Supporting Information

Stannous Chloride as a Low-toxic and Extremely Cheap Catalyst for

Regio/Site-Selective Acylation with Unusually Broad Substrate Scope

Jian Lv, Jian-Cheng Yu, Guang-Jing Feng, Tao Luo and Hai Dong*

Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry

of Education, School of Chemistry & Chemical Engineering, Huazhong University of

Science & Technology, Luoyu Road 1037, Wuhan, 430074, PR China

E-mail: hdong@mail.hust.edu.cn

Contents

1. Experimental methods	S2
2. Figure S1	S3
3. Table S1	S7
4. Figure S2	
5. Figure S3	
6. Figure S4	
7. Table S2	S9
8. Figure S5	S11
9. Characterization Data of Corresponding Compounds	S12
10. References	
11. NMR Spectra	

1. Experimental methods

General: all chemicals were purchased as reagent grade and used without further purification. The solvents were purified before use and CH₃CN was distilled over CaH₂. Chemical reactions were monitored by thin-layer chromatography using precoated silica gel 60 (0.25 mm thickness) plates. Flash column chromatography was performed on silica gel 60 (SDS 0.040-0.063 mm). Spots were visualized by UV light (254 nm) then by charring with a solution of H₂SO₄ (5%) in ethanol. ¹H NMR spectra were recorded by 400 MHz or 600 MHz (¹H) and 100 MHz (¹³C) at 298K in CDCl₃ or CD₃CN using the residual signals from CDCl₃ (¹H: δ = 7.26 ppm; ¹³C: δ = 77.16 ppm) and CD₃CN (¹H: δ = 1.94 ppm; ¹³C: δ = 118.26 ppm) as internal standard. ¹H peak assignments were made by first order analysis of the spectra, supported by standard ¹H-¹H correlation spectroscopy (COSY). High-resolution mass spectra (HRMS) were obtained by TOF detection.

General procedure for the acylation of substrates: the substrate (0.1 - 0.2 mmol), SnCl₂ (0.05 equiv) and *N*,*N*-diisopropylethylamine (DIPEA) (1.2 - 2.5 equiv) were mixed in dry acetonitrile (0.5 - 1.0 mL). Then, acyl chloride (1.2 - 2.5 equiv) was added to the mixture. After stirring vigorously at room temperature for 0.5 - 2 hours, the reaction mixture was concentrated *in vacuo* and purified by flash column chromatography, affording the pure selectively protected derivatives.

Large-scale procedure for the benzoylation of substrates 19b and 23: the substrate (19b: 1.0 g, 2.3 mmol; 23: 580 mg, 1.88 mmol), SnCl₂ (19b: 4.5 mg; 23: 3.6 mg, 0.01 equiv) and *N*,*N*-diisopropylethylamine (DIPEA) (19b: 615 μ L; 23: 500 μ L, 1.5 equiv) were mixed in dry acetonitrile (10.0 mL). Then, benzoyl chloride (19b: 405 μ L; 23: 330 μ L, 1.5 equiv) was added to the mixture. After stirring vigorously at room temperature for 1 hour, the reaction mixture was concentrated *in vacuo* and purified by flash column chromatography, affording the pure selectively protected products 20b as white solid (1.028 g, 83%) and 24 as colorless syrup (722 mg, 93%).

2. Figure S1a. ¹H-NMR spectra of crude reaction mixtures for Table 1.

Figure S1b. ¹H-NMR spectra of crude reaction mixtures with various bases for Table 1.

Figure S1c. ¹H-NMR spectra of crude reaction mixtures with Bz₂O instead of BzCl for Table 1.

Figure S1d. Example of calculation the NMR ratio for Table 1. NMR yields was calculated in light of the ratio of the integral peak area: for example for entry 1, H₁ and H₂ of compound $2a/H_1$ of compound $2b/H_1$ of compound $2c/H_1$ of compound 1 = 2.18/0.14/0.04/1.00, indicating that the NMR ratio: 2a/2b/2c/1 = (2.18/2)/0.14/0.04/1.00 = 1.09/0.14/0.04/1.00 = 48%/6%/2%/44%.

Pł	$\begin{array}{c} 1 & 0 \\ 0 \\ HO \\ 1 \\ 1 \\ \end{array} \begin{array}{c} Ph & 0 \\ HO \\ HO \\ \end{array} \begin{array}{c} Ph & 0 \\ HO \\ HO \\ 2a \\ \end{array} \begin{array}{c} Ph & 0 \\ BzO \\ \end{array} \begin{array}{c} Ph & 0 \\ BzO \\ \end{array} \begin{array}{c} Ph & 0 \\ BzO \\ \end{array} \begin{array}{c} 2a \\ Bz \\ \end{array} \begin{array}{c} Ph & 0 \\ BzO \\ \end{array} \begin{array}{c} 2a \\ Bz \\ Bz \\ \end{array} \begin{array}{c} Ph & 0 \\ BzO \\ \end{array} \begin{array}{c} 2a \\ Bz \\ B$	HOOMe $2cOBzOMe$
Entry	Solvent	Ratio ^b 2a/2b/ 2c/1
1	CH ₃ CN,1h	95/4/0/1
2	EtOAc, 4h	51/2/0/46
3	THF, 4h	<5/-/-/>95°
4	Me-THF, 4h	21/2/0/77
5	Anisole, 4h	60/2/0/38
6	CHCl ₃ , 4h	68/5/0/27
7	1,4-dioxane, 4h	<5/-/-/>95°

3. Table S1. Evaluation of solvents for selective acylation of substrate 1^a

Reaction conditions: ^aSubstrate **1** (0.1mmoL), DIPEA (1.5 equiv.), SnCl₂ (0.05 equiv.), BzCl (1.2 equiv.), solvent (0.5mL), r.t. ^bRatios determined by ¹H NMR. ^cRatios monitored by TLC.

6.3 6.2 6.1 6.0 5.9 5.8 5.7 5.6 5.5 5.4 5.3 5.2 5.1 5.0 4.9 4.8 4.7 4.6 4.5 4.4 4.3 4.2 4.1 4.0 3.9 3.8 3.7 3.6 3.5 3.4 3.3 3. f1 (ppm)

4. Figure S2. ¹H-NMR spectra of crude reaction mixtures for Table S1.

5. Figure S3. a) SnCl₂ (5.0 mmol) was mixed in acetonitrile (10 mL) and shaken; b) 2.5 equiv of DIPEA was added to a) and shaken slightly; c) the mixture was stirred for 10 min at rt; d) left: SnCl₂ and DIPEA (3.0 equiv) were mixed in acetonitrile; right: after holding for 48 h, e) left: SnCl₂, DIPEA (3.0 equiv) and phenylglycol (5.0 equiv) were mixed in acetonitrile; right: turned into a clear solution after holding for 4 h.

6. Figure S4. ¹H-NMR spectrum of compound **55** with the addition of $SnCl_2$ (from 0.1 equiv to 0.7 equiv) in the presence of 1.5 equiv of DIPEA in CD₃CN. The proton connecting C-1^o shifted to upfield and the proton connecting C-2^o shifted to downfield slightly with the addition of SnCl₂.

Entry	Substrate	Product	Yields	Yields (organotin)	Yields (organotin)	Yields ⁸	Yields ⁹
			(SnCl ₂)	(stoich. amount)	(cat. amount)	(fig. 1d)	(fig. 1d)
1	Ph O O HO HO 1 HO OMe	Ph 0 0 HO 2a BzO OMe	92%	72%-100% ¹	92% ²	85%	83%
2	Ph O O HO HO 3	Ph O O OMe BzO HO 4	poor	39% ³		71%	-
3	Ph O HO HO HO HO O Me	$R_{2}O \xrightarrow{R_{1}O} 6$	95%, 2-OBz/3-OBz = 1.8/1	-	-	2-OBz/3-OBz = 1/1.4-2.5/1	-
4	HO HO 7	Ph O BzO HO 8	86%	-	-	81%	-
5	HO HO HO HO HO HO HO HO HO HO HO HO HO H	HO HO BZO OMe	83%	-	-	-	84%
6	HO OTBS HO 21 HO OMe	HO_OTBS BZO_22 HO _{OMe}	90%	-	-	-	83%
7	HO OTBS HO O OMe HO 23	HO_OTBS BZOO_OMe HO_24	95%	-	-	-	80%
8	Ph O OH HO 31 OMe	Ph O OH BzO 32a OMe	75%	90% ^{1c}	-	87%	-
9	ОСН ₃ H ₃ C О ОН HOHO 39	ОСН ₃ H ₃ C О ОН HO OBz 40	90%	-	-	-	-
10		H ₃ C HO BZO 42 OH	94%	100% ^{1c}	-	-	94%

7. Table S2 Comparison of SnCl₂ with various reagents which are applicable to both substrates containing *cis*-diol and substrates containing *trans*-diol.

11	HO OH 51	HO ^{OBz} 52	81%		100% ²	-	-
12	HOOH 53	HO_OBz 54a	83%	67% ⁴	-	-	-
13	HOOH Ph 55	HOOBz Ph56	84%	77% ⁴	90% ²	-	-
14		HO HO 64 BZO OMe	78%	95% ⁵	-	-	-
15	HO HO 65 HO	HO OBZ HO OMe 66 HO	62%	86% ⁶	79% ⁷	-	-
16	HO OH HO OH 67 OH OMe	HO OH BZO 0 68 OH OMe	71%		84% ⁷	-	-
17		HO OBZ BZO O OMe 70 OH	94%	95% ⁵	-	-	-
18	HO OH HO OH HO 71 OMe	BZO HO BZO 72 OMe	89%	90% ⁵	-	-	-

1 (a) G.-J. Boons, G. H. Castle, J. A. Clase, P. Grice, S. V. Ley and C. Pinel, *Synlett*, 1993, 913; (b) G.-J. Boons, G. H. Castle, J. A. Clase, P. Grice, S. V. Ley and C. Pinel, *Synlett*, 1994, 764; (c) C. W. Holzapfel, J. M. Koekemoer and C. F. Marais, *S. Afr. J. Chem.*, 1984, 37, 19; (d) S. David and A. Thiéffry, *J. Chem. Soc.*, *Perkin Trans. I* 1979, 1568; (e) D. J. Jenkins and B. V. L. Potter, *Carbohydr. Res.*, 1994, 265, 145; (f) R. M. Manavu and H. H. Szmant, *J. Org. Chem.*, 1976, 41, 1832.

- 2 T. Maki, F. Iwasaki and Y. Matsumura, Tetrahedron. Lett., 1998, 39, 5601.
- 3 K. Takeo and K. Shibata, *Carbohydr. Res.*, 1984, **133**, 147.
- 4 G. Reginato, A. Ricci, S. Roelens and S. Scapecchi. J. Org. Chem. 1990, 55, 5132.
- 5 T. Ogawa and M. Matsui, *Tetrahedron*, 1981, 37, 2363.
- 6 Y. Tsuda, M. E. Haque and K. Yoshimoto, Chem. Pharm. Bull., 1983, 31, 1612.
- 7 Y. Demizu, Y. Kubo, H. Miyoshi, T. Maki, Y. Matsumura, N. Moriyama and O. Onomura, Org. Lett., 2008, 10, 5075.
- 8 C. L. Allen and S. J. Miller, Org. Lett., 2013, 15, 6178.
- 9 I. H. Chen, K. G. M. Kou, D. N. Le, C. M. Rathbun and V. M. Dong, Chem. Eur. J., 2014, 20, 5013.

8. Figure S5. ¹H-NMR spectrum of compound **35** with the addition of $SnCl_2$ (from 0.2 equiv to 0.4 equiv) in the presence of DIPEA in CD₃CN. The proton connecting C-3 shifted to upfield and the proton connecting C-4 shifted to downfield slightly with the addition of $SnCl_2$.

9. Characterization Data of Corresponding Compounds

Methyl-2-O-benzoyl-4,6-O-benzylidene-a-D-glucopyranoside (2a).¹

Ph 32aBzOOMe Following the general procedure, the reaction was carried out with methyl-4,6-*O*-benzylidene- α -D-glucopyranoside **1** (28.2 mg, 0.1 mmol), DIPEA (26.5 µL, 1.5 equiv), and BzCl (14.0 µL, 1.2 equiv) in the presence of SnCl₂ (1 mg, 0.05 equiv) at room temperature for 1 h. The reaction mixture was directly purified by flash column chromatography (ethyl acetate/petroleum ether: 1/3), afforded compound **2a** as white solid (35.5 mg, 92%). **1H NMR (400 MHz, CDCl3)**: δ 8.11-8.09 (m, 2H), 7.61-7.38 (m, 8H), 5.58 (s, 1H), 5.08 (d, J = 4.0 Hz, 1H), 5.04 (dd, J = 9.6 Hz and 4.0 Hz, 1H), 4.38-4.31 (m, 2H), 3.92 (td, J = 10.0 Hz and 4.4 Hz, 1H), 3.80 (t, J = 10.0 Hz, 1H), 3.63 (t, J = 9.6 Hz, 1H), 3.40 (s, 3H).

