Supporting Information

Comparative Life Cycle Assessment of Electrochemical Upgrading of CO₂ to Fuels and Feedstocks

Shariful Kibria Nabil, Sean McCoy, Md Golam Kibria*

Department of Chemical and Petroleum Engineering, University of Calgary, 2500 University Drive, NW Calgary, Alberta, Canada, T2N 1N4

*Correspondance email: md.kibria@ucalgary.ca

Thermochemical CO2 Utilization Process

For thermochemical processes, hydrogen is considered to be supplied by water electrolysis (50 kWh/kg H₂).¹

Product	System Description	References
Syngas	Process 1: Reverse water-gas shift reaction (rWGS)	2,3
(CO+H ₂)	$CO_2 + H_2 \rightarrow CO + H_2O$, at 200-600°C, 30 bar	
	Process 2: Dry reforming of methane (DRM)	
	$CO_2 + CH_4 \rightarrow 2CO + 2 H_2$, at 750°C,	
Formic Acid	Process 1: Equimolar hydrogenation: at 140°C, 30 bar	4
	$CO_2 + H_2 \rightarrow HCOOH$	
	Process 2: rWGS followed by carbonylation	
	$CO_2 + H_2 \rightarrow CO + H_2O_3$; at 650-1100°C, 30 bar	
	$CO \rightarrow HCOOH$	
Methane	Sabatier reaction: at 280-300°C, 5-8 bar	5,6
	$CO_2 + 4H_2 \rightarrow CH_4 + 2H_2O$	
Methanol	Process 1: CO ₂ hydrogenation	4,7,8
	$CO_2 + 3H_2 \rightarrow CH_3OH + H_2O$, at 210-250°C, 50-75 bar	
	Process 2: CO ₂ -based Syngas route	
	$CO_2 + H_2 \rightarrow CO + H_2O$, at 200-600°C, 30 bar	
	$CO + 2H_2 \rightarrow CH_3OH$	
Ethylene	CO ₂ hydrogenation: at 400°C, 15 bar	9
	$2CO_2 + 6H_2 \rightarrow C_2H_4 + H_2O$	

Table S1: Thermochemical processes for the CO₂-derived products

Table S2: Incumbent/commercial production processes for the eight products of interest

Product	System Description	References
Syngas	Process 1: Steam-methane-reforming (SMR): at 850-900 °C, 10-30	10,11
(CO+H ₂)	bar, with nickel as catalyst	
	$CH_4 + H_2O \rightarrow CO + 3H_2$	
	Process 2: Gasification of coal: 600-1900 °C, 80 atm	
	$3C + O_2 + H_2O \rightarrow 3CO + H_2$	
Formic Acid	Step 1 – CO production via SMR	12
	Step 1 – methanol carbonylation: at 80°C, 45 bar	
	$CH_3OH + CO \rightarrow HCOOCH_3$	
	Step 2 – hydrolysis of methyl formate	
	$HCOOCH_3 + H_2O \rightarrow CH_3OH + HCOOH$	
Methane	Process 1: Natural gas (75-99 vol% methane) as fossil equivalent	13,14
	Process 2: Sabatier reaction: at 300-400°C, 5-8 bar, with nickel as	
	catalyst	
	$CO_2 + 4H_2 \rightarrow CH_4 + 2H_2O$	
Methanol	Step 1 – syngas production via SMR	15
	Step 2 – syngas conversion: at 200-300 °C, 50-100 bar	
	$CO + 2H_2 \rightarrow CH_3OH$	
Ethylene	Pyrolysis of hydrocarbons: at 600-900°C	16
	$C_aH_b \rightarrow C_2H_4 + H_2 + C_xH_y$	
Ethanol	Process 1: Fermentation of Corn:	17,18
	$C_6H_{12}O_6 \rightarrow 2C_2H_5OH + 2CO_2$	
	Process 2: Hydration of ethylene: at 260-315°C, 55-75 bar, with	
	phosphoric acid (V) as catalyst	
	$C_2H_4 + H_2O \rightarrow C_2H_5OH$	
Acetic Acid	Carbonylation of methanol with carbon monoxide: at 190°C, 9 atm,	19
	with iridium/ruthenium as catalyst	
	$CH_3OH + CO \rightarrow CH_3COOH$	
n-Propanol	Hydroformylation of ethylene: at 80-150°C, 12-50 bar, with rhodium	20
	as catalyst	
	$C_2H_4 + CO + 2H_2 \rightarrow C_3H_7OH$	

