

Supplementary information

Understanding the in-situ state of lignocellulosic biomass during ionic liquids-based engineering of renewable materials and chemicals

Author affiliations

¹ Center for Renewable Carbon, The University of Tennessee Institute of Agriculture, Knoxville, TN 37996, USA.

² USDA-Forest Service, Southern Research Station, Auburn, AL 36849, USA.

³ Department of Biosystems Engineering & Soil Science, The University of Tennessee Institute of Agriculture, Knoxville, TN 37996, USA.

***Corresponding authors**

Table of contents

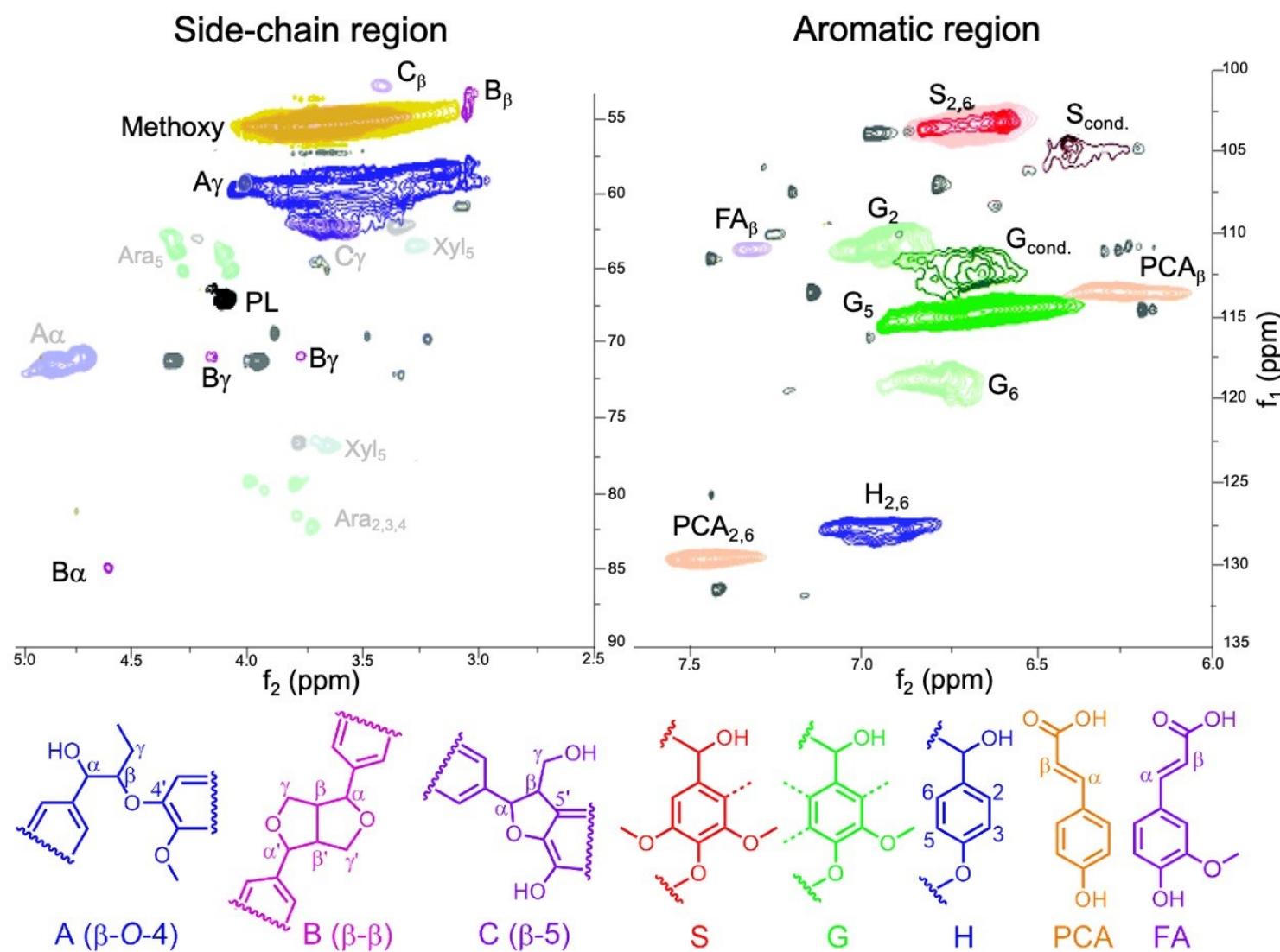

Table S1. NMR chemical shift assignments for lignocellulosePage S2
Figure S1. 2D-HSQC NMR spectra of IL-pretreated Miscanthus ligninPage S4