Methyl-2-*O*-benzoyl-4,6-*O*-benzylidene- α -D-galactopyranoside (6a)² and Methyl 3-*O*-benzoyl-4,6-*O*-benzylidene- α -D-galactopyranoside (6b).²

^{Ph} Following the general procedure, the reaction was carried out ^{Ho} $_{\text{BzO} \text{OMe}}^{\text{Ga}}$ $_{\text{OH} \text{OMe}}^{\text{Ph}}$ with methyl-4,6-*O*-benzylidene- α -D-galactopyranoside **5** (28.2 mg, 0.1 mmol), DIPEA (26.5 µL, 1.5 equiv), and BzCl (14.0 µL, 1.2 equiv) in the presence of SnCl₂ (1 mg, 0.05 equiv) at room temperature for 2 h. The reaction mixture was directly purified by flash column chromatography (ethyl acetate/petroleum ether: 1/3), afforded a mixture of compound **6a** and **6b** as colorless oil (36.7 mg, 95%, **6a/6b** = 65/35). ¹H NMR (**400** MHz, CDCl₃): **6a**: δ 5.60 (s, 1H), 5.12 (d, *J* = 3.6 Hz, 1H, H-1), 3.43 (s, 3H, OCH₃); **6b**: δ 5.53 (s, 1H), 5.00 (d, *J* = 3.6 Hz, 1H, H-1), 3.50 (s, 3H, OCH₃).

Methyl-3-*O*-benzoyl-4,6-*O*-benzylidene-β-D-galactopyranoside (8).¹

Following the general procedure, the reaction was carried out with $B_{ZO} \xrightarrow{OMe}_{HO} \xrightarrow{OMe}_{8}$ methyl-4,6-*O*-benzylidene- β -D-galactopyranoside **7** (28.2 mg, 0.1 mmol), DIPEA (26.5 µL, 1.5 equiv), and BzCl (17.5 µL, 1.5 equiv) in the presence of SnCl₂ (1 mg, 0.05 equiv) at room temperature for 2 h. The reaction mixture was directly purified by flash column chromatography (ethyl acetate/petroleum ether: 1/2), afforded compound **8** as white solid (33.2 mg, 86%). ¹H NMR (400 MHz, CDCl₃): δ 8.10-8.08 (m, 2H), 7.58-7.32 (m, 8H), 5.52 (s, 1H), 5.15 (dd, J = 10.0 Hz and 3.6 Hz, 1H), 4.50 (d, J = 3.6 Hz, 1H), 4.38-4.35 (m, 2H), 4.17 (dd, J = 10.4 Hz and 8.0 Hz, 1H), 4.09 (dd, J = 12.4 Hz and 1.6 Hz, 1H), 3.60-3.58 (m, 4H).

Isopropylthio-3-O-benzoyl-4,6-O-benzylidene- β -D-galactopyranoside (10)

Following the general procedure, the reaction was carried out with BZO HO 10 isopropylthio-4,6-*O*-benzylidene-β-D-galactopyranoside **9** (32.6 mg, 0.1 mmol), DIPEA (26.5 µL, 1.5 equiv.), and BzCl (17.5 µL, 1.5 equiv.) in the presence of SnCl₂ (1 mg, 0.05 equiv) at room temperature for 2 h. The reaction mixture was directly purified by flash column chromatography (ethyl acetate/petroleum ether: 1/3), afforded compound **10** as pale yellow oil (40.1 mg, 93%). ¹H NMR (400 MHz, CDCl₃): δ 8.11-8.08 (m, 2H, ArH), 7.58-7.34 (m, 8H, ArH), 5.51 (s, 1H, PhCH), 5.19 (dd, *J* = 9.6 Hz and 3.6 Hz, 1H, H-3), 4.56 (d, *J* = 9.6 Hz, 1H, H-1), 4.53-4.52 (m, 1H, H-4), 4.35 (dd, *J* = 12.4 Hz and 1.2 Hz, 1H, H-6a), 4.20 (t, *J* = 9.6 Hz, 1H, H-2), 4.04 (dd, *J* = 12.4 Hz and 1.6 Hz, 1H, H-6b), 3.62-3.61 (m, 1H, H-5), 3.37-3.27 (m, 1H, SCH(CH₃)₂), 1.38 (dd, *J* = 15.6 Hz and 6.8 Hz, 6H, SCH(CH₃)₂). ¹³C NMR (101 MHz, CDCl₃): δ 166.5, 137.9, 133.4, 130.0, 129.8, 128.9, 128.5, 128.2, 126.3, 100.9, 86.3, 75.4, 74.1, 70.0, 69.3, 67.1, 35.3, 24.5, 24.2 ppm; HRMS (ESI-TOF): Calculated for [C₂₃H₂₆O₆SNa]⁺: 453.1342; found: 453.1344.

p-Tolyl-3-*O*-benzoyl-4,6-*O*-benzylidene-1-thio-β-D-galactopyranoside (12)

Following the general procedure, the reaction was carried out with $B_{ZO} \xrightarrow{\text{STol}}_{\text{HO} 12} p$ -tolyl-4,6-*O*-benzylidene-1-thio- β -D-galactopyranoside **11** (37.4 mg, 0.1 mmol), DIPEA (26.5 µL, 1.5 equiv), and BzCl (17.5 µL, 1.5 equiv) in the presence of SnCl₂ (1 mg, 0.05 equiv) at room temperature for 2 h. The reaction mixture was directly purified by flash column chromatography (ethyl acetate/petroleum ether: 1/3), afforded compound **12** as pale yellow syrup (41.6 mg, 87%). ¹H NMR (400 MHz, CDCl₃): δ 8.05-8.02 (m, 2H, ArH), 7.61-7.35 (m, 10H, ArH), 7.09-7.07 (m, 2H, ArH), 5.49 (s, 1H, PhCH), 5.19 (dd, J = 9.6 Hz and 3.2 Hz, 1H, H-3), 4.62 (d, J = 9.6 Hz, 1H, H-1), 4.49-4.48 (m, 1H, H-4), 4.40 (dd, J = 12.4Hz and 1.2 Hz, 1H, H-6a), 4.10 (t, J = 9.6 Hz, 1H, H-2), 4.04 (dd, J = 12.4 Hz and 1.2 Hz, 1H, **H-6b**), 3.66 (d, J = 0.8 Hz, 1H, **H-5**), 2.36 (s, 3H, SPHCH₃). ¹³C NMR (101 MHz, CDCl₃): δ 166.5, 138.6, 137.9, 134.1, 133.4, 130.1, 129.9, 129.7, 129.1, 128.5, 128.1, 126.7, 126.5, 100.9, 87.9, 75.4, 73.9, 70.0, 69.3, 65.9, 21.4 ppm; HRMS (ESI-TOF): Calculated for [C₂₇H₂₆O₆SNa]⁺: 501.1342; found: 501.1350.

Phenyl-3-O-benzoyl-4,6-O-benzylidene-1-thio- β -D-galactopyranoside (14)

Following the general procedure, the reaction was carried out with B20 H0 14 B20 H0 14 phenyl-4,6-*O*-benzylidene-1-thio-β-D-galactopyranoside **13** (36.0 mg, 0.1 mmol), DIPEA (26.5 µL, 1.5 equiv), and BzCl (17.5 µL, 1.5 equiv) in the presence of SnCl₂ (1 mg, 0.05 equiv) at room temperature for 2 h. The reaction mixture was directly purified by flash column chromatography (ethyl acetate/petroleum ether: 1/3), afforded compound **14** as an pale oil (41.7 mg, 90%). ¹H NMR (400 MHz, CDCl₃): δ 8.05-8.03 (m, 2H, ArH), 7.72-7.70 (m, 2H, ArH), 7.56-7.25 (m, 11H, ArH), 5.50 (s, 1H, PhCH), 5.20 (dd, J = 9.6 Hz and 3.2 Hz, 1H, H-3), 4.67 (d, J = 9.2 Hz, 1H, H-1), 4.50 (dd, J = 3.2 Hz and 0.4 Hz, 1H, H-4), 4.40 (dd, J = 12.4 Hz and 1.6 Hz, 1H, H-6a), 4.17 (t, J = 9.6 Hz, 1H, H-2), 4.05 (dd, J =12.8 Hz and 1.6 Hz, 1H, H-6b), 3.68-3.67 (m, 1H, H-5). ¹³C NMR (101 MHz, CDCl₃): δ 166.5, 137.9, 133.5, 133.4, 130.8, 130.1, 129.7, 129.1, 128.5, 128.3, 128.2, 126.4, 100.8, 87.8, 75.4, 73.9, 70.0, 69.3, 65.9 ppm; HRMS (ESI-TOF): Calculated for [C₂₆H₂₄O₆SNa]⁺: 487.1186; found: 487.1193.

Phenyl-3-*O*-benzoyl-6-*O*-(*tert*-butyldimethylsilyl)-2-*O*-benzyl-1-thio-α-D-mannop yranoside (16)

Following the general procedure, the reaction was carried out with H_{BZO}^{OBn} Following the general procedure, the reaction was carried out with phenyl-6-*O*-(tert-butyldimethylsilyl)-2-*O*-benzyl-1-thio- α -D-mannopy ranoside **15** (86.2 mg, 0.181 mmol), DIPEA (48.0 µL, 1.5 equiv), and BzCl (25.5 µL, 1.2 equiv) in the presence of SnCl₂ (1.6 mg, 0.05 equiv) at room temperature for 2 h. The reaction mixture was directly purified by flash column chromatography (ethyl acetate/petroleum ether: 1/6), afforded compound **16** as colorless oil (93.5 mg, 89%). **¹H NMR (400 MHz, CDCl**₃): δ 8.11-8.09 (m, 2H, ArH), 7.62-7.16 (m, 13H, ArH), 5.61 (d, *J* = 1.2 Hz, 1H, H-1), 5.37 (dd, *J* = 9.6 Hz and 3.2 Hz, 1H, H-3), 4.68 (d, *J* = 12.4 Hz, 1H, PhCH₂), 4.55 (d, *J* = 12.0 Hz, 1H, PhCH₂), 4.35 (t, *J* = 9.6 Hz, 1H, H-4), 4.27 (t, *J* = 5.2 Hz, 1H, H-5), 4.24 (dd, *J* = 3.6 Hz and 2.0 Hz, 1H, H-2), 3.98 (d, *J* = 5.2 Hz, 2H, **H-6ab**), 0.93 (s, 9H, Si(C(CH₃)₃)(CH₃)₂), 0.12 (s, 6H, Si(C(CH₃)₃)(CH₃)₂). ¹³C NMR (101 MHz, CDCl₃): δ 166.5, 137.6, 134.4, 133.3, 131.6, 130.0, 129.8, 129.2, 128.5, 128.4, 127.9, 127.8, 127.5, 85.8, 77.3, 74.6, 72.7, 72.6, 68.5, 64.7, 26.0, 18.4, -5.3 ppm; HRMS (ESI-TOF): Calculated for [C₃₂H₄₀O₆SSiNa]⁺: 603.2207; found: 603.2210.

Methyl-3-O-benzoyl-2,6-di-O-benzyl-a-D-mannopyranoside (18)

Following the general procedure, the reaction was carried out with methyl-2,6-di-*O*-benzyl-α-D-mannopyranoside **17** (24.4 mg, 0.065 mmol), DIPEA (17.5 µL, 1.5 equiv), and BzCl (11.5 µL, 1.5 equiv) in the presence of SnCl₂ (0.6 mg, 0.05 equiv) at room temperature for 2 h. The reaction mixture was directly purified by flash column chromatography (ethyl acetate/petroleum ether: 1/4), afforded compound **18** as colorless oil (26.5 mg, 85%). ¹H NMR (400 MHz, CDCl₃): δ 8.08-8.05 (m, 2H, ArH), 7.60-7.56 (m, 1H, ArH), 7.46-7.19 (m, 12H, ArH), 5.37 (dd, *J* = 10.0 Hz and 3.6 Hz, 1H, H-3), 4.80 (d, *J* = 2.0 Hz, 1H, H-1), 4.69-4.59 (m, 4H, H-6ab and PhCH₂), 4.29-4.24 (m, 1H, H-4), 3.95 (q, *J* = 1.6 Hz, 1H, H-2), 3.88-3.82 (m, 3H, H-5 and PhCH₂), 3.40 (s, 3H, OCH₃). ¹³C NMR (101 MHz, CDCl₃): δ 166.7, 138.1, 137.9, 133.3, 130.0, 129.9, 128.5, 128.4, 127.8, 99.2, 75.9, 74.8, 73.8, 73.3, 71.3, 70.7, 67.7, 55.1 ppm; HRMS (ESI-TOF): Calculated for [C₂₈H₃₀O₇Na]⁺: 501.1884; found: 501.1885.

