Supporting Information

A highly stable polyoxovanadate-based Cu(I)–MOF for the carboxylative cyclization of CO_2 with propargylic alcohols at room temperature

Hongrui Tian, Zhong Zhang, Shumei Liu, Tianyi Dang, Zhuo Li, Ying Lu, and Shuxia Liu*

Key Laboratory of Polyoxometalate Science of the Ministry of Education, College of Chemistry, Northeast Normal University, Changchun, Jilin 130024, P. R. China

Corresponding author* E-mail: liusx@nenu.edu.cn

Table of Contents

1. Crystallographic Data and Structure Refinements	S3
2. BVS Results	S4
3. XPS Spectra of V and Cu in V-Cu-MOF	S4
4. PXRD Patterns of V-Cu-MOF	S4
5. FTIR Spectrum of V-Cu-MOF	S5
6. TGA Curve of V-Cu-MOF	S5
7. The FTIR Spectra of V-Cu-MOF after Immersing in Various Solvents and pH Solutions	S5
8. BET Analysis of V-Cu-MOF	S6
9. Control Experiments of the Cyclization of 1a with CO ₂ .	S6
10. Comparison of the V-Cu-MOF with the Previously Reported Heterogeneous Catalyst	S7
11. Control Experiments of Determining the Catalytic Active Sites in V-Cu-MOF	S8
12. PXRD Patterns of $[Et_4N]_4 \{V_4O_{12}\} \cdot 2H_2O$	S8
13. ¹ H-NMR Spectra of α-Alkylidene Cyclic Carbonates.	S9
14. References	S12

Name	V-Cu-MOF
Empirical formula	$C_{24}H_{20}Cu_2N_8O_6V_2\\$
Formula weight	745.45
Temperature (K)	293
Wave length (Å)	0.71073
Crystal system	triclinic
Space group	P-1
a (Å)	11.6196(4)
b (Å)	12.0604(5)
c (Å)	12.2162(4)
α (deg)	63.651(2)
β (deg)	75.955(2)
γ (deg)	61.239(2)
Volume (Å ³)	1343.91(9)
Z, Dcalc (Mg/m ³)	2, 1.842
Absorption coefficient (mm ⁻¹)	2.292
F (000)	746.9
Crystal size (mm ³)	$0.22\times0.21\times0.20$
θ range (deg)	5.36 to 51.48
index range (deg)	$-14 \le h \le 14, -14 \le k \le 14, -14 \le l \le 14$
Reflections collected / unique	23387 / 5117 [Rint = 0.0459]
Data / restraints / parameters	5117 / 7 / 379
Goodness-of-fit on F ²	1.072
R1, wR ₂ (I > $2\sigma(I)$)	0.0292, 0.0606
R1, wR ₂ (all data)	0.0458, 0.0681
Largest diff. peak and hole (e Å-3)	0.53, -0.49

1. Crystallographic Data and Structure Refinements

 Table S1. Crystallographic data and structure refinement of V-Cu-MOF

 $\overline{R_1 = \sum ||F_o| - |F_c|| / \sum |F_o| \cdot wR_2} = \left[\sum [w(F_o^2 - F_c^2)^2] / \sum [w(F_o^2)^2]\right]^{1/2}$

2. BVS Results

Metal site	BVS cacl.	Assigned O.S.
V1	5.125	5
V2	5.132	5
Cu1	1.079	1
Cu2	0.991	1

Table S2. BVS results for the vanadium ions and copper ions in V-Cu-MOF.

3. XPS Spectra of V and Cu in V-Cu-MOF

Fig. S1. XPS spectra of V (a) and Cu (b) in V-Cu-MOF.

4. PXRD Patterns of V-Cu-MOF

Fig. S2. The PXRD patterns of V-Cu-MOF.

5. FTIR Spectrum of V-Cu-MOF

Fig. S3. The FTIR spectrum of V-Cu-MOF.

6. TGA Curve of V-Cu-MOF

Fig. S4. The TGA curve of V-Cu-MOF.

7. The FTIR Spectra of V-Cu-MOF after Immersing in Various Solvents and pH Solutions

Fig. S5. (a) The FTIR spectra of V-Cu-MOF after immersing in various solvents for 7 days; (b) The FTIR spectra of V-Cu-MOF after immersing in different pH solutions for 12 hours.

