **Table S1**. At $\varepsilon = 78.4$, our calculated ΔE_{sol} of H₂O is -0.32 eV, which agrees well with the literature [5].

Figure S8 Energy profiles of the lactic acid production via (a) path A in gas phase, (b) path A in aqueous phase, and the furfural production via (c) path B in gas phase, (d) path B in aqueous phase, (e) path C in gas and (f) path C in aqueous phase. The ε of 78.4, representing water at 298 K, was used in the solution calculation.

Figure S9 Three dimensional structures of molecules and intermediates of proposed

pathways

System	ΔE_{sol} i	n water (eV)
System	at 298 K (ε=78.4)	at 443 K (ε=39.9)
H ₂ O	-0.32	-0.28
D-Xylose	-0.59	-0.50
D-Xylulose	-0.62	-0.52
Glycolaldehyde	-0.28	-0.24
Dihydroxyacetone	-0.38	-0.32
Glyceraldehyde	-0.38	-0.32
2-Hydroxypropenal	-0.23	-0.19
Pyruvaldehyde	-0.25	-0.21
D-Lactic acid	-0.40	-0.34
L-Lactic acid	-0.40	-0.34
Furfural	-0.25	-0.21
INTb1	-0.46	-0.38
INTb2	-0.47	-0.39
INTb3	-0.47	-0.40
INTb4	-0.29	-0.25
INTb5	-0.38	
INTc1	-0.66	
INTc2	-0.52	
INTc3	-0.38	
INTc4	-0.32	
Hydroxylated Al ₂ O ₃ (2×2) slab	-22.50	-15.70
D-xylose/hydroxylated Al ₂ O ₃ (Config. 1)	-22.16	-16.80
D-xylulose/hydroxylated Al ₂ O ₃ (Config. 1)	-22.42	-15.83
D-lactic acid/hydroxylated Al ₂ O ₃ (Config. 1)	-21.71	-15.83

Table S1 The calculated solvation energy (ΔE_{sol}) of molecules, intermediates, barehydroxylated Al₂O₃ surface and gas adsorbed surfaces calculated by VASPsol.

Adsorption	E _{ads} (eV)								
system	Gas phase (ε =1)	Aqueous at 25 °C (ε =78.4)	Aqueous at 170 °C (ε =39.9)						
D-xylose	-1.43	-0.51	-2.03						
D-xylulose	-1.34	-0.64	-1.52						
D-lactic acid	-1.23	-0.04	-1.01						

Table S2 The calculated E_{ads} energies in gas and solution calculations.

Molecule/	Optimized structure in solution	Optimized structure in solution
Intermediate	(ε =78.4)	(ε=39.9)
H ₂ O	O 9.674894 10.138355 10.106200	O 9.674886 10.138664 10.106200
	Н 8.907768 10.738545 10.106200	Н 8.908099 10.738390 10.106200
	H 10.447336 10.731499 10.106200	H 10.447015 10.731346 10.106200
D-Xylose	C 6.789362 10.327091 9.388465	C 6.785160 10.334520 9.383520
	C 8.021343 10.988866 9.942778	C 8.023000 10.989100 9.935921
	C 9.288612 10.219568 9.475016	C 9.288280 10.217280 9.467219
	C 10.568866 11.051962 9.702487	C 10.569720 11.043900 9.706000
	C 11.824959 10.234518 9.436279	C 11.828780 10.227119 9.450260
	O 13.013148 10.994493 9.678909	O 13.009681 11.002920 9.676220
	O 5.962365 10.972189 8.748111	O 5.966180 10.985240 8.739020
	O 8.034811 12.366115 9.594736	O 8.041020 12.365320 9.584500
	O 9.291050 9.018240 10.249519	O 9.282240 9.009820 10.232739
	O 10.613686 12.173966 8.809771	O 10.626940 12.164460 8.812980
	Н 7.992694 10.883012 11.044768	Н 7.994280 10.885039 11.038620
	Н 9.217417 9.992332 8.397030	Н 9.219920 10.000800 8.386700
	H 10.586912 11.397901 10.755299	H 10.579960 11.390840 10.758300
	Н 6.674440 9.240376 9.567338	Н 6.657400 9.250180 9.568820
	H 11.802078 9.866352 8.393147	H 11.807899 9.840700 8.413520
	Н 11.860792 9.371511 10.112648	Н 11.873680 9.376280 10.141820
	H 12.969117 11.789465 9.113916	Н 12.928020 11.810560 9.133420
	Н 7.240568 12.514517 9.028152	Н 7.242180 12.511740 9.023300
	Н 9.613281 8.285535 9.693621	Н 9.624020 8.284639 9.679500
	Н 9.746096 12.629791 8.912213	Н 9.763201 12.627380 8.911780
D-Xylulose	C 6.850414 10.306332 9.704378	C 6.850020 10.305480 9.703340
	C 8.098253 10.946416 9.164895	C 8.099580 10.944700 9.165820
	C 9.388214 10.145894 9.145705	C 9.389480 10.144200 9.145781