Methyl-2-*O*-benzoyl-6-*O*-(*tert*-butyldimethylsilyl)-α-D-glucopyranoside (20a).³

Following the general procedure, the reaction was carried out with D 20a BzO OMe methyl-6-O-(*tert*-butyldimethylsilyl)- α -D-glucopyranoside **19** (30.8) mg, 0.1 mmol), DIPEA (26.5 µL, 1.5 equiv), and BzCl (14.0 µL, 1.2 equiv) in the presence of SnCl₂ (1 mg, 0.05 equiv) at room temperature for 1 h. The reaction mixture was directly purified by flash column chromatography (ethyl acetate/petroleum ether: 1/4), afforded compound **20a** as white solid (34.3 mg, 83%). ¹H NMR (400 MHz, CDCl₃): δ 8.09-8.06 (m, 2H), 7.59-7.54 (m, 1H), 7.46-7.41 (m, 2H), 4.99 (d, J = 3.6 Hz, 1H), 4.91 (dd, J = 10.0 Hz and 3.6 Hz, 1H), 4.15 (dd, J =10.0 Hz and 8.4 Hz, 1H), 3.92 (dd, J = 10.8 Hz and 4.4 Hz, 1H), 3.86 (dd, J = 10.8 Hz and 4.4 Hz, 1H), 3.72-3.63 (m, 2H), 3.37 (s, 3H), 0.91 (s, 9H), 0.11 (s, 6H).

Methyl-2-*O*-benzoyl-6-*O*-(*tert*-butyldiphenylsilyl)-α-D-glucopyranoside (20b).⁴

Following the general procedure, the reaction was carried out with methyl-6-O-(*tert*-butyldiphenylsilyl)- α -D-glucopyranoside **19** (43.3)

mg, 0.1 mmol), DIPEA (26.5 µL, 1.5 equiv), and BzCl (14.0 µL, 1.2 equiv) in the presence of SnCl₂ (1 mg, 0.05 equiv) at room temperature for 1 h. The reaction mixture was directly purified by flash column chromatography (ethyl acetate/petroleum ether: 1/4), afforded compound **20b** as white solid (46.7 mg, 87%). **¹H NMR (400 MHz, CDCl₃)**: δ 8.10-8.08 (m, 2H), 7.74-7.70 (m, 4H), 7.58-7.55 (m, 1H), 7.45-7.39 (m, 8H), 5.01 (d, *J* = 3.6 Hz, 1H), 4.94 (dd, *J* = 10.0 Hz and 3.6 Hz, 1H), 4.16 (dd, *J* = 9.6 Hz and 8.4 Hz, 1H), 3.97-3.89 (m, 2H), 3.76-3.69 (m, 2H), 3.33 (s, 3H), 1.08 (s, 9H).

Methyl-3-O-benzoyl-6-O-(tert-butyldimethylsilyl)-α-D-galactopyranoside (22).³

^{HO} $\stackrel{OTBS}{}_{22}$ ^{HO}_{OMe} Following the general procedure, the reaction was carried out with methyl-6-*O*-(*tert*-butyldimethylsilyl)- α -D-galactopyranoside **21** (30.8 mg, 0.1 mmol), DIPEA (26.5 µL, 1.5 equiv), and BzCl (14.0 µL, 1.2 equiv) in the presence of SnCl₂ (1 mg, 0.05 equiv) at room temperature for 1 h. The reaction mixture was directly purified by flash column chromatography (ethyl acetate/petroleum ether: 1/2), afforded compound **2** as white solid (37.2 mg, 90%). ¹**H NMR (400 MHz, CDCl₃):** δ 8.11-8.09 (m, 2H), 7.57-7.53 (m, 1H), 7.45-7.41 (m, 2H), 5.26 (dd, *J* = 10.0 Hz and 2.8 Hz, 1H), 4.89 (d, *J* = 3.6 Hz, 1H), 4.31 (d, *J* = 2.8 Hz, 1H), 4.23 (dd, *J* = 10.4 Hz and 4.0 Hz, 1H), 3.95-3.82 (m, 3H), 3.45 (s, 3H), 0.89 (s, 9H), 0.09 (s, 6H).

Methyl-3-O-benzoyl-6-O-(tert-butyldimethylsilyl)-β-D-galactopyranoside (24).³

^{HO} $\stackrel{\text{OTBS}}{\text{HO} 24}$ Following the general procedure, the reaction was carried out with methyl-6-*O*-(*tert*-butyldimethylsilyl)- β -D-galactopyranoside 23 (25.3 mg, 0.082 mmol), DIPEA (22.0 µL, 1.5 equiv), BzCl (14.5 µL, 1.5 equiv) in the presence of SnCl₂ (0.8 mg, 0.05 equiv) at room temperature for 2 h. The reaction mixture was directly purified by flash column chromatography (ethyl acetate/petroleum ether: 1/3), afforded compound 24 as colorless syrup (32.2 mg, 95%). ¹H NMR (400 MHz, CDCl₃): δ 8.11-8.09 (m, 2H), 7.58-7.54 (m, 1H), 7.45-7.41 (m, 2H), 5.07 (dd, *J* = 10.0 Hz and 3.2 Hz, 1H), 4.32-4.28 (m, 2H), 4.04 (dd, *J* = 10.0 Hz and 7.6 Hz, 1H), 3.96 (dd, *J* = 10.4 Hz and 5.6 Hz, 1H), 3.89 (dd, *J* = 10.4 Hz and 4.8 Hz, 1H), 3.61-3.57 (m, 4H), 0.89 (s, 9H), 0.09 (s, 3H), 0.08 (s, 3H).

Isopropylthio-3-*O*-benzoyl-6-*O*-(*tert*-butyldimethylsilyl)-β-D-galactopyranoside (26).⁵

Following the general procedure, the reaction was carried out with isopropylthio-6-*O*-(*tert*-butyldimethylsilyl)- β -D-galactopyranoside **25** (33.4 mg, 0.1 mmol), DIPEA (25.5 µL, 1.5 equiv), and BzCl (16.5 µL, 1.5 equiv) in the presence of SnCl₂ (1 mg, 0.05 equiv) at room temperature for 1 h. The reaction mixture was directly purified by flash column chromatography (ethyl acetate/petroleum ether: 1/4), afforded compound **26** as viscous yellow oil (41.6 mg, 96%). ¹H NMR (**400 MHz, CDCl**₃): δ 8.12-8.09 (m, 2H), 7.59-7.54 (m, 1H), 7.46-7.42 (m, 2H), 5.11 (dd, *J* = 9.6 Hz and 3.2 Hz, 1H), 4.51 (d, *J* = 9.6 Hz, 1H), 4.32 (d, *J* = 2.4 Hz, 1H), 4.06 (t, *J* = 9.6 Hz, 1H), 3.93 (dd, *J* = 10.8 Hz and 5.6 Hz, 1H), 3.87 (dd, *J* = 10.8 Hz and 4.4 Hz, 1H), 3.62 (t, *J* = 5.2 Hz, 1H), 3.31-3.20 (m, 1H), 1.35 (d, *J* = 6.8 Hz, 6H), 0.88 (s, 9H), 0.08 (s, 3H), 0.07 (s, 3H).

p-Tolyl-3-*O*-benzoyl-6-*O*-(*tert*-butyldimethylsilyl)-1-thio-β-D-galactopyranoside (28).⁶

HO OTBS Following the general procedure, the reaction was carried out with $_{HO}$ $_{28}^{STol}$ *p*-tolyl-6-*O*-(*tert*-butyldimethylsilyl)-1-thio-β-D-galactopyranoside **27** (78.8 mg, 0.2 mmol), DIPEA (52.5 µL, 1.5 equiv), and BzCl (30.0 µL, 1.2 equiv) in the presence of SnCl₂ (2 mg, 0.05 equiv) at room temperature for 1 h. The reaction mixture was directly purified by flash column chromatography (ethyl acetate/petroleum ether: 1/4), afforded compound **28** as viscous yellow oil (90.6 mg, 91%). ¹H NMR (**400 MHz, CDCl**₃): δ 8.09-8.07 (m, 2H), 7.57-7.40 (m, 5H), 7.14-7.12 (m, 2H), 5.10 (dd, *J* = 9.6 Hz and 3.2 Hz, 1H), 4.58 (d, *J* = 9.6 Hz, 1H), 4.34 (dd, *J* = 3.2 Hz and 0.8 Hz, 1H), 4.07-3.97 (m, 2H), 3.92 (dd, *J* = 10.8 Hz and 4.4 Hz, 1H), 3.62 (t, *J* = 4.4 Hz, 1H), 2.35 (s, 3H), 0.91 (s, 9H), 0.12 (s, 3H), 0.10 (s, 3H).

Phenyl-3-*O*-benzoyl-6-*O*-(*tert*-butyldimethylsilyl)-1-thio-β-D-galactopyranoside (30).⁶

^{HO} OTBS BZO \rightarrow OTBS HO 30 Following the general procedure, the reaction was carried out with phenyl-6-*O*-(*tert*-butyldimethylsilyl)-1-thio- β -D-galactopyranoside

29 (27.9 mg, 0.073 mmol), DIPEA (19.5 μ L, 1.5 equiv), and BzCl (10.5 μ L, 1.2 equiv) in the presence of SnCl₂ (0.7 mg, 0.05 equiv) at room temperature for 1 h. The reaction mixture was directly purified by flash column chromatography (ethyl acetate/petroleum ether: 1/4), afforded compound **30** as a white solid (34.0 mg, 95%). **¹H NMR (400 MHz, CDCl₃)**: δ 8.10-8.07 (m, 2H), 7.62-7.54 (m, 3H), 7.44-7.40 (m, 2H), 7.33-7.31 (m, 3H), 5.11 (dd, *J* = 9.2 Hz and 2.8 Hz, 1H), 4.64 (d, *J* = 9.6 Hz, 1H), 4.36 (dd, *J* = 3.2 Hz and 2.8 Hz, 1H), 4.09 (t, *J* = 9.6 Hz, 1H), 4.00 (dd, *J* = 10.8 Hz and 4.8 Hz, 1H), 3.93 (dd, *J* = 10.8 Hz and 4.0 Hz, 1H), 3.64 (ddd, *J* = 5.2 Hz, 4.4 Hz, 0.8 Hz, 1H), 0.91 (s, 9H), 0.12 (s, 3H), 0.10 (s, 3H).

Methyl-3-*O*-benzoyl-4,6-*O*-benzylidene- α -D-mannopyranoside (32a)⁷ and Methyl-2-*O*-benzoyl-4,6-*O*-benzylidene- α -D-mannopyranoside (32b).⁷

Ph O OH Ph O BZO BZO 32a OMe 32b OMe Following the general procedure, the reaction was carried with methyl-4,6out O-benzylidene-α-D-mannopyranoside **31** (28.2 mg, 0.1 mmol), DIPEA (21.5 μL, 1.2 equiv), and BzCl (14.0 µL, 1.2 equiv) in the presence of SnCl₂ (1 mg, 0.05 equiv) at room temperature for 1 h. The reaction mixture was directly purified by flash column chromatography (ethyl acetate/petroleum ether: 1/3), afforded compound 32a as white solid (29.1 mg, 75%) and **32b** as white foam (8.2 mg, 21%). ¹H NMR (400 MHz, CDCl₃): 32a: δ 8.08-8.05 (m, 2H), 7.58-7.54 (m, 1H), 7.45-7.41 (m, 4H), 7.33-7.31 (m, 3H), 5.60 (s, 1H), 5.55 (dd, J = 10.0 and 3.2 Hz, 1H), 4.78 (d, J = 1.6 Hz, 1H), 4.34-4.24 (m, 3H), 4.00 (td, J = 10.4 Hz and 4.8 Hz, 1H), 3.91 (t, J = 10.0 Hz, 1H), 3.43 (s, 3H). **32b**: δ 8.12-8.09 (m, 2H), 7.63-7.59 (m, 1H), 7.53-7.46 (m, 4H), 7.39-7.37 (m, 3H), 5.66 (s, 1H), 5.47 (dd, J = 3.6 Hz and 1.6 Hz, 1H), 4.84 (d, J = 1.2 Hz, 1H), 4.37-4.32 (m, 2H), 4.06-4.01 (m, 1H), 3.95-3.86 (m, 2H), 3.44 (s, 3H).