Table S1 NMR chemical shift assignments for lignocellulose-derived structures

Component origin	Specific functional group	Chemical shift (ppm)
¹³C NMR*		
Lignin	Aldehyde/ketone (C=O)	220–187
	–COO/CH ₃ COO	173
	Aromatic C—O (G _{3(e)} and G _{3(ne)})	153–147
	Aromatic C—O (G _{4(e)} and G _{4(ne)})	147–143
	Aromatic C—C (G _{1(e)})	137–134
	Aromatic C—C (G _{1(ne)})	131
	Aromatic C—H (G ₆)	120
	Aromatic CH (G ₅)	115
	Aromatic CH (G ₂)	112
Hemicellulose	OCHO of (C ₁)	109–97
Cellulose	OCHO of (C ₁)	105
	CHOH of (C ₄)	89
	CHOH of (amorphous C ₄)	84
Lignin	C _β -OR	86–82
Hemicellulose	Arabinan CHOH of (C ₂ , C ₃ , C ₄)	86–80
	Xylan CHOH of (C ₂ , C ₃ , C ₄)	80–73
Cellulose	CHOH of (C ₂ , C ₃ , C ₅)	75
Lignin	C _α -OR of lignin	76–72
Cellulose	CHOH of (C ₂ , C ₃ , C ₅)	72
	CH ₂ OH of (crystalline C ₆)	66
	CH ₂ OH of (amorphous C ₆)	63
Hemicellulose	CH ₂ OH of (amorphous C ₅)	63–61
Lignin	C _γ -OR	64–60
	OCH ₃	56
	α, β methylene groups	29–31
Hemicellulose	CH ₃	21.6
Lignin	γ methyl in <i>n</i> -propyl side chain	15.5

¹H NMR[*]		
Hemicellulose	OCH ₃	2.2–3.2
	CH ₂ OH of (amorphous C ₅)	3.2–3.9
	Xylan CHOH of (C ₁ , C ₂ , C ₃ , C ₄)	3.2–4.3
	Arabinan CHOH of (C ₁ , C ₂ , C ₃ , C ₄)	3.6–5.2
Lignin	H _β in β-β structure	3.2–3.4
	Methoxyl proton	3.4–4
	H _γ in β-O-4 aryl ether	4.1–4.6
	H _β in β-O-4 aryl ether	4.8
	H _β in benzyl aryl ether	5.3–5.8
	Aromatic H in syringyl unit	6.6
	Aromatic H in guaiacyl unit	6.7–6.9
	Ethylenic and aromatic protons in <i>p</i> -coumaric and ferulic acids	7.3–7.6
³¹P NMR[#]		
Lignin/ Cellulose	Aliphatic OH	150.0–145.0
Lignin	5-Substituted OH	145.0–141.0
	Guaiacyl OH	141.0–138.5
	<i>p</i> -Hydroxyphenyl OH	138.5–136.5
	COOH	136.0–133.5

Sources: ^{*}Holtman et al., 2010. DOI: 10.1021/jf101258x; Wen et al., 2010. DOI: 10.1021/jf1032153; [#]Pu et al., 2011. DOI: 10.1039/C1EE01201K; Balakshin & Capanema, 2015. DOI: 10.1080/02773813.2014.928328; Ben et al., 2018. DOI: 10.3389/fenrg.2018.00013

Fig. S1 2D-HSQC (heteronuclear single quantum coherence) NMR spectra of *Miscanthus* lignin extracted using 4:1 triethylammonium hydrogen sulfate and water (v/v) at 120 °C for 3 days. Differences between the faded spectra, which was recorded after 1 h, and the darkened spectra, which was recorded after 3 days, elucidate the disappearance of carbohydrate moieties, aryl ether, phenylcoumaran and lignin-carbohydrate sub-unit linkages (PCA, FA), as well as conversion of phenolic sub-units into condensed and demethoxylated (H-lignin) forms (adapted from Brandt-Talbot et al., 2017, DOI: 10.1039/C7GC00705A).