Table S3 The coordinates of the optimized structures in xyz format calculated by VASPsol.

16

	С	10.585400	11.025291	9.593542	С	10.586760	11.023120	9.594339
	С	11.882848	10.230644	9.627895	С	11.884720	10.229540	9.624760
	0	12.973395	11.023891	10.104454	0	12.975860	11.027580	10.089660
	0	5.738726	11.176597	9.617368	0	5.740640	11.176480	9.611460
	0	8.043978	12.110853	8.743832	0	8.046640	12.110420	8.748840
	0	9.230323	8.991994	9.964897	0	9.229800	8.990540	9.966000
	0	10.783894	12.108330	8.678158	0	10.785379	12.107400	8.680960
	Н	7.040126	10.002084	10.749741	Н	7.038600	10.003720	10.749920
	Н	9.557526	9.865082	8.088911	Н	9.559060	9.863521	8.088799
	Н	10.379481	11.412395	10.610174	Н	10.381100	11.408060	10.611859
	Н	6.672756	9.371543	9.141725	Н	6.672580	9.368700	9.143680
	Н	12.093750	9.839848	8.614721	Н	12.089260	9.833020	8.612000
	Н	11.784355	9.383867	10.319096	Н	11.792660	9.386700	10.321160
	Н	13.066215	11.787243	9.503180	Н	13.037320	11.805700	9.503580
	Н	6.081246	12.015924	9.233541	Н	6.088660	12.014740	9.230400
	Н	9.656795	8.233553	9.526620	Н	9.657440	8.232020	9.530160
	Н	9.906107	12.538224	8.560567	Н	9.908220	12.540300	8.570880
Glycolaldehyde	С	9.549100	10.979641	11.038560	С	9.548840	10.980379	11.037880
	С	9.098540	10.912060	9.616140	С	9.097960	10.911360	9.614520
	0	8.654440	12.162640	9.127660	0	8.653980	12.162661	9.130140
	0	9.517840	12.031899	11.674260	0	9.515000	12.034640	11.668921
	Η	9.913120	10.034680	11.491800	Н	9.914440	10.037580	11.495319
	Η	9.943200	10.522440	9.015400	Н	9.942101	10.522460	9.012900
	Η	8.299900	10.147480	9.553020	Н	8.299660	10.146760	9.550799
	Η	8.749260	12.793200	9.876780	Н	8.753400	12.788160	9.883100
Dihydroxyacetone	С	9.842100	10.235120	10.121680	С	9.842120	10.232960	10.122319
	С	8.545800	9.480420	10.001160	С	8.543941	9.480620	10.000660
	С	11.139560	9.483479	10.248739	C	11.141300	9.483140	10.248500
	0	7.438560	10.357881	9.893340	0	7.441160	10.362480	9.892839
	0	12.245720	10.362540	10.356220	0	12.243320	10.366381	10.356460