Methyl-3-*O*-benzoyl-2,6-di-*O*-benzyl-*a*-D-galactopyranoside (34)

Following the general procedure, the reaction was carried out with B_{ZO} B_{BnO} methyl-2,6-di-*O*-benzyl- α -D-galactopyranoside **33** (48.6 mg, 0.13 mmol), DIPEA (34.5 µL, 1.5 equiv), and BzCl (23.0 µL, 1.5 equiv) in the presence of SnCl₂ (1 mg, 0.05 equiv) at room temperature for 2 h. The reaction mixture was directly purified by flash column chromatography (ethyl acetate/petroleum ether: 1/4), afforded compound **34** as colorless oil (57.6 mg, 93%). ¹H NMR (**400 MHz, CDCl**₃): δ 8.08-8.05 (m, 2H, ArH), 7.60-7.56 (m, 1H, ArH), 7.47-7.24 (m, 12H, ArH), 5.46 (dd, *J* = 10.4 Hz and 3.2 Hz, 1H, H-3), 4.82 (d, *J* = 3.2 Hz, 1H, H-1), 4.74-4.64 (m, 2H, PhCH₂), 4.61-4.53 (m, 2H, PhCH₂), 4.36 (d, *J* = 2.8 Hz, 1H, H-4), 4.18 (dd, *J* = 10.4 Hz and 3.6 Hz, 1H, H-2), 4.03 (t, *J* = 4.8 Hz, 1H, H-5), 3.79-3.72 (m, 2H, H-6ab), 3.43 (s, 3H, OCH₃). ¹³C NMR (101 MHz, CDCl₃): δ 165.8, 138.1, 137.5, 133.2, 130.1, 129.8, 128.6, 128.5, 128.5, 128.0, 127.9, 127.9, 127.8, 98.8, 73.9, 73.5, 73.3, 73.0, 70.5, 69.5, 67.9, 55.6 ppm; HRMS (ESI-TOF): Calculated for [C₂₈H₃₀O₇Na]⁺: 501.1884; found: 501.1879.

Methyl-3-*O*-benzoyl-2,6-di-*O*-benzyl-β-D-galactopyranoside (36).⁸

Following the general procedure, the reaction was carried out with methyl-2,6-di-*O*-benzyl- β -D-galactopyranoside **35** (37.4 mg, 0.1 mmol), DIPEA (26.5 µL, 1.5 equiv), and BzCl (17.5 µL, 1.5 equiv) in the presence of SnCl₂ (1 mg, 0.05 equiv) at room temperature for 2 h. The reaction mixture was directly purified by flash column chromatography (ethyl acetate/petroleum ether: 1/4), afforded compound **36** as colorless oil (43.5 mg, 91%). ¹H NMR (400 MHz, CDCl₃): δ 8.02-7.99 (m, 2H), 7.60-7.56 (m, 1H), 7.45-7.29 (m, 7H), 7.23-7.14 (m, 5H), 5.13 (dd, *J* = 10.0 Hz and 3.2 Hz, 1H), 4.85 (d, *J* = 11.6 Hz, 1H), 4.69 (d, *J* = 11.6 Hz, 1H), 4.62-4.55 (m, 2H), 4.44 (d, *J* = 7.6 Hz, 1H), 4.26 (d, *J* = 3.2 Hz, 1H), 3.88 (dd, *J* = 10.0 Hz and 7.6 Hz, 1H), 3.83-3.73 (m, 3H), 3.63 (s, 3H).

Phenyl-3'-benzoyl-6,6'-di-O-(tert-butyldimethylsilyl)-1-thio-β-D-lactoside (38).⁶

HO OTBS OTBS BZO OH HO SPh BZO OH 38 OH Following the general procedure, the reaction was carried out with phenyl-6,6'-di-O-(*tert*-butyldimethylsilyl)-1-thio

-β-D-lactoside 37 (60.7 mg, 0.1 mmol), DIPEA (19.5 μL, 1.2 equiv), and BzCl (13.0

µL, 1.2 equiv) in the presence of SnCl₂ (1 mg, 0.05 equiv) at room temperature for 1 h. The reaction mixture was directly purified by flash column chromatography (ethyl acetate/petroleum ether: 1/2), afforded compound **38** as colorless oil (63.5 mg, 90%). ¹H NMR (400 MHz, CDCl₃): δ 8.10-8.08 (m, 2H), 7.59-7.55 (m, 3H), 7.46-7.42 (m, 2H), 7.29-7.26 (m, 3H), 5.02 (dd, *J* = 10.0 Hz and 3.2 Hz, 1H), 4.54-4.48 (m, 2H), 4.28 (d, *J* = 2.8 Hz, 1H), 4.07 (dd, *J* = 10.0 Hz and 8.0 Hz), 3.94-3.87 (m, 4H), 3.69-3.57 (m, 3H), 3.44-3.35 (m, 2H), 0.89 (s, 9H), 0.87 (s, 9H), 0.09 (s, 3H), 0.08 (s, 3H), 0.06 (s, 6H).

Methyl-3-*O*-benzoyl-α-*L*-fucopyranoside (40).⁹

Following the general procedure, the reaction was carried out with methyl- α -*L*-fucopyranoside **39** (17.8 mg, 0.1 mmol), DIPEA (21.5 µL, 1.2 equiv), and BzCl (14.0 µL, 1.2 equiv) in the presence of SnCl₂ (1 mg, 0.05 equiv) at room temperature for 0.5 h. The reaction mixture was directly purified by flash column chromatography (ethyl acetate/petroleum ether: 1/2), afforded compound **40** as a white solid (25.5 mg, 90%). ¹**H** NMR (**400** MHz, CDCl₃): δ 8.09-8.07 (m, 2H), 7.58-7.54 (m, 1H), 7.45-7.41 (m, 2H), 5.27 (dd, *J* = 10.4 Hz and 3.2 Hz, 1H), 4.83 (d, *J* = 4.0 Hz, 1H), 4.13 (dd, *J* = 10.4 Hz and 4.0 Hz, 1H), 4.08-4.03 (m, 1H), 3.97-3.96 (m, 1H), 3.45 (s, 3H), 1.30 (d, *J* = 6.4 Hz, 3H). Trace amount of β product was also observed by NMR due to the mixture of raw materials. β product δ 5.05 (dd, *J* = 10.0 Hz and 3.2 Hz, 0.08 H, **H-3**), 4.27 (d, *J* = 7.6 Hz, 0.08 H, **H-1**).

Methyl-3-*O*-benzoyl-α-*L*-rhamnopyranoside (42).⁵

Following the general procedure, the reaction was carried out with methyl- α -*L*-rhamnopyranoside **41** (26.8 mg, 0.15 mmol), DIPEA (40.0 µL, 1.5 equiv), and BzCl (26.5 µL, 1.5 equiv) in the presence of SnCl₂ (1.5 mg, 0.05 equiv) at room temperature for 0.5 h. The reaction mixture was directly purified by flash column chromatography (ethyl acetate/petroleum ether: 1/1), afforded compound **42** as colorless oil (39.7 mg, 94%). ¹H NMR (**400 MHz, CDCl**₃): δ 8.06-8.04 (m, 2H), 7.58-7.53 (m, 1H), 7.43-7.40 (m, 2H), 5.24 (dd, *J* = 9.2 Hz and 3.2 Hz, 1H), 4.67 (d, *J* = 1.6 Hz, 1H), 4.12 (dd, *J* = 3.2 Hz and 2.0 Hz, 1H), 3.81-3.71 (m, 2H), 3.38 (s, 3H), 1.36 (d, *J* = 6.0 Hz, 3H).

Methyl-6-*O*-benzoyl-2,3-di-*O*-benzyl-α-D-glucopyranoside (44).¹

Following the general procedure, the reaction was carried out with methyl-2,3-di-*O*-benzyl- α -D-glucopyranoside **43** (48.1 mg, 0.13 mmol), DIPEA (34.5 µL, 1.5 equiv), and BzCl (23.0 µL, 1.5 equiv) in the presence of SnCl₂ (1.2 mg, 0.05 equiv) at room temperature for 2 h. The reaction mixture was directly purified by flash column chromatography (ethyl acetate/petroleum ether: 1/4), afforded compound **44** as colorless oil (57.1 mg, 92%). ¹H NMR (**400 MHz, CDCl**₃): δ 8.05-8.03 (m, 2H), 7.59-7.55 (m, 1H), 7.46-7.31 (m, 12H), 5.03 (d, *J* = 11.2 Hz, 1H), 4.81-4.76 (m, 2H), 4.69-4.61 (m, 3H), 4.53 (dd, *J* = 12.0 Hz and 1.6 Hz, 1H), 3.91-3.83 (m, 2H), 3.57-3.52 (m, 2H), 3.42 (s, 3H).

Methyl-6-*O*-benzoyl-2,3-di-*O*-benzyl-β-D-glucopyranoside (46).¹⁰

Following the general procedure, the reaction was carried out with methyl-2,3-di-*O*-benzyl- β -D-glucopyranoside **45** (37.4 mg, 0.1 mmol), DIPEA (26.5 µL, 1.5 equiv), and BzCl (17.5 µL, 1.5 equiv) in the presence of SnCl₂ (1 mg, 0.05 equiv) at room temperature for 2 h. The reaction mixture was directly purified by flash column chromatography (ethyl acetate/petroleum ether: 1/4), afforded compound **46** as colorless oil (40.2 mg, 84%). ¹**H NMR (400 MHz, CDCl₃)**: δ 8.07-8.05 (m, 2H), 7.59-7.54 (m, 1H), 7.46-7.28 (m, 12H), 4.95 (dd, *J* = 11.2 Hz and 9.2 Hz, 2H), 4.73 (dd, *J* = 11.2 Hz and 7.6 Hz, 2H), 4.66-4.57 (m, 2H), 4.37 (d, *J* = 7.6 Hz, 1H), 3.59-3.41 (m, 7H), 2.66 (d, *J* = 2.4 Hz, 1H).

Methyl-6-*O*-benzoyl-2,3-di-*O*-benzyl-β-D-galactopyranoside (48).¹⁰

HO OBZBNO 48 Following the general procedure, the reaction was carried out with methyl-2,3-di-*O*-benzyl- β -D-galactopyranoside 47 (48.1 mg, 0.129 mmol), DIPEA (34.5 µL, 1.5 equiv), and BzCl (23.0 µL, 1.5 equiv) in the presence of SnCl₂ (1.2 mg, 0.05 equiv) at room temperature for 2 h. The reaction mixture was directly purified by flash column chromatography (ethyl acetate/petroleum ether: 1/3), afforded compound 48 as colorless oil (45.2 mg, 73%). ¹H NMR (400 MHz, CDCl₃): δ 8.06-8.04 (m, 2H), 7.61-7.56 (m, 1H), 7.48-7.28 (m, 12H), 4.91 (d, J = 11.2 Hz, 1H), 4.78-4.70 (m, 3H), 4.65-4.56 (m, 2H), 4.30 (d, J = 11.2 Hz, 1H), 4.78-4.70 (m, 3H), 4.65-4.56 (m, 2H), 4.30 (d, J = 11.2 Hz, 1H), 4.78-4.70 (m, 3H), 4.65-4.56 (m, 2H), 4.30 (d, J = 11.2 Hz, 1H), 4.78-4.70 (m, 3H), 4.65-4.56 (m, 2H), 4.30 (d, J = 11.2 Hz, 1H), 4.78-4.70 (m, 3H), 4.65-4.56 (m, 2H), 4.30 (d, J = 11.2 Hz, 1H), 4.78-4.70 (m, 3H), 4.65-4.56 (m, 2H), 4.30 (d, J = 11.2 Hz, 1H), 4.78-4.70 (m, 3H), 4.65-4.56 (m, 2H), 4.30 (d, J = 11.2 Hz, 1H), 4.78-4.70 (m, 3H), 4.65-4.56 (m, 2H), 4.30 (d, J = 11.2 Hz, 1H), 4.78-4.70 (m, 3H), 4.65-4.56 (m, 2H), 4.30 (d, J = 11.2 Hz, 1H), 4.78-4.70 (m, 3H), 4.65-4.56 (m, 2H), 4.30 (d, J = 11.2 Hz, 1H), 4.78-4.70 (m, 3H), 4.65-4.56 (m, 2H), 4.30 (d, J = 11.2 Hz, 1H), 4.78-4.70 (m, 3H), 4.65-4.56 (m, 2H), 4.30 (d, J = 11.2 Hz, 1H), 4.78-4.70 (m, 3H), 4.65-4.56 (m, 2H), 4.30 (d, J = 11.2 Hz, 1H), 4.78-4.70 (m, 3H), 4.65-4.56 (m, 2H), 4.30 (m, 2H), 4.50 (m, 2H 7.6 Hz, 1H), 3.99 (d, *J* = 2.8 Hz, 1H), 3.75 (td, *J* = 6.8 Hz and 0.8 Hz, 1H), 3.66 (dd, *J* = 9.6 Hz and 8.0 Hz, 1H), 3.57 (s, 3H), 3.54 (dd, *J* = 9.6 Hz and 3.6 Hz, 1H). Methyl-6-*O*-benzoyl-2,3-di-*O*-benzyl-α-D-mannopyranoside (50).¹⁰

Following the general procedure, the reaction was carried out with methyl-2,3-di-*O*-benzyl- α -D-mannopyranoside **49** (53.0 mg, 0.142 mmol), DIPEA (37.5 µL, 1.5 equiv), and BzCl (25.0 µL, 1.5 equiv) in the presence of SnCl₂ (1.3 mg, 0.05 equiv) at room temperature for 2 h. The reaction mixture was directly purified by flash column chromatography (ethyl acetate/petroleum ether: 1/4), afforded compound **50** as colorless oil (56.4 mg, 83%). ¹H NMR (**400 MHz, CDCl**₃): δ 8.08-8.05 (m, 2H), 7.56-7.52 (m, 1H), 7.40-7.28 (m, 12H), 4.83 (d, *J* = 1.6 Hz, 1H), 4.67-4.12 (m, 5H), 4.53 (d, *J* = 12.0 Hz, 1H), 4.13 (t, *J* = 9.6 Hz, 1H), 3.89-3.82 (m, 2H), 3.76 (dd, *J* = 9.2 Hz and 2.8 Hz, 1H), 3.38 (s, 3H).