Table S3: Gibb's free energy of formation $(\Delta G^0{}_f)^{21,22}$

Component	Molecular Formula	$\Delta G^{0}{}_{f}(kJ / mol)$
Water	H ₂ O	-237.1
Oxygen	02	0
Carbon dioxide	CO ₂	-394.4
Carbon monoxide	СО	-137.2
Formic acid	НСООН	-361.4
Methane	CH ₄	-50.5
Methanol	CH ₃ OH	-166.6
Ethylene	C ₂ H ₄	68.4
Ethanol	C ₂ H ₅ OH	-174.8
Acetic acid	СН ₃ СООН	-389.9
n-Propanol	C ₃ H ₇ OH	-171.3

All in standard conditions (1 bar, 298K)

 Table S4: Higher heating value of products^{23,24}

Products	Higher Hating Value (MJ/kg)
Hydrogen	141.88
Carbon monoxide	10.1
Formic acid	5.52
Methane	55.6
Methanol	22.88
Ethylene	50.3
Ethanol	29.84
Acetic Acid	14.55
n-propanol	33.62

Table S5: PSA separation energy for gaseous products (per kg product)

Products		Single Pass	CO ₂	Actual CO ₂	HCO ₃ -	HCO ₃ -			Catho	dic Gas Vo	olume and	I PSA En	ergy				Anodic	Gas Volu	me and P	PSA Energy	7	CO ₂ to CO	Overall PSA
		Conversion	Conversion	Required	Formation	Formation(kg)	Outlet	Outlet	Outlet	Outlet	Outlet	Outlet	Total	1 st PSA	2 nd PSA	Outlet	Outlet	Outlet	Outlet	Total	3 rd PSA	Separation	Energy
		(%)	(%) ²⁵	(kg)	(%) ²⁵		CO ₂ /CO	CO ₂ /CO	Product	Product	H ₂	H ₂	Volume	Energy	Energy	CO ₂ /CO	CO ₂ /CO	02	O ₂	Volume	Energy	(kWh/kg)	(kWh)
							(kg)	(m ₃)	(kg)	(m ₃)	(kg)	(m ₃)	(m ₃)	(kWh)	(kWh)	(kg)	(m ₃)	(kg)	(m ₃)	(m ₃)	(kWh)		
Formic Acid	One-step	50	50	1.91	50	0.96	0.96	0.48	1	-	0.005	0.05	0.54	0.13	-	0.96	0.48	0.35	0.24	0.73	0.18	-	0.32
Syngas (CO+H ₂)	One-step	50	100#	3.14	0	-	1.57	1.37	1	0.87	0.008	0.09	2.34	0.59	0.37	-	-	0.57	0.39	0.39	-	-	0.95
Methane	One-step	50	20	13.7	80	10.96	2.74	1.38	1	1.52	0.06	0.62	3.52	0.88	0.50	10.96	5.54	3.99	2.79	8.33	2.08	-	3.46
	Two-step	50	-	2.74	-	-	1.75	1.54	1	1.52	0.04	0.47	3.52	0.88	0.50	-	-	2.99	2.09	2.09	-	1.67	3.05
Methanol	One-step	50	25	5.48	75	4.11	1.37	0.69	1	-	0.02	0.23	0.93	0.23	-	4.11	2.08	1.50	1.05	3.12	0.78	-	1.01
	Two-step	50	-	1.37	-	-	0.874	0.76	1	-	0.01	0.16	0.92	0.23	-	-	-	0.99	0.69	0.69	-	0.83	1.06
Ethylene	One-step	50	25	12.52	75	9.42	3.14	1.59	1	0.85	0.05	0.53	2.97	0.74	0.53	9.42	4.76	3.42	2.39	7.15	1.79	-	3.06
	Two-step	50	-	3.14	-	-	2	1.75	1	0.85	0.03	0.36	2.96	0.74	0.53	-	-	2.28	1.59	1.60	-	1.90	3.17
Ethanol	One-step	50	25	7.64	75	5.73	1.91	0.96	1	-	0.03	0.32	1.29	0.32	-	5.73	2.89	2.08	1.46	4.35	1.09	-	1.41
	Two-step	50	-	1.92	-	-	1.22	1.07	1	-	0.02	0.21	1.28	0.32	-	-	-	1.39	0.97	0.97	-	1.16	1.48
Acetic Acid	One-step	50	33.5	4.45	67.5	2.98	1.47	0.74	1	-	0.01	0.17	0.91	0.23	-	2.98	1.51	1.07	0.75	2.25	0.56	-	0.79
	Two-step	50	-	1.46	-	-	0.93	0.82	1	-	0.01	0.08	0.89	0.22	-	-	-	0.53	0.37	0.37	-	0.89	1.11
n- Propanol	One-step	50	25	8.76	75	6.57	2.19	1.11	1	-	0.03	0.37	1.48	0.37	-	6.57	3.32	2.39	1.68	4.99	1.25	-	1.62
	Two-step	50	-	2.19	-	-	1.4	1.23	1	-	0.02	0.24	1.48	0.37	-	-	-	1.59	1.12	1.12	-	1.33	1.70