	0	9.840720	11.470940	10.115360	0	9.840840	11.468740	10.117680
	Н	8.440360	8.824320	10.883841	Н	8.435019	8.823640	10.882501
	Н	8.608120	8.820120	9.117559	Н	8.604780	8.818280	9.118100
	Н	11.247740	8.825480	9.367741	Н	11.251640	8.824420	9.368000
	Н	11.076380	8.824560	11.133300	Н	11.080800	8.822100	11.131880
	Н	7.811080	11.267780	9.922980	Н	7.821460	11.269160	9.923780
	Н	11.873060	11.271980	10.319080	Н	11.862840	11.272679	10.318280
Glyceraldehyde	С	9.779120	10.613260	10.649700	С	9.780860	10.610960	10.646700
	С	11.070139	9.785720	10.546080	С	11.072081	9.784560	10.550520
	С	8.565020	9.727440	10.607380	С	8.562820	9.729580	10.603880
	0	9.730120	11.593241	9.624900	0	9.737720	11.583900	9.615720
	0	11.156799	9.069220	9.316620	0	11.165260	9.069201	9.321020
	0	7.683920	9.880000	9.765759	0	7.680220	9.892660	9.766760
	Н	9.782001	11.091841	11.651440	Н	9.777519	11.095039	11.646040
	Н	11.097120	9.044940	11.357620	Н	11.096940	9.043180	11.361620
	Н	11.925120	10.470680	10.673321	Н	11.926021	10.469980	10.681520
	Н	8.505160	8.928460	11.375999	Н	8.500020	8.926680	11.368660
	Н	8.883380	11.445360	9.145480	Н	8.884340	11.442539	9.146060
	Н	11.192660	9.723619	8.593100	Н	11.186780	9.725500	8.598920
2-Hydroxypropenal	С	9.880980	10.409540	10.303220	С	9.882640	10.407640	10.303840
	С	11.041221	9.973660	10.834520	С	11.043839	9.973780	10.833960
	С	8.635220	9.660660	10.520639	С	8.634380	9.662060	10.520240
	0	9.772540	11.534580	9.551080	0	9.770480	11.532240	9.551040
	0	7.565840	10.046061	10.036900	0	7.568740	10.056660	10.036360
	Н	11.035380	9.059660	11.426220	Н	11.042959	9.060480	11.426740
	Н	11.982300	10.503420	10.692680	Н	11.982519	10.507040	10.690380
	Н	8.707980	8.741480	11.135100	Н	8.700580	8.740160	11.132200
	Н	8.825940	11.621540	9.289240	Н	8.821259	11.610519	9.294880
Pyruvaldehyde	С	8.774560	10.399780	9.737020	С	8.774580	10.399700	9.737020
	С	10.012701	11.226681	9.739000	C	10.013080	11.227280	9.739000

	С	11.367960	10.501160	9.745300	С	11.367940	10.500860	9.745300
	0	10.044360	12.456660	9.736700	0	10.044760	12.456779	9.736680
	0	11.475640	9.285920	9.750220	0	11.475460	9.285980	9.750240
	Н	8.778360	9.733700	8.860380	Н	8.778040	9.733300	8.860701
	Н	8.770160	9.742360	10.620260	Н	8.769840	9.741980	10.619960
	Н	7.884840	11.036960	9.729820	Н	7.884960	11.036880	9.729820
	Н	12.244821	11.186840	9.745480	Н	12.244760	11.187220	9.745480
D-Lactic acid	С	9.334460	10.162899	9.062119	С	9.333700	10.162640	9.061840
	С	8.605360	10.403759	10.383821	С	8.605300	10.403600	10.383739
	С	10.814080	10.494040	9.156580	С	10.813340	10.493919	9.156080
	0	8.751861	10.934581	8.014040	0	8.752640	10.934720	8.013920
	0	11.464220	9.757980	10.064520	0	11.464439	9.757640	10.065340
	0	11.342879	11.353320	8.452780	0	11.342421	11.352620	8.453160
	Н	9.266560	9.090020	8.804480	Н	9.265800	9.089660	8.804140
	Н	8.710040	11.451620	10.698500	Н	8.710060	11.451360	10.697941
	Н	9.000840	9.750139	11.172300	Н	9.001120	9.750300	11.172180
	Н	7.539260	10.180240	10.247400	Н	7.539220	10.180540	10.247740
	Н	9.478340	11.485681	7.646720	Н	9.481220	11.484940	7.649520
	Н	12.415280	10.012079	10.083341	Н	12.413960	10.014460	10.080980
L-Lactic acid	С	10.159860	9.941280	11.129780	С	10.159921	9.939620	11.130600
	С	9.454781	9.073561	10.088039	С	9.454000	9.073020	10.088100
	С	11.621680	10.172120	10.786400	С	11.621040	10.172979	10.787060
	0	9.507880	11.202360	11.264139	0	9.510080	11.200700	11.265181
	0	12.331240	9.040580	10.711360	0	12.333740	9.042000	10.711599
	0	12.088300	11.296140	10.607380	0	12.084940	11.297379	10.607759
	Н	10.143419	9.418100	12.103620	Н	10.144360	9.415300	12.104140
	Н	9.507380	9.541960	9.095780	Н	9.506660	9.541920	9.095820
	Н	8.400140	8.960740	10.371480	Н	8.399180	8.964100	10.371460
	Н	9.911520	8.076700	10.038700	Н	9.907300	8.074580	10.038260
	Н	10.193581	11.884520	11.089140	Н	10.198621	11.878780	11.085481