2-Hydroxyethyl-benzoate (52).¹¹

HO 52 Following the general procedure, the reaction was carried out with ethylene glycol **51** (10.5 mg, 0.17 mmol), DIPEA (36.0 µL, 1.2 equiv), and BzCl (24.0 µL, 1.2 equiv) in the presence of SnCl₂ (1.5 mg, 0.05 equiv) at room temperature for 1 h. The reaction mixture was directly purified by flash column chromatography (ethyl acetate/petroleum ether: 1/4), afforded compound **52** as colorless oil (22.8 mg, 81%). ¹H NMR (400 MHz, CDCl₃): δ 8.07-8.04 (m, 2H), 7.58-7.54 (m, 1H), 7.46-7.42 (m, 2H), 4.47-4.44 (m, 2H), 3.96-3.94 (m, 2H).

2-Hydroxy-2-phenylethyl benzoate (54a)¹² and 1-Hydroxy-2-phenylethyl benzoate (54b).¹²

HO OBz BzO OH Following the general procedure, the reaction was carried out with 1-phenyl-1,2-ethanediol **53** (12.8 mg, 0.168 mmol), DIPEA (35.5 μ L, 1.2 equiv), and BzCl (24.0 μ L, 1.2 equiv) in the presence of SnCl₂ (1.5 mg, 0.05 equiv) at room temperature for 1 h. The reaction mixture was directly purified by flash column chromatography (ethyl acetate/petroleum ether: 1/5), afforded compound **54a and 54b** mixture as colorless oil (28.5 mg, 94%, **54a/54b** = 88/12). ¹H NMR (400 MHz, CDCl₃): **54a**: δ 8.06-8.03 (m, 2H), 7.59-7.53 (m, 1H), 7.46-7.42 (m, 2H), 4.37-4.30 (m, 1H), 4.22-4.14 (m, 2H), 1.29-1.28 (m, 3H). **54b**: δ 8.06-8.03 (m, 2H), 7.59-7.53 (m, 1H), 7.46-7.42 (m, 2H), 5.27-5.19 (m, 1H), 3.81-3.72 (m, 2H), 1.36 (d, *J* = 6.8 Hz, 3H).

2-Hydroxy-2-phenylethyl benzoate (56).¹⁰

HO OBZ Following the general procedure, the reaction was carried out with Ph 56 1-phenyl-1,2-ethanediol 55 (13.8 mg, 0.1 mmol), DIPEA (21.5 μ L, 1.2 equiv), and BzCl (14.0 μ L, 1.2 equiv) in the presence of SnCl₂ (1 mg, 0.05 equiv) at room temperature for 1 h. The reaction mixture was directly purified by flash column chromatography (ethyl acetate/petroleum ether: 1/6), afforded compound 56 as colorless oil (20.3 mg, 84%). ¹H NMR (400 MHz, CDCl₃): δ 8.07-8.04 (m, 2H), 7.60-7.56 (m, 1H), 7.47-7.31 (m, 7H), 5.12 (dd, J = 8.4 Hz and 3.6 Hz, 1H), 4.53 (dd, J = 11.6 Hz and 3.6 Hz, 1H), 4.43 (dd, J = 11.6 Hz and 8.0 Hz, 1H).

3-(Allyloxy)-2-hydroxypropyl benzoate (58).¹⁰

HO OBZ Following the general procedure, the reaction was carried out with 3-(allyloxy)-1,2-propanediol **57** (12.8 mg, 0.1 mmol), DIPEA (21.0 μ L, 1.2 equi.), and BzCl (14.0 μ L, 1.2 equiv) in the presence of SnCl₂ (1 mg, 0.05 equiv) at room temperature for 1 h. The reaction mixture was directly purified by flash column chromatography (ethyl acetate/petroleum ether: 1/4), afforded compound **58** as colorless oil (20.4 mg, 89%). ¹H NMR (400 MHz, CDCl₃): δ 8.06-8.03 (m, 2H), 7.59-7.54 (m, 1H), 7.46-7.42 (m, 2H), 5.95-5.85 (m, 1H), 5.31-5.18 (m, 2H), 4.45-4.37 (m, 2H), 4.18-4.15 (m, 1H), 4.05 (dt, *J* = 5.6 Hz and 1.6 Hz, 2H), 3.61 (dd, *J* = 10.0 Hz and 4.4 Hz, 1H), 3.55 (dd, *J* = 10.0 Hz and 6.4 Hz, 1H).

3-Phenoxypropyl benzoate (60).¹⁰

HO OBz Following the general procedure, the reaction was carried out with 3-phenoxy-1,2-propanediol **59** (16.8 mg, 0.1 mmol), DIPEA (21.5 μ L, 1.2 equiv), and BzCl (14.0 μ L, 1.2 equiv) in the presence of SnCl₂ (1 mg, 0.05 equiv) at room temperature for 1 h. The reaction mixture was directly purified by flash column chromatography (ethyl acetate/petroleum ether: 1/5), afforded compound **60** as colorless oil (23.7 mg, 87%). ¹H NMR (**400 MHz, CDCl**₃): δ 8.07-8.05 (m, 2H),

7.60-7.56 (m, 1H), 7.47-7.43 (m, 2H), 7.32-7.27 (m, 2H), 7.01-6.92 (m, 3H), 4.59-4.51 (m, 2H), 4.42-4.36 (m, 1H), 4.16-4.08 (m, 2H).

1,3-di-O-benzoyl-propane-2-ol (62).⁸

 $\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} OH \\ BZO \\ \hline \end{array} \end{array} \end{array} \\ \begin{array}{c} \begin{array}{c} OH \\ 62 \end{array} \end{array} \end{array} \\ \begin{array}{c} \begin{array}{c} Following the general procedure, the reaction was carried out with glycerol$ **61** $(16.9 mg, 0.184 mmol), DIPEA (81.0 <math>\mu$ L, 2.5 equiv), and BzCl (54.0 μ L, 2.5 equiv) in the presence of SnCl₂ (1.8 mg, 0.05 equiv) at room temperature for 1 h. The reaction mixture was directly purified by flash column chromatography (ethyl acetate/petroleum ether: 1/4), afforded compound **62** as colorless oil (43.2 mg, 78%). **¹H NMR (400 MHz, CDCl_3)**: δ 8.06-8.03 (m, 4H), 7.58-7.54 (m, 2H), 7.44-7.40 (m, 4H), 4.55-4.47 (m, 4H), 4.40-4.35 (m, 1H). \end{array}

Methyl-2,6-di-*O*-benzoyl-α-D-glucopyranoside (64).¹³

Following the general procedure, the reaction was carried out with methyl- α -D-glucopyranoside **63** (19.4 mg, 0.1 mmol), DIPEA (44.0 μ L, 2.5 equiv), and BzCl (29.0 μ L, 2.5 equiv) in the presence of SnCl₂ (1 mg, 0.05 equiv) at room temperature for 1 h. The reaction mixture was directly purified by flash column chromatography (ethyl acetate/petroleum ether: 1/2), afforded compound **64** as white solid (31.4 mg, 78%). ¹H NMR (**400** MHz, CDCl₃): δ 8.08-8.04 (m, 4H), 7.58-7.52 (m, 2H), 7.45-7.39 (m, 4H), 5.03 (d, *J* = 3.6 Hz, 1H), 4.94 (dd, *J* = 10.0 Hz and 4.0 Hz, 1H), 4.70 (dd, *J* = 12.4 Hz and 4.8 Hz, 1H), 4.55 (dd, *J* = 12.4 Hz and 2.0 Hz, 1H), 4.18 (td, *J* = 9.6 Hz and 3.6 Hz, 1H), 3.93 (ddd, *J* = 10.0 Hz, 4.8 Hz and 2.0 Hz, 1H), 3.88 (d, *J* = 4.0 Hz, 1H), 3.60 (td, *J* = 9.6 Hz and 4.0 Hz, 1H), 3.42 (d, *J* = 3.6 Hz, 1H), 3.38 (s, 3H).

Methyl-6-*O***-benzoyl-***β***-D-glucopyranoside** (66).¹⁰

Following the general procedure, the reaction was carried out with methyl- β -D-glucopyranoside **65** (38.8 mg, 0.2 mmol), DIPEA (53.0 μ L, 1.5 equiv), and BzCl (35.5 μ L, 1.5 equiv) in the presence of SnCl₂ (2 mg, 0.05 equiv) at room temperature for 1 h. The reaction mixture was directly purified by flash column chromatography (ethyl acetate/petroleum ether: 1/2), afforded compound **66** as white solid (36.7 mg, 62%). ¹H NMR (**400 MHz, CDCl**₃): δ

8.03-8.01 (m, 2H), 7.54-7.50 (m, 1H), 7.41-7.37 (m, 2H), 4.63-4.54 (m, 2H), 4.22 (d, *J* = 8.0 Hz, 1H), 3.62-3.56 (m, 2H), 3.52-3.47 (m, 4H), 3.43-3.38 (m, 1H).

Methyl-3-O-benzoyl-a-D-galactopyranoside (68).¹⁴

^{HO} $_{\text{BzO}} \stackrel{\text{OH}}{_{\text{OMe}}}$ Following the general procedure, the reaction was carried out with methyl- α -D-galactopyranoside **67** (38.8 mg, 0.2 mmol), DIPEA (53.0 μ L, 1.5 equiv), and BzCl (35.5 μ L, 1.5 equiv) in the presence of SnCl₂ (2 mg, 0.05 equiv) at room temperature for 0.5 h. The reaction mixture was directly purified by flash column chromatography (ethyl acetate/petroleum ether: 1/0), afforded compound **68** as colorless oil (42.2 mg, 71%). ¹H NMR (400 MHz, CDCl₃): δ 8.10-8.07 (m, 2H), 7.59-7.55 (m, 1H), 7.46-7.42 (m, 2H), 5.27 (dd, J = 10.4 Hz and 3.6 Hz, 1H), 4.92 (d, J = 4.0 Hz, 1H), 4.29 (d, J = 2.8 Hz, 1H), 4.23-4.20 (m, 1H), 3.97-3.85 (m, 3H), 3.47 (s, 3H, OCH₃).

Methyl-3,6-di-*O*-benzoyl-β-D-galactopyranoside (70).⁸

Following the general procedure, the reaction was carried out with methyl- β -D-galactopyranoside **69** (38.8 mg, 0.2 mmol), DIPEA (88.0 µL, 2.5 equiv), and BzCl (59.0 µL, 2.5 equiv) in the presence of SnCl₂ (2 mg, 0.05 equiv) at room temperature for 1 h. The reaction mixture was directly purified by flash column chromatography (ethyl acetate/petroleum ether: 1/2), afforded compound **70** as white solid (75.3 mg, 94%). ¹H NMR (**400 MHz, CDCl**₃): δ 8.06-7.97 (m, 4H), 7.56-7.33 (m, 6H), 5.11 (dd, J = 10.0 Hz and 3.2 Hz, 1H), 4.61-4.52 (m, 2H), 4.32 (d, J = 7.6 Hz, 1H), 4.23-4.22 (m, 1H), 4.06 (dd, J = 10.0 Hz and 8.0 Hz), 3.93 (t, J = 6.4 Hz, 1H), 3.52 (s, 3H).

Methyl-3,6-di-*O*-benzoyl- α -D-mannopyranoside (72).⁸

^{BZO} OH ^{HO} Following the general procedure, the reaction was carried out with methyl- α -D-mannopyranoside **71** (38.8 mg, 0.2 mmol), DIPEA (88.0 µL, 2.5 equiv), and BzCl (59.0 µL, 2.5 equiv) in the presence of SnCl₂ (2 mg, 0.05 equiv) at room temperature for 1 h. The reaction mixture was directly purified by flash column chromatography (ethyl acetate/petroleum ether: 1/4), afforded compound **72** as white solid (71.4 mg, 89%). ¹H NMR (400 MHz, CDCl₃): δ 8.06-8.01 (m, 4H), 7.55-7.34 (m, 6H), 5.33 (dd, J = 9.6 Hz and 3.2 Hz, 1H), 4.73 (d, J= 1.6 Hz, 1H), 4.68 (dd, J = 12.0 Hz and 6.0 Hz, 1H), 4.59 (dd, J = 12.0 Hz and 2.0 Hz, 1H), 4.16-4.10 (m, 2H), 3.98 (ddd, *J* = 9.6 Hz, 5.6 Hz and 2.0 Hz, 1H), 3.37 (s, 3H).