*Assumed basis for PSA separation – 0.25 kWh/Nm³ for all gaseous products²⁶

*Density of gases: $H_2 = 0.089 \text{ kg/m}^3$, $CO = 1.14 \text{ kg/m}^3$, $CO_2 = 1.98 \text{ kg/m}^3$, $O_2 = 1.429 \text{ kg/m}^3$, $CH_4 = 0.657 \text{ kg/m}^3$, $C_2H_4 = 1.18 \text{ kg/m}^3$

*Outlet gas = CO_2 (one-step), CO (two-step)

*No HCO₃⁻ formation has been considered in two-step process

[#]Based on solid-oxide electrolysis cell (SOEC) for $CO_2 \rightarrow CO$ and considering no HCO_3^- formation

Products		Capture	Conversion	Separation	10% BoP	Total
		Energy	Energy	Energy	(kWh / kg)	(kWh/kg)
		(kWh/kg)*	(kWh/kg)	(kWh/kg)		
Formic Acid	One-step	0.34	3.62	22.04	0.36	26.36
	Two-step		-	-	-	-
Syngas	One-step	0.56	15.11#	0.95	1.51	18.13
(CO+H ₂)	Two-step		-	-	-	-
Methane	One-step	0.97	36.54	3.46	3.65	44.63
	Two-step		25.00	3.04	2.50	31.51
Methanol	One-step	0.48	14.57	27.44	1.46	43.96
	Two-step		10.28	27.49	1.03	39.29
Ethylene	One-step	1.11	32.49	3.06	3.25	39.91
	Two-step		22.69	3.17	2.27	29.24
Ethanol	One-step	0.68	19.74	17.26	1.97	39.65
	Two-step		13.78	17.33	1.38	33.17
Acetic Acid	One-step	0.52	10.04	25.31	1.00	36.87
	Two-step		7.05	25.63	0.71	33.90
n-Propanol	One-step	0.77	22.56	10.22	2.26	35.81
	Two-step		15.70	10.30	1.57	28.35

Table S6: Energy breakdown for electrochemical conversion (one-step vs two-step)

[#]CO is commercially available as syngas (CO+H₂). Functional unit has been taken as 1 kg CO+0.216 kg H₂ for consistent comparison with incumbent and thermochemical processes.²⁷ Thus, conversion energy of CO contains energy for 1 kg CO and 0.216 kg H₂ from water electrolysis (50 kWh/kg H₂²⁸).