	H 13.269020 9.246160 10.491800 H 13.268940 9.253839 10.492140
Furfural	C 8.938620 11.099239 10.071620 C 8.935980 11.093360 10.069560
	C 9.411140 9.800360 10.066580 C 9.416780 9.797700 10.066280
	C 10.825159 9.880740 10.053340 C 10.830420 9.887040 10.060300
	C 11.137400 11.220480 10.051001 C 11.133900 11.228480 10.060240
	C 7.626580 11.692440 10.086761 C 7.621960 11.683640 10.076480
	O 10.011840 11.977640 10.061379 O 10.003800 11.978001 10.065680
	O 6.571400 11.041340 10.102700 O 6.567600 11.033020 10.081240
	Н 8.798440 8.904060 10.071699 Н 8.810360 8.897260 10.068140
	H 11.533260 9.058420 10.046721 H 11.544060 9.069860 10.056620
	H 12.075339 11.765800 10.043499 H 12.067861 11.780439 10.057079
	Н 7.616600 12.804880 10.083880 Н 7.613060 12.796579 10.077560
INTb1	C 6.914760 10.215020 9.153920 C 6.914340 10.221439 9.154980
	C 8.121260 11.013980 9.371680 C 8.127380 11.009920 9.371720
	C 9.334300 10.423079 9.477779 C 9.337400 10.415120 9.483960
	C 10.627720 11.160721 9.674920 C 10.630060 11.153140 9.679840
	C 11.822300 10.260361 9.381200 C 11.827420 10.260080 9.377400
	O 13.068260 10.888260 9.680861 O 13.069340 10.900540 9.664520
	O 5.805840 10.751240 9.038420 O 5.812680 10.770659 9.035960
	O 7.945300 12.360260 9.453780 O 7.957460 12.357960 9.445840
	O 10.755180 12.305380 8.809540 O 10.753241 12.301840 8.819901
	Н 9.352301 9.332260 9.417600 Н 9.352640 9.323940 9.431520
	H 10.695961 11.490680 10.732059 H 10.701580 11.478280 10.738440
	Н 7.047800 9.116260 9.099700 Н 7.036120 9.121080 9.104060
	Н 11.781040 9.946119 8.321500 Н 11.778919 9.944099 8.318460
	Н 11.758260 9.362440 10.011240 Н 11.777400 9.362660 10.009260
	Н 13.143179 11.681200 9.117060 Н 13.109560 11.713600 9.126480
	Н 6.985640 12.543820 9.321060 Н 6.997800 12.539840 9.308200
	Н 10.043301 12.937540 9.027699 Н 10.019040 12.914439 9.019480
1	