Methyl-2-*O*-4-iodobenzoyl-4,6-*O*-benzylidene-α-D-glucopyranoside (2d)

Following the general procedure, the reaction was carried out with methyl-4,6-*O*-benzylidene- α -D-glucopyranoside **1** (28.2 mg, 0.1 mmol), DIPEA (26.5 μ L, 1.5 equiv), and 4-iodobenzoyl chloride

(40.0 mg, 1.5 equiv) in the presence of SnCl₂ (1 mg, 0.05 equiv) at room temperature for 2 h. The reaction mixture was directly purified by flash column chromatography (ethyl acetate/petroleum ether: 1/4), afforded compound **2d** as colorless syrup (45.6 mg, 89%). $\mathbf{R}_f = 0.52$ (ethyl acetate/petroleum ether: 1/3); ¹H NMR (400 MHz, **CDCl**₃): δ 7.83-7.77 (m, 4H, ArH), 7.52-7.50 (m, 2H, ArH), 7.42-7.37 (m, 3H, ArH), 5.57 (s, 1H, PhCH-), 5.06-5.01 (m, 2H, H-1 and H-3), 4.35-4.30 (m, 2H, H-2 and H-4), 3.90 (td, J = 10.4 Hz and 4.8 Hz, 1H, H-5), 3.79 (t, J = 10.0 Hz, 1H, H-6a), 3.61 (t, J = 9.6 Hz, 1H, H-6b), 3.39 (s, 3H, OCH₃). ¹³C NMR (101 MHz, CDCl₃): δ 165.9, 137.9, 137.1, 131.5, 129.5, 129.1, 128.5, 126.4, 102.2, 101.4, 97.8, 81.6, 74.3, 69.0, 68.9, 62.2, 55.6 ppm; HRMS (ESI-TOF): Calculated for [C₂₁H₂₁O₇INa]⁺: 535.0224; found: 535.0217.

Methyl-2-*O*-4-methylbenzoyl-4,6-*O*-benzylidene-*a*-D-glucopyranoside (2e)

Following the general procedure, the reaction was carried out with methyl-4,6-*O*-benzylidene-α-D-glucopyranoside **1** (28.2 mg, 0.1 mmol), DIPEA (26.5 µL, 1.5 equiv), and 4-methylbenzoyl chloride

(20.0 µL, 1.5 equiv) in the presence of SnCl₂ (1 mg, 0.05 equiv) at room temperature for 1 h. The reaction mixture was directly purified by flash column chromatography (ethyl acetate/petroleum ether: 1/4), afforded compound **2e** as white powder (36.1 mg, 90%). $R_f = 0.50$ (ethyl acetate/petroleum ether: 1/3); ¹H NMR (400 MHz, CDCl₃): δ 8.00-7.98 (m, 2H, ArH), 7.53-7.50 (m, 2H, ArH), 7.41-7.36 (m, 3H, ArH), 7.26-7.24 (m, 2H, ArH), 5.57 (s, 1H, PhCH-), 5.07 (d, J = 3.6 Hz, 1H, H-1), 5.02 (dd, J = 9.6 Hz and 4.0 Hz, 1H, H-3), 4.37-4.35 (m, 1H, H-4), 4.32 (dd, J = 5.2 Hz and 3.6 Hz, 1H, H-2), 3.91 (td, J = 10.0 Hz and 4.8 Hz, 1H, H-5), 3.80 (t, J = 10.4 Hz, 1H, H-6a), 3.63 (t, J = 9.2 Hz, 1H, H-6b), 3.39 (s, 3H, OCH₃), 2.42 (s, 3H, PhCH₃). ¹³C NMR

(**101 MHz, CDCl₃**): δ 166.4, 144.3, 137.1, 130.1, 129.4, 129.3, 128.5, 126.8, 126.5, 102.2, 98.0, 81.6, 74.1, 69.1, 69.0, 62.2, 55.6, 21.8 ppm; **HRMS (ESI-TOF)**: Calculated for $[C_{22}H_{24}O_7Na]^+$: 423.1414; found: 423.1414.

Methyl-2-*O*-pivaloyl-4,6-*O*-benzylidene-α-D-glucopyranoside (2f).¹⁵

Ph O O 2f HO O OMe

Following the general procedure, the reaction was carried out with methyl-4,6-*O*-benzylidene- α -D-glucopyranoside **1** (28.2 mg, 0.1 mmol), DIPEA (35.5 μ L, 2.0 equiv), and pivaloyl chloride (25.0 μ L,

2.0 equiv) in the presence of SnCl₂ (1 mg, 0.05 equiv) at room temperature for 1 h. The reaction mixture was directly purified by flash column chromatography (ethyl acetate/petroleum ether: 1/5), afforded compound **2f** as colorless crystals (33.4 mg, 91%). R_f = 0.63 (ethyl acetate/petroleum ether: 1/3); ¹H NMR (400 MHz, CDCl₃): δ 7.50-7.47 (m, 2H), 7.39-7.36 (m, 3H), 5.55 (s, 1H), 4.93 (d, *J* = 4.0 Hz, 1H), 4.74 (dd, *J* = 9.6 Hz and 3.6 Hz, 1H), 4.29 (dd, *J* = 10.0 Hz and 4.8 Hz, 1H), 4.19 (t, *J* = 9.6 Hz, 1H), 3.85 (td, *J* = 10.0 Hz and 4.8 Hz, 1H), 3.76 (t, *J* = 10.0 Hz, 1H), 3.55 (t, *J* = 9.6 Hz, 1H), 3.38 (s, 3H, OCH₃), 1.24 (s, 9H, C(CH₃)₃).

Methyl-2-*O*-palmitoyl-4,6-*O*-benzylidene-α-D-glucopyranoside (2g) and Methyl-3-*O*-palmitoyl-4,6-*O*-benzylidene-α-D-glucopyranoside (2g')

Following the general procedure, the reaction was carried out with methyl-4,6-*O*-benzylidene- α -D-glucopyranoside **1** (28.2 mg, 0.1 mmol), DIPEA (26.5

μL, 1.5 equiv), and palmitoyl chloride (46.0 μL, 1.5 equiv) in the presence of SnCl₂ (1 mg, 0.05 equiv) at room temperature for 1 h. The reaction mixture was directly purified by flash column chromatography (ethyl acetate/petroleum ether: 1/5), afforded compound **2g** as colorless syrup (36.1 mg, 69%). R_f = 0.50 (ethyl acetate/petroleum ether: 1/4); compound **2g**' as colorless syrup (12.6 mg, 24%). R_f = 0.30 (ethyl acetate/petroleum ether: 1/4) ; **2g**: ¹**H NMR** (**400 MHz**, **CDCl**₃): δ 7.53-7.47 (m, 2H, Ar**H**), 7.40-7.36 (m, 3H, Ar**H**), 5.55 (s, 1H, Ph**CH**-), 4.95 (d, J = 4.0 Hz, 1H, **H**-1), 4.80 (dd, J = 9.6 Hz and 3.6 Hz, 1H, **H**-2), 4.29 (dd, J = 10.0 Hz and 4.8 Hz, 1H, **H**-6a), 4.17 (t, J = 9.6 Hz, 1H, **H**-3), 3.84 (td, J = 10.0 Hz and 4.8 Hz, 1H, **H**-5), 3.76 (t, J = 10.0 Hz, 1H, **H**-6b), 3.56 (t, J = 9.2 Hz, 1H, **H**-4), 3.39 (s, 3H, O**CH**₃), 2.41 (t, J = 7.2 Hz, 2H), 1.68-1.57 (m, 2H), 1.26 (s, 24H), 0.88 (t, J = 6.8 Hz,

3H). ¹³C NMR (101 MHz, CDCl₃): δ 173.7, 137.1, 129.4, 128.5, 126.4, 102.1, 97.7, 81.5, 73.5, 69.0, 68.8, 62.1, 55.5, 34.3, 34.0, 32.0, 29.8, 29.8, 29.8, 29.7, 29.6, 29.6, 29.5, 29.4, 29.2, 29.1, 25.1, 24.8, 22.8, 14.2 ppm; HRMS (ESI-TOF): Calculated for [C₃₀H₄₈O₇Na]⁺: 543.3292; found: 543.3293; 2g': ¹H NMR (400 MHz, CDCl₃): δ 7.45-7.42 (m, 2H, ArH), 7.38-7.33 (m, 3H, ArH), 5.49 (s, 1H, PhCH-), 5.34 (t, *J* = 10.0 Hz, 1H, H-3), 4.80 (d, *J* = 3.6 Hz, 1H, H-1), 4.31 (dd, *J* = 10.0 Hz and 4.8 Hz, 1H, H-6a), 3.87 (td, *J* = 10.0 Hz and 4.4 Hz, 1H, H-5), 3.75 (t, *J* = 10.4 Hz, 1H, H-6b), 3.68-3.64 (m, 1H, H-2), 3.59 (t, *J* = 9.6 Hz, 1H, H-4), 3.47 (s, 3H, OCH₃), 2.39-2.34 (m, 2H), 1.66-1.59 (m, 2H), 1.25 (s, 24H), 0.88 (t, *J* = 6.8 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 174.1, 137.2, 129.2, 128.3, 126.3, 101.6, 100.3, 78.9, 72.2, 72.0, 69.1, 62.9, 55.7, 34.6, 32.1, 29.8, 29.8, 29.8, 29.8, 29.7, 29.6, 29.6, 29.5, 29.4, 29.2, 29.1, 25.2, 24.9, 22.8, 14.3 ppm; HRMS (ESI-TOF): Calculated for [C₃₀H₄₈O₇Na]⁺: 543.3292; found: 543.3294.

Methyl-2-*O*-benzyloxycarbonyl-4,6-*O*-benzylidene-*a*-D-glucopyranoside (2h)

Following the general procedure, the reaction was carried out with HO CbzO OMe methyl-4,6-O-benzylidene- α -D-glucopyranoside **1** (28.2 mg, 0.1 mmol), DIPEA (26.5 µL, 1.5 equiv), and benzyl chloroformate (21.5 µL, 1.5 equiv) in the presence of SnCl₂ (1 mg, 0.05 equiv) at room temperature for 1 h. The reaction directly purified by flash column mixture was chromatography (ethyl acetate/petroleum ether: 1/4), afforded compound 2 as colorless syrup (37.2 mg, 89%). $R_f = 0.38$ (ethyl acetate/petroleum ether: 1/3); ¹H NMR (400 MHz, CDCl₃): δ 7.52-7.34 (m, 10H, ArH), 5.54 (s, 1H, PhCH-), 5.20 (s, 2H, PhCH₂-), 5.01 (d, J = 3.6 Hz, 1H, H-1), 4.67 (dd, J = 9.6 Hz and 4.0 Hz, 1H, H-2), 4.30 (dd, J = 10.0 Hz and 4.8 Hz, 1H, **H-6a**), 4.21 (td, J = 9.2 Hz and 2.0 Hz, 1H, **H-3**), 3.85 (td, J = 10.0 Hz and 4.8 Hz, 1H, H-5), 3.76 (t, J = 10.4 Hz, 1H, H-6b), 3.56 (t, J = 9.2 Hz, 1H, H-4), 3.39 (s, 3H, OCH₃), 2.68 (d, J = 2.8 Hz, 1H, 3-OH). ¹³C NMR (101 MHz, CDCl₃): δ 154.7, 137.0, 134.9, 129.4, 128.8, 128.7, 128.5, 128.5, 126.4, 102.2, 97.6, 81.2, 77.0, 70.3, 69.0, 68.8, 62.1, 55.6 ppm; **HRMS** (ESI-TOF): Calculated for [C₂₂H₂₄O₈Na]⁺: 439.1363; found: 439.1365.

Methyl-2-*O*-9-fluorenylmethyloxycarbonyl-4,6-*O*-benzylidene-α-D-glucopyranosi de (2i)

Following the general procedure, the reaction was carried out with \int_{0H}^{07} Ph' **∖ 2i** methyl-4,6-O-benzylidene-α-D-glucopyranoside 1 (28.2 mg, 0.1 mmol), DIPEA (26.5 µL, 1.5 equiv), and 9-fluorenylmethyl chloroformate (39.0 mg, 1.5 equiv) in the presence of SnCl₂ (1 mg, 0.05 equiv) at room temperature for 1 h. The reaction mixture was directly purified by flash column chromatography (ethyl acetate/petroleum ether: 1/4), afforded compound 2i as as colorless syrup (43.0 mg, 85%). $R_f = 0.44$ (ethyl acetate/petroleum ether: 1/3); ¹H NMR (400 MHz, CDCl₃): δ 7.78-7.76 (m, 2H, ArH), 7.66-7.61 (m, 2H, ArH), 7.52-7.50 (m, 2H, ArH), 7.43-7.30 (m, 7H, Ar**H**), 5.56 (s, 1H, Ph**CH**-), 5.00 (d, J = 4.0 Hz, 1H, **H-1**), 4.70 (dd, J = 9.6Hz and 3.6 Hz, 1H, H-2), 4.46 (d, J = 7.6 Hz, 2H, CH₂-), 4.34-4.25 (m, 3H, -CH-, **H-6a** and **H-3**), 3.88 (td, J = 10.0 Hz and 4.8 Hz, 1H, **H-5**), 3.78 (t, J = 10.4 Hz, 1H, **H-6b**), 3.59 (t, J = 9.2 Hz, 1H, **H-4**), 3.44 (s, 3H, OCH₃). ¹³C NMR (101 MHz, CDCl₃): δ 154.9, 143.4, 143.3, 141.5, 141.4, 137.0, 129.5, 128.5, 128.1, 127.3, 127.3, 126.5, 125.3, 120.2, 102.2, 97.6, 81.4, 77.0, 70.5, 69.0, 68.8, 62.2, 55.7, 46.8 ppm; **HRMS (ESI-TOF):** Calculated for [C₂₉H₂₈O₈Na]⁺: 527.1676; found: 527.1676.