*Capture energy is calculated based on CO_2 requirement per kg product, average capture energy for a power plant ($3vol\% CO_2$) = **0.354 kWh/kg CO_2^{29}**

*Assumed basis for PSA separation - 0.25 kWh/Nm³ for all gaseous products²⁶

* 95% energy conversion efficiency (thermal to electrical) for distillation have been assumed.³⁰

Table S7: Global warming impact (GWI) for eight electrochemical CO₂ reduction products

CO ₂ derived products		Capture	Capture	Carbon	Conversion	Separation	Emissions	Net GWI*	Net GWI#
via one or	two step	emissions*	emissions [#]	credit	emissions	emissions	from	(kg	(kg CO ₂ e/kg
electroch	emical	(kg	(kg	for H ₂	(kg	(kg	BOP (kg	CO ₂ e/kg	product)
conversio	n routes	CO ₂ e/kg	CO ₂ e/kg	(kg	CO ₂ e/kg	CO ₂ e/kg	CO ₂ e/kg	product)	
		product)	product)	CO ₂ e/kg	product)	product)	product)		
				product)					
Formic acid	One-step	-0.76	-0.48	-0.04	0.62	3.74	0.06	3.62	3.91
Syngas	One-step	-1.25	-0.78	-0.07	2.57	0.16	0.27	1.66	2.13
(CO+H ₂)									
Methane	One-step	-2.19	-1.37	-0.47	6.21	0.59	0.62	4.76	5.58
	Two-step			-0.35	4.25	0.52	0.43	2.65	3.47
Methanol	One-step	-1.09	-0.69	-0.17	2.48	4.66	0.25	6.11	6.53
	Two-step			-0.12	1.75	4.67	0.17	5.38	5.79
Ethylene	One-step	-2.51	-1.57	-0.40	5.52	0.52	0.55	3.68	4.63
	Two-step			-0.27	3.86	0.53	0.39	2.00	2.94
Ethanol	One-step	-1.53	-0.96	-0.25	3.36	2.93	0.34	4.85	5.42
	Two-step			-0.16	2.34	2.95	0.23	3.84	4.41
Acetic acid	One-step	-1.18	-0.74	-0.13	1.71	4.30	0.17	4.87	5.31
	Two-step			-0.06	1.19	4.36	0.12	4.44	4.88
n-Propanol	One-step	-1.75	-1.1	-0.28	3.84	1.74	0.38	3.92	4.58
	Two-step			-0.19	2.67	1.75	0.27	2.75	3.40

 $EEF = 0.17 \text{ kg CO}_2 \text{e/kWh}$ (see details in Table S6)

*Assumed footprint for carbon feedstock is -0.8 kg $CO_2e/kg CO_2$ capture³¹

[#] Assumed footprint for carbon feedstock is -0.5 kg $CO_2e/kg CO_2$ capture³¹

<u>Renewable Energy Utilization (Perspective of Canada)</u>³²

Electricity emission factor, EEF has been taken as **0.17 kg CO₂e/kWh** (representing average carbon intensity for present-day electricity generation in Canada).

Table S8: EEF based on percentage calculation for renewable share for Canadian electricity generation³²

Renewable Share	EEF (kg CO ₂ e/kWh)
50%	0.17
66%	0.12
80%	0.07
90%	0.035

GWI of O₂, H₂ and H₂O (One-step Methanol as Reference)

a) <u>For O₂:³³</u>

Based on cryogenic super critical air separation,

Specific energy demand for O