INTb2	С	6.740541	10.240379	9.459900	С	6.738560	10.256359	9.470480
	С	8.060320	11.024360	9.526140	С	8.063700	11.033200	9.519840
	С	9.338340	10.266121	9.360860	С	9.337620	10.263580	9.370520
	С	10.590100	11.100660	9.620980	С	10.593740	11.093740	9.624080
	С	11.846140	10.251160	9.502260	С	11.847100	10.240860	9.499599
	0	13.027580	10.972380	9.861401	0	13.031599	10.968500	9.831340
	0	6.689780	9.024099	9.385620	0	6.680480	9.041800	9.380340
	0	7.979520	12.236920	9.722000	0	7.991320	12.250800	9.684700
	0	10.729620	12.173480	8.672960	0	10.734560	12.163600	8.673200
	Η	9.296220	9.387361	10.027121	Η	9.288799	9.392000	10.045520
	Η	9.345320	9.849660	8.336460	Η	9.347300	9.834920	8.351320
	Н	10.540640	11.517720	10.643020	Н	10.551480	11.514740	10.645061
	Η	5.834060	10.883020	9.506820	Η	5.836540	10.904380	9.539380
	Η	11.922680	9.863940	8.468520	Н	11.908799	9.840220	8.469900
	Н	11.778400	9.394239	10.186720	Н	11.789960	9.392940	10.196000
	Η	13.076659	11.756680	9.282220	Η	13.049940	11.760660	9.261180
	Η	10.033081	12.829380	8.868580	Η	10.037499	12.819300	8.869101
INTb3	С	7.212540	10.702459	10.372320	С	7.213380	10.704880	10.373159
	С	8.040340	11.241540	9.203940	С	8.041800	11.245260	9.205359
	С	9.274880	10.400240	8.856140	С	9.274600	10.402599	8.853820
	С	10.439661	11.083380	9.565280	С	10.440921	11.083241	9.562019
	С	9.981880	12.538219	9.575640	С	9.985200	12.538641	9.574841
	0	8.543800	12.490240	9.747960	0	8.547780	12.493259	9.747120
	0	5.988820	10.681160	10.346280	0	5.990120	10.680740	10.341681
	0	7.234340	11.445980	8.080999	0	7.230860	11.449900	8.086200
	0	10.546200	10.530760	10.885780	0	10.544559	10.527821	10.881200
	Н	9.170200	9.351300	9.161380	Н	9.169880	9.353760	9.159500
	Η	9.409240	10.431860	7.766960	Н	9.405640	10.434000	7.764240
	Η	11.387320	10.961480	9.015960	Н	11.387900	10.958960	9.012000
	Н	7.793740	10.387259	11.263781	Н	7.791760	10.390379	11.266760

	Η	10.228041	13.031760	8.619761	Η	10.233040	13.033700	8.619940
	Н	10.401740	13.118540	10.407061	Н	10.406321	13.117960	10.406740
	Н	6.310081	11.558260	8.397161	Н	6.306760	11.539760	8.410541
	Н	11.276979	10.985160	11.345779	Н	11.269300	10.984720	11.347080
INTb4	С	6.981840	10.892361	10.045860	С	6.980980	10.896799	10.042300
	С	8.140920	11.177920	9.089581	С	8.143400	11.179960	9.089640
	С	9.351060	10.231700	9.229099	С	9.352680	10.232759	9.227460
	С	10.484281	11.173679	9.538940	С	10.486421	11.173300	9.539060
	С	9.990940	12.400219	9.722179	С	9.993500	12.399460	9.724880
	0	8.616060	12.498980	9.565860	0	8.619081	12.499599	9.568640
	0	5.818480	10.924720	9.673900	0	5.820140	10.939179	9.663960
	0	7.706620	11.267839	7.775980	0	7.705100	11.273780	7.777880
	Н	9.191740	9.496940	10.033999	Н	9.193160	9.496180	10.030700
	Н	9.485340	9.669420	8.293880	Н	9.485940	9.672441	8.291160
	Н	11.531800	10.892780	9.596300	Н	11.534040	10.892500	9.594680
	Н	7.262020	10.691700	11.100901	Н	7.254160	10.691080	11.098221
	Н	10.481260	13.338700	9.970981	Н	10.484039	13.337160	9.975600
	Н	6.757600	11.525440	7.783520	Н	6.747360	11.498220	7.796820
INTb5	С	6.851120	10.811100	9.105180				
	С	8.256300	11.153299	9.368800				
	С	9.375020	10.419001	9.179040				
	С	10.540640	11.172620	9.758460				
	С	9.919960	12.566400	9.967520				
	0	8.467060	12.396160	9.916220				
	0	6.494640	9.744380	8.605520				
	0	11.035580	10.542541	10.958139				
	Н	9.415760	9.411220	8.776180				
	Н	11.411520	11.224660	9.092600				
	Н	6.113360	11.591459	9.392220				
	Н	10.193620	13.247180	9.149260				