Methyl-3-*O*-4-iodobenzoyl-6-*O*-(*tert*-butyldimethylsilyl)-β-D-galactopyranoside (24a)

HO OTBS Following the general procedure, the reaction was carried out with methyl-6-
$$O$$
-(*tert*-butyldimethylsilyl)- β -D-galactopyranoside 23 (29.9 mg, 0.1 mmol), DIPEA (26.0 μ L, 1.5 equiv), and

4-iodobenzoyl chloride (38.8 mg, 1.5 equiv) in the presence of SnCl₂ (1 mg, 0.05 equiv) at room temperature for 0.5 h. The reaction mixture was directly purified by flash column chromatography (ethyl acetate/petroleum ether: 1/4), afforded compound **2** as pale yellow syrup (50.8 mg, 97%). R_f = 0.27 (ethyl acetate/petroleum ether: 1/3); ¹H NMR (400 MHz, CDCl₃): δ 7.79 (s, 4H, ArH), 5.04 (dd, *J* = 10.0 Hz and 3.2 Hz, 1H, H-3), 4.31-4.28 (m, 2H, H-1 and H-4), 4.02 (dd, *J* = 10.0 Hz and 7.6 Hz, 1H, H-2), 3.96 (dd, *J* = 10.8 Hz and 5.6 Hz, 1H, H-6a), 3.90 (dd, *J* = 10.8 Hz and 4.4 Hz, 1H, H-6b), 3.59-3.56 (m, 4H, H-5 and OCH₃), 0.89 (s, 9H,

Si(C(CH3)3)(CH3)2), 0.09 (s, 3H, Si(C(CH3)3)(CH3)2), 0.08 (s, 3H, Si(C(CH3)3)(CH3)2). ¹³C NMR (101 MHz, CDCl3): δ 166.0, 137.9, 131.5, 129.3, 104.5, 101.3, 76.2, 73.9, 69.5, 68.3, 63.1, 57.2, 25.9, 18.4, -5.3 ppm; HRMS (ESI-TOF): Calculated for [C₂₀H₃₁O₇ISiNa]⁺: 561.0776; found: 561.0774.

$Methyl-3-O-4-methylbenzoyl-6-O-(tert-butyldimethylsilyl)-\beta-D-galactopyranoside (24b)$

Following the general procedure, the reaction was carried out with methyl-6-O-(*tert*-butyldimethylsilyl)- β -D-galactopyranoside **23** (32.6 mg, 0.1 mmol), DIPEA (28.5 µL, 1.5 equiv), and 4-methylbenzoyl

chloride (21.5 µL, 1.5 equiv) in the presence of SnCl₂ (1 mg, 0.05 equiv) at room temperature for 1.0 h. The reaction mixture was directly purified by flash column chromatography (ethyl acetate/petroleum ether: 1/3), afforded compound **24b** as colorless syrup (43.5 mg, 96%). $R_f = 0.43$ (ethyl acetate/petroleum ether: 1/2); ¹**H NMR (400 MHz, CDCl₃)**: δ 8.00-7.98 (m, 2H, Ar**H**), 7.24-7.22 (m, 2H, Ar**H**), 5.06 (dd, J = 10.4 Hz and 3.2 Hz, 1H, **H-3**), 4.31 (d, J = 8.0 Hz, 1H, **H-1**), 4.28 (d, J = 2.8Hz, 1H, **H-4**), 4.03 (dd, J = 10.0 Hz and 7.6 Hz, 1H, **H-2**), 3.96 (dd, J = 10.8 Hz and 6.0 Hz, 1H, **H-6a**), 3.89 (dd, J = 10.8 Hz and 4.8 Hz, 1H, **H-6b**), 3.61-3.58 (m, 4H, **H-5** and **OCH**₃), 2.40 (s, 3H, Ph**CH**₃), 0.89 (s, 9H, Si(C(**CH**₃)3)(**CH**₃)2), 0.08 (d, J =0.4 Hz, 6H, Si(C(**CH**₃)3)(**CH**₃)2). ¹³**C NMR (101 MHz, CDCl₃):** δ 166.5, 144.2, 130.1, 129.3, 127.0, 104.5, 75.9, 74.1, 69.7, 68.2, 63.0, 57.2, 26.0, 21.8, 18.4, -5.3 ppm; **HRMS (ESI-TOF):** Calculated for [C₂₁H₃₄O₇SiNa]⁺: 449.1966; found: 449.1959.

Methyl-3-O-pivaloyl-6-O-(tert-butyldimethylsilyl)-β-D-galactopyranoside (24c).³

^{HO} $\stackrel{\text{OTBS}}{\text{HO}}$ $\stackrel{\text{OME}}{\text{HO}}$ Following the general procedure, the reaction was carried out with methyl-6-*O*-(*tert*-butyldimethylsilyl)- β -D-galactopyranoside 23 (25.4 mg, 0.082 mmol), DIPEA (29.5 µL, 2.0 equiv), and pivaloyl chloride (20.5 µL, 2.0 equiv) in the presence of SnCl₂ (0.8 mg, 0.05 equiv) at room temperature for 0.5 h. The reaction mixture was directly purified by flash column chromatography (ethyl acetate/petroleum ether: 1/3), afforded compound 24c as colorless syrup (30.9 mg, 96%). ¹H NMR (400 MHz, CDCl₃): δ 4.80 (dd, J = 10.0 Hz and 3.2 Hz, 1H), 4.23 (d, *J* = 7.6 Hz, 1H), 4.10 (br s, 1H), 3.92 (dd, *J* = 10.4 Hz and 5.6 Hz, 1H), 3.88-3.83 (m, 2H), 3.55 (s, 3H), 3.53-3.51 (m, 1H), 1.25 (s, 9H), 0.88 (s, 9H), 0.08 (d, *J* = 0.4 Hz, 6H).

Methyl-3-O-palmitoyl-6-O-(*tert*-butyldimethylsilyl)-β-D-galactopyranoside (24d)

 $\begin{array}{c} HO \quad OTBS \\ O \quad O \quad O \quad O \\ HO \quad 24d \\ C_{15}H_{31} \end{array}$

Following the general procedure, the reaction was carried out with methyl-6-O-(*tert*-butyldimethylsilyl)- β -D-galactopyranoside 23 (31.8 mg, 0.1 mmol), DIPEA (27.5 μ L, 1.5 equiv), palmitoyl

chloride (47.0 µL, 1.5 equiv) in the presence of SnCl₂ (1 mg, 0.05 equiv) at room temperature for 1.0 h. The reaction mixture was directly purified by flash column chromatography (ethyl acetate/petroleum ether: 1/5), afforded compound **24d** as colorless syrup (50.7 mg, 90%). $R_f = 0.41$ (ethyl acetate/petroleum ether: 1/3); ¹H NMR (400 MHz, CDCl₃): δ 4.84 (dd, J = 10.0 Hz and 3.2 Hz, 1H, H-3), 4.24 (d, J = 8.0 Hz, 1H, H-1), 4.16-4.15 (m, 1H, H-4), 3.94 (dd, J = 10.4 Hz and 5.2 Hz, 1H, H-6a), 3.90-3.85 (m, 2H, H-6b and H-2), 3.56 (s, 3H, OCH₃), 3.53-3.50 (m, 1H, H-5), 2.42 (t, J = 7.6 Hz, 2H), 1.69-1.61 (m, 2H), 1.24 (s, 24H), 0.89-0.85 (m, 12H), 0.09 (s, 3H), 0.08 (s, 3H). ¹³C NMR (101 MHz, CDCl₃): δ 173.8, 104.4, 75.2, 73.9, 69.6, 68.3, 63.2, 57.2, 34.4, 32.1, 29.8, 29.8, 29.8, 29.7, 29.6, 29.5, 29.4, 29.2, 25.9, 25.1, 22.8, 18.4, 14.3, -5.3 ppm; HRMS (ESI-TOF): Calculated for [C₂₉H₅₈O₇SiNa]⁺: 569.3844; found: 569.3846.

Methyl-3-*O*-benzyloxycarbonyl-6-*O*-(*tert*-butyldimethylsilyl)-β-D-galactopyranosi de (24e)

HO OTBS Following the general procedure, the reaction was carried out with methyl-6-*O*-(*tert*-butyldimethylsilyl)- β -D-galactopyranoside 23 (41.5 mg, 0.135 mmol), DIPEA (36.0 µL, 1.5 equiv), and benzyl chloroformate (29.0 µL, 1.5 equiv) in the presence of SnCl₂ (1.2 mg, 0.05 equiv) at room temperature for 0.5 h. The reaction mixture was directly purified by flash column chromatography (ethyl acetate/petroleum ether: 1/3), afforded compound 24e as colorless syrup (56.2 mg, 94%). R_f = 0.24 (ethyl acetate/petroleum ether: 1/3); ¹H NMR (400 MHz, CDCl₃): δ 7.40-7.33 (m, 5H, ArH), 5.19 (br s, 2H, PhCH₂O-), 4.68 (dd, *J* = 10.0 Hz and 3.2 Hz, 1H, H-3), 4.25-4.22 (m, 2H, H-1 and H-4), 3.94-3.86 (m, 3H, H-2, CDCl₃):

H-6ab), 3.55 (s, 3H, OCH₃), 3.53-3.50 (m, 1H, **H-5**), 2.81 (d, J = 3.6 Hz, 1H, **4-OH**), 2.55 (d, J = 2.8 Hz, 1H, **3-OH**), 0.89 (s, 9H, Si(C(CH₃)₃)(CH₃)₂), 0.08 (s, 3H, Si(C(CH₃)₃)(CH₃)₂), 0.08 (s, 3H, Si(C(CH₃)₃)(CH₃)₂). ¹³C NMR (101 MHz, CDCl₃): δ 154.8, 134.9, 128.8, 128.7, 128.6, 104.2, 79.3, 73.9, 70.3, 69.5, 67.6, 62.7, 57.2, 25.9, 18.4, -5.3 ppm; **HRMS (ESI-TOF):** Calculated for [C₂₁H₃₄O₈SiNa]⁺: 465.1915; found: 465.1916.

Methyl-3-*O*-9-fluorenylmethyloxycarbonyl-6-*O*-(*tert*-butyldimethylsilyl)-β-D-gala ctopyranoside (24f)

HO _OTBS Following the general procedure, the reaction was carried out with OMe FmocO methyl-6-O-(*tert*-butyldimethylsilyl)- β -D-galactopyranoside HO 24f 23 (39.4 mg, 0.128 mmol), DIPEA (34.5 µL, 1.5 equiv), and 9-fluorenylmethyl chloroformate (49.8 mg, 1.5 equiv) in the presence of SnCl₂ (1.2 mg, 0.05 equiv) at room temperature for 0.5 h. The reaction mixture was directly purified by flash column chromatography (ethyl acetate/petroleum ether: 1/3), afforded compound 24f as colorless syrup (59.8 mg, 88%). $R_f = 0.29$ (ethyl acetate/petroleum ether: 1/3); ¹H NMR (400 MHz, CDCl₃): δ 7.77-7.75 (m, 2H, ArH), 7.66-7.62 (m, 2H, ArH), 7.43-7.30 (m, 4H, Ar**H**), 4.70 (dd, J = 10.4 Hz and 3.2 Hz, 1H, **H-3**), 4.49 (dd, J =10.4 Hz and 7.6 Hz, 1H, -CH₂-), 4.43 (dd, J = 10.4 Hz and 7.2 Hz, 1H, -CH₂-), 4.30-4.23 (m, 3H, -CH-, H-1 and H-4), 3.99-3.93 (m, 2H, H-2 and H-6a), 3.89 (dd, J = 10.8 Hz and 4.8 Hz, 1H, H-6b), 3.57 (s, 3H, OCH₃), 3.54-3.51 (m, 1H, H-5), 0.90 (s, 9H, Si(C(CH3)3)(CH3)2), 0.10 (s, 3H, Si(C(CH3)3)(CH3)2), 0.09 (s, 3H, Si(C(CH3)3)(CH3)2). ¹³C NMR (101 MHz, CDCl3): δ 154.9, 143.5, 143.3, 141.4, 141.4, 128.0, 127.3, 125.4, 125.4, 120.2, 104.2, 79.3, 73.9, 70.4, 69.4, 67.8, 62.8, 57.2, 46.8, 25.9, 18.4, -5.3 ppm; **HRMS** (ESI-TOF): Calculated for [C₂₈H₃₈O₈SiNa]⁺: 553.2228; found: 553.2239.