8. BET Analysis of V-Cu-MOF

Fig. S6. BET analysis of V-Cu-MOF. The N_2 absorption / desorption isotherms were measured at 77K ($P_0 = 101$ kPa).

9. Control Experiments of the Cyclization of 1a with CO₂

Table S3. Control experiments of the cyclization of **1a** with CO_2^a .

	$= - \left(OH \right) \xrightarrow{\text{Catalyst, 0.4 MPa CO}_2} O_{3}$	
	1a	2a
Entry	Catalyst	Yield $(\%)^b$
1	Cu(NO ₃) ₂ ·3H ₂ O	_
2	NaVO ₃	—
3	bib	—
4	$Cu(NO_3)_2 \cdot 3H_2O + NaVO_3 + bib$	—
5	V-Cu-MOF	—
6	DBU	< 1
7	V-Cu-MOF + TEA	< 1
8	V-Cu-MOF + DIPEA	< 1
9	V-Cu-MOF + DBU	99

^{*a*}Reaction conditions: **1a** (1 mmol), catalyst (0.025mmol, 2.5% mol), 0.4 MPa CO₂, 25 °C, 10 hours. ^{*b*} Yield was determined by GC and mesitylene as internal standard. Note: the amount of catalyst TEA, DIPEA and DBU added are 0.2 mmol.

10. Comparison of the V-Cu-MOF with the Previously Reported Heterogeneous Catalyst

Table S4. Comparison of the V-Cu-MOF with the previously reported heterogeneous catalyst.

Catalyst, 0.4 MPa CO ₂ O							
	\	ACN, 25	°C, 10 ľ	1	0-{		
	1a				2a		
Entry	Catalyst	Additive	T/	P _{CO2} /	t/	Yield/%	Ref.
			°C	MPa	hour		
1	AgNPs/SMR	DBU (1.0 eq.)	25	0.1	10	Run1, 91	[1]
2	PAzo-POP-Ag	DBU (1.0 eq.)	25	1.0	18	Run1, 95	[2]
3	MOF-SO ₃ Ag	DBU (0.1 eq.)	25	0.1	24	Run1, 99	[3]
4	CNT-NHC-Ag	—	80	3.0	24	Run1, >99	[4]
5	GN-NH-Ag	—	80	3.0	24	Run1, 99	[4]
6	CNT-NHC-Cu	—	80	3.0	24	Run1, 87	[4]
7	GN-NH-Cu	—	80	3.0	24	Run1, 86	[4]
8	$\{Cu_4I_4\}$ -In	TEA (0.14 eq.)	50	0.5	10	Run1, 99	[5]
9	Ag-TCPE	PPh ₃ (0.025 eq.)	50	0.5	20	Run1, >99	[6]
						Run5, 90	
10	TMOF-3-Ag	DBU (0.1 eq.)	25	0.1	6	Run1, >99	[7]
						Run3, 89	
11	$Ag/POP@g-C_3N_4$	DBU (0.5 eq.)	25	1.0	12	Run1, 96	[8]
						Run5, 88	
12	$\{Cu_4I_4\}\text{-}Dy_2$	DBU (1.0 eq.)	25	0.1	5	Run1, 95	[9]
						Run4, 68	
13	V-Cu-MOF	DBU (0.2 eq.)	25	0.4	10	Run1, 99	This
						Run10, 97	work

11. Control Experiments of Determining the Catalytic Active Sites in V-Cu-MOF Table S5. Control experiments of determining the catalytic active sites in V-Cu-MOF^{*a*}.

=	$\begin{array}{c} & \overbrace{\text{Catalyst, 0.4 MPa CO_2}}\\ & \overbrace{\text{ACN, 25 °C, 10 h}}\\ \textbf{1a} \end{array}$	
Entry	Catalyst	Yield (%) ^b
1	bib	< 1
2	$[Et_4N]_4\{V_4O_{12}\}$ $2H_2O$	< 1
3	CuI	99
4	V-Cu-MOF	99

^{*a*} Reaction conditions: **1a** (1 mmol), catalyst (0.025mmol, 2.5% mol), 0.4 MPa CO₂, DBU (0.2 mmol), 25 °C, 10 hours. ^{*b*} Yield was determined by GC and mesitylene as internal standard.