	H 10.179041 13.014359 10.934100
	H 10.275579 10.363040 11.545780
INTc1	C 7.220080 11.258101 8.416640
	C 8.203360 11.277941 9.584960
	C 9.367180 10.222380 9.500700
	C 10.654520 11.054720 9.655360
	C 10.142879 12.399159 10.164221
	O 7.473860 11.092680 10.786780
	O 6.475340 10.040819 8.379760
	O 8.840340 12.554560 9.560280
	O 9.275180 9.253060 10.548960
	O 11.266541 11.146719 8.361100
	H 11.332819 10.571719 10.376659
	Н 7.769360 11.328760 7.468400
	H 9.364180 9.730640 8.518820
	H 6.555540 12.136420 8.506120
	H 10.763081 13.249081 9.853680
	H 10.057420 12.393380 11.265079
	Н 7.916160 10.343060 11.255280
	H 6.022500 9.957000 9.241820
	H 8.780900 8.480160 10.215501
	H 12.079559 11.678420 8.452860
INTc2	C 7.088420 10.535940 9.208060
	C 8.373140 10.889840 9.384500
	C 9.600640 10.013160 9.400540
	C 10.748820 11.058260 9.472140
	C 10.060019 12.230579 10.156919
	O 6.637440 9.267660 8.932179
	O 8.713660 12.228720 9.610700
	O 9.610661 9.068340 10.488041

	0	11.256080	11.389740	8.175640)			
	Н	11.594600	10.662201	10.047501	l			
	Н	6.276620	11.260960	9.263741				
	Н	9.714120	9.409679	8.488260				
	Н	10.513161	13.202580	9.931720)			
	Η	10.016621	12.081079	11.249360)			
	Н	7.371920	8.622520	8.945540				
	Н	9.244440	9.502419	11.282579				
	Н	10.562400	11.854939	7.669559)			
INTc3	С	7.009460	10.456380	9.212460				
	С	8.404160	10.853120	9.454960				
	С	9.543480	10.145880	9.287000				
	С	10.710899	11.064159	9.522699	,			
	С	10.013861	12.268400	10.182839)			
	0	6.679200	9.331500	8.837300				
	0	8.584701	12.144960	9.889480				
	0	11.404280	11.364300	8.294260)			
	Н	11.481659	10.644259	10.181641				
	Н	6.254020	11.252280	9.390821				
	Н	9.611160	9.120760	8.934999				
	Н	10.361561	13.234139	9.797441				
	Н	10.121580	12.236080	11.276300)			
	Н	10.744801	11.644401	7.629620)			
INTc4	С	7.036860	10.374140	9.402380				
	С	8.320360	10.749060	9.523320				
	С	9.591360	10.038839	9.115140				
	С	10.612720	11.091539	9.450080				
	С	9.992880	12.126141	10.037380	,			
	0	6.604000	9.205260	8.844700				
	0	8.621700	11.987580	10.131460)			

0	9.797620	8.767100	9.795640		
Н	11.678560	11.000880	9.263460		
Н	6.216440	10.998501	9.756800		
Н	9.589380	9.754280	8.050820		
Н	10.375360	13.054800	10.453020		
Н	7.356340	8.633660	8.590200		
Н	9.832020	8.952220	10.754980		

6. References

- [1] T. M. Aida, N. Shiraishi, M. Kubo, M. Watanabe and R. L. Smith, J. Supercrit. Fluid., 2010, 55, 208-216.
- [2] S. J. You, E. D. Park, and M. Park, Korean J. Chem. Eng., 2016, 33, 806-818.
- [3] B. Hu, Q. Lu, Z. Zhang, Y. Wu, K. Li, C. Dong, Y. Yang, Combust. Flame., 2019, 206, 177-188.
- [4] D. J. Bradley and K. S. Pitzer., J. Phys. Chem., 1979, 12, 1599–1603.
- [5] K. Mathew, R. Sundararaman, K. Letchworth-Weaver, T.A. Arias, and R.G. Hennig, J. Chem. Phys., 2014, 140, 084106.