10. References

- 1) S. Burugupalli, S. Shah, P. L. van der Peet, S. Arora, J. M. White and S. J. Williams, *Org. Biomol. Chem.*, 2016, **14**, 97.
- N. Dang, V. R. N. Munasinghe and W. G. Overend, J. Chem. Soc., Perkin Trans., 1983, 1, 257.
- 3) I. H. Chen, K. G. M. Kou, D. N. Le, C. M. Rathbun and V. M. Dong, *Chem. Eur. J.*, 2014, **20**, 5013.
- 4) A. G. Wee and L. Zhang, Synth. Commun., 1993, 23, 325.
- 5) D. Lee and M. S. Taylor, J. Am. Chem. Soc., 2011, 133, 3724.
- 6) J. Lv, J. T. Ge, T. Luo and H. Dong, Green Chem., 2018, 20, 1987.
- 7) C. L. Allen and S. J. Miller, Org. Lett., 2013, 15, 6178.
- 8) X. L. Zhang, B. Ren, J. T. Ge, Z. C. Pei and H. Dong, *Tetrahedron*, 2016, 72, 1005.
- 9) E. V. Evtushenko, J. Carbohydr. Chem., 2010, 29, 369.
- Y. C. Lu, C. X. Hou, J. L. Ren, X. T. Xin, H. F. Xu, Y. X. Pei, H. Dong and Z. C.
 Pei, *Molecules*, 2016, **21**, 641.
- 11) F. Iwasaka, T. Maki, O. Onomura, W. Nakashima and Y. Matsumura, J. Org. Chem., 2000, 65, 996.
- 12) T. Targel, P. Ramesh and M. Portnoy, Eur. J. Org. Chem., 2018, 3017.
- 13) E. V. Evtushenko, Carbohydr. Res., 2012, 359, 111.
- 14) Y. Tsuda, M. Ekramul Haque and K. Yoshimoto, *Chem. Pharm. Bull.*, 1983, 31, 1612.
- 15) L. Jiang and T.-H. Chan, J. Org. Chem., 1998, 63, 6035.

11. NMR Spectra Methyl-2-*O*-benzoyl-4,6-*O*-benzylidene-α-D-glucopyranoside (2a)

¹H-NMR of compound **2a** (CDCl₃)

Methyl-2-O-benzoyl-4,6-O-benzylidene-a-D-galactopyranoside (6a) and Methyl 3-O-benzoyl-4,6-O-benzylidene-a-D-galactopyranoside

(6b) ¹H-NMR of mixture of compounds 6a and 6b (CDCl₃)

Methyl-3-*O*-benzoyl-4,6-*O*-benzylidene-β-D-galactopyranoside (8)

¹H-NMR of compound **8** (CDCl₃)

Isopropylthio-3-*O*-benzoyl-4,6-*O*-benzylidene- β -D-galactopyranoside (10)

¹³C-NMR of compound **10** (CDCl₃)

2D-COSY of compound 10 (CDCl₃)

p-Tolyl-3-*O*-benzoyl-4,6-*O*-benzylidene-1-thio-β-D-galactopyranoside (12)

¹H-NMR of compound **12** (CDCl₃)

¹³C-NMR of compound **12** (CDCl₃)

2D-COSY of compound 12 (CDCl₃)

Phenyl-3-*O*-benzoyl-4,6-*O*-benzylidene-1-thio-β-D-galactopyranoside (14)

¹H-NMR of compound **14** (CDCl₃)

¹³C-NMR of compound **14** (CDCl₃)

2D-COSY of compound 14 (CDCl₃)

Phenyl-3-*O*-benzoyl-6-*O*-(*tert*-butyldimethylsilyl)-2-*O*-benzyl-1-thio-α-D-mannopyranoside (16)

¹H-NMR of compound **16** (CDCl₃)

¹³C-NMR of compound **16** (CDCl₃)

2D-COSY of compound 16 (CDCl₃)

Methyl-3-*O*-benzoyl-2,6-di-*O*-benzyl-α-D-mannopyranoside (18)

¹H-NMR of compound **18** (CDCl₃)

¹³C-NMR of compound **18** (CDCl₃)

2D-COSY of compound 18 (CDCl₃)

Methyl-2-*O*-benzoyl-6-*O*-(*tert*-butyldimethylsilyl)-*a*-D-glucopyranoside (20a)

¹H-NMR of compound **20a** (CDCl₃)

Methyl-2-*O*-benzoyl-6-*O*-(*tert*-butyldiphenylsilyl)-α-D-glucopyranoside (20b)

Methyl-3-O-benzoyl-6-O-(tert-butyldimethylsilyl)-a-D-galactopyranoside (22)

¹H-NMR of compound **22** (CDCl₃)

Methyl-3-*O*-benzoyl-6-*O*-(*tert*-butyldimethylsilyl)-β-D-galactopyranoside (24)

¹H-NMR of compound **24** (CDCl₃)

Isopropylthio-3-*O*-benzoyl-6-*O*-(*tert*-butyldimethylsilyl)- β -D-galactopyranoside (26)

¹H-NMR of compound **26** (CDCl₃)

p-Tolyl-3-*O*-benzoyl-6-*O*-(*tert*-butyldimethylsilyl)-1-thio-β-D-galactopyranoside (28)

¹H-NMR of compound **28** (CDCl₃)

Phenyl-3-*O*-benzoyl-6-*O*-(*tert*-butyldimethylsilyl)-1-thio-β-D-galactopyranoside (30)

¹H-NMR of compound **30** (CDCl₃)

Methyl-3-*O*-benzoyl-4,6-*O*-benzylidene-*α*-D-mannopyranoside (32a)

Methyl-2-*O*-benzoyl-4,6-*O*-benzylidene-*α*-D-mannopyranoside (32b)

¹H-NMR of compound **32b** (CDCl₃)

32b ¹_{OMe}

Methyl-3-O-benzoyl-2,6-di-O-benzyl-a-D-galactopyranoside (34)

¹H-NMR of compound **34** (CDCl₃)

Methyl-3-*O*-benzoyl-2,6-di-*O*-benzyl-β-D-galactopyranoside (36)

¹H-NMR of compound **36** (CDCl₃)

Phenyl-3'-benzoyl-6,6'-di-*O*-(*tert*-butyldimethylsilyl)-1-thio-β-D-lactoside (38)

Methyl-3-*O*-benzoyl-*α*-*L*-fucopyranoside (40)

Methyl-3-*O*-benzoyl-*α*-*L*-rhamnopyranoside (42)

¹H-NMR of compound **42** (CDCl₃)

$\begin{array}{c} 0.6\\ 0.6\\ 0.4\\ 0.5\\ 0.5\\ 0.4\\ 0.5\\ 0.4\\ 0.4\\ 0.4\\ 0.4\\ 0.4\\ 0.4\\ 0.4\\ 0.4$	25 22 22 22 23 23 23 23 23 13 11 21 11 21 11 21 22 81 81	76 77 73 73 73 73 73 73 73 73 73 338 338	35 35
88.8.8.	ب. ب	י הי הי הי הי הי	
			\searrow

Methyl-6-*O*-benzoyl-2,3-di-*O*-benzyl-*a*-D-glucopyranoside (44)

Methyl-6-*O*-benzoyl-2,3-di-*O*-benzyl-β-D-glucopyranoside (46)

¹H-NMR of compound **46** (CDCl₃)

Methyl-6-*O*-benzoyl-2,3-di-*O*-benzyl-β-D-galactopyranoside (48)

¹H-NMR of compound **48** (CDCl₃)

Methyl-6-*O*-benzoyl-2,3-di-*O*-benzyl-*a*-D-mannopyranoside (50)

¹H-NMR of compound **50** (CDCl₃)

2-Hydroxyethyl-benzoate (52)

¹H-NMR of compound **52** (CDCl₃)

2-Hydroxy-2-phenylethyl benzoate (54a) and 1-Hydroxy-2-phenylethyl benzoate (54b)

¹H-NMR of mixture of compounds **54a** and **54b** (CDCl₃)

2-Hydroxy-2-phenylethyl benzoate (56)

¹H-NMR of compound **56** (CDCl₃)

3-(Allyloxy)-2-hydroxypropyl benzoate (58)

¹H-NMR of compound **58** (CDCl₃)

3-Phenoxypropyl benzoate (60)

¹H-NMR of compound **60** (CDCl₃)

1,3-di-O-benzoyl-propane-2-ol (62)

¹H-NMR of compound **62** (CDCl₃)

Methyl-2,6-di-*O*-benzoyl-α-D-glucopyranoside (64)

¹H-NMR of compound **64** (CDCl₃)

Methyl-6-*O*-benzoyl-β-D-glucopyranoside (66)

¹H-NMR of compound **66** (CDCl₃)

Methyl-3-O-benzoyl-a-D-galactopyranoside (68)

¹H-NMR of compound **68** (CDCl₃)

Methyl-3,6-di-*O*-benzoyl-β-D-galactopyranoside (70)

¹H-NMR of compound **70** (CDCl₃)

Methyl-3,6-di-*O*-benzoyl-α-D-mannopyranoside (72)

¹H-NMR of compound **72** (CDCl₃)

Methyl-2-*O*-4-iodobenzoyl-4,6-*O*-benzylidene-*a*-D-glucopyranoside (2d)

¹H-NMR of compound **2d** (CDCl₃)

¹³C-NMR of compound **2d** (CDCl₃)

2D-COSY of compound 2d (CDCl₃)

Methyl-2-*O*-4-methylbenzoyl-4,6-*O*-benzylidene-α-D-glucopyranoside (2e)

¹H-NMR of compound **2e** (CDCl₃)

¹³C-NMR of compound **2e** (CDCl₃)

Methyl-2-*O*-pivaloyl-4,6-*O*-benzylidene-α-D-glucopyranoside (2f)

¹H-NMR of compound **2f** (CDCl₃)

Methyl-2-*O*-palmitoyl-4,6-*O*-benzylidene-α-D-glucopyranoside (2g)

¹³C-NMR of compound **2g** (CDCl₃)

Methyl-3-*O*-palmitoyl-4,6-*O*-benzylidene-α-D-glucopyranoside (2g')

¹H-NMR of compound **2g'** (CDCl₃)

¹³C-NMR of compound **2g'** (CDCl₃)

Methyl-2-*O*-benzyloxycarbonyl-4,6-*O*-benzylidene-*a*-D-glucopyranoside (2h)

¹H-NMR of compound **2h** (CDCl₃)

¹³C-NMR of compound **2h** (CDCl₃)

2D-COSY of compound **2h** (CDCl₃)

Methyl-2-*O*-9-fluorenylmethyloxycarbonyl-4,6-*O*-benzylidene-α-D-glucopyranoside (2i)

¹H-NMR of compound **2i** (CDCl₃)

¹³C-NMR of compound **2i** (CDCl₃)

Methyl-3-*O*-4-iodobenzoyl-6-*O*-(*tert*-butyldimethylsilyl)-β-D-galactopyranoside (24a)

¹H-NMR of compound **24a** (CDCl₃)

¹³C-NMR of compound **24a** (CDCl₃)

2D-COSY of compound 24a (CDCl₃)

Methyl-3-*O*-4-methylbenzoyl-6-*O*-(*tert*-butyldimethylsilyl)-β-D-galactopyranoside (24b)

¹³C-NMR of compound **24b** (CDCl₃)

2D-COSY of compound 24b (CDCl₃)

Methyl-3-*O*-pivaloyl-6-*O*-(*tert*-butyldimethylsilyl)-β-D-galactopyranoside (24c)

¹H-NMR of compound **24c** (CDCl₃)

Methyl-3-*O*-palmitoyl-6-*O*-(*tert*-butyldimethylsilyl)-β-D-galactopyranoside (24d)

¹H-NMR of compound **24d** (CDCl₃)

¹³C-NMR of compound **24d** (CDCl₃)

2D-COSY of compound 24d (CDCl₃)

Methyl-3-*O*-benzyloxycarbonyl-6-*O*-(*tert*-butyldimethylsilyl)-β-D-galactopyranoside (24e)

¹H-NMR of compound **24e** (CDCl₃)

¹³C-NMR of compound **24e** (CDCl₃)

f2 (ppm)

Methyl-3-O-9-fluorenylmethyloxycarbonyl-6-O-(*tert*-butyldimethylsilyl)- β -D-galactopyranoside (24f)

¹³C-NMR of compound **24f** (CDCl₃)