12. PXRD Patterns of [Et₄N]₄{V₄O₁₂}·2H₂O

Fig. S7. The PXRD patterns of $[Et_4N]_4 \{V_4O_{12}\} \cdot 2H_2O$.

4-Ethyl-4-methyl-5-methylene-[1,3]dioxolan-2-one (2b). Light yellow oil liquid. ¹H-NMR (500 MHz, CDCl₃) δ 4.82 (d, *J* = 5.0 Hz, 1H), 4.27 (d, *J* = 5.0 Hz, 1H), 1.95-1.88 (m, 1H), 1.80-1.73 (m, 1H), 1.59 (s, 3H), 0.99 (t, *J* = 7.4 Hz, 3H).

4.80

4.27

-7.27

.5

4-Isobutyl-4-methyl-5-methylene-[1,3]dioxolan-2-one (2c). Light yellow oil liquid. ¹H-NMR (500 MHz, CDCl₃) δ 4.80 (d, *J* = 5.0 Hz, 1H), 4.27 (d, *J* = 5.0 Hz, 1H), 1.87-1.78 (m, 2H), 1.68-1.64 (m, 1H), 1.58 (s, 3H), 0.98-0.96 (m, 6H).

4-Methylene-1,3-dioxa-spiro[4.4]nonan-2-one (2d) Colorless oil liquid. ¹H-NMR (500 MHz, CDCl₃) δ (ppm) : 4.80 (d, J = 5.0 Hz, 1H), 4.35 (d, J = 5.0 Hz, 1H), 2.26-2.21 (m, 2H), 1.95-1.83 (m, 6H).

-7.26

4-Methylene-1,3-dioxa-spiro[4.5]decan-2-one (2e). Colorless oil liquid. ¹H-NMR (500 MHz, CDCl₃) δ 4.76 (d, J = 5.0 Hz, 1H), 4.28 (d, J = 5.0 Hz, 1H), 2.02-1.99 (m, 2H), 1.77-1.58 (m, 7H), 1.35-1.29 (m, 1H). Note: EA = Ethyl acetate, it derives from residual eluent.

4-methyl-5-methylene-4-phenyl-[1,3]dioxolan-2-one (2h). Colorless oil liquid. ¹H-NMR (500 MHz, CDCl₃) δ 7.49-7.47 (m, 2H), 7.44-7.38 (m, 3H), 4.95 (d, *J* = 5.0 Hz, 1H), 4.47 (d, *J* = 5.0 Hz, 1H), 1.97 (s, 3H).

14. References

- 1 M. Cui, Q. Qian, Z. He, J. Ma, X. Kang, J. Hu, Z. Liu and B. Han, *Chem. Eur. J.*, 2015, **21**, 15924-15928.
- 2 Z. Yang, B. Yu, H. Zhang, Y. Zhao, Y. Chen, Z. Ma, G. Ji, X. Gao, B. Han and Z. Liu, *ACS Catal.*, 2016, **6**, 1268-1273.
- 3 R. DasandC. M. Nagaraja, *Inorg. Chem.*, 2020, **59**, 9765-9773.
- 4 Z. Zhang, H. Gao, H. Wu, Y. Qian, L. Chen and J. Chen, ACS Appl. Nano Mater., 2018, 1, 6463-6476.
- 5 S.-L. Hou, J. Dong, X.-L. Jiang, Z.-H. Jiao and B. Zhao, Angew. Chem. Int. Ed., 2019, 58, 577-581.
- 6 Z. Zhou, C. He, L. Yang, Y. Wang, T. Liu and C. Duan, ACS Catal., 2017, 7, 2248-2256.
- 7 G. Zhang, H. Yang and H. Fei, ACS Catal., 2018, 8, 2519-2525.
- 8 C. Du, X. Lan, G. An, Q. Li and G. Bai, ACS Sustainable Chem. Eng., 2020, 8, 7051-7058.
- 9 Z. Wu, X. Lan, Y. Zhang, M. Li and G. Bai, *Dalton Trans.*, 2019, **48**, 11063-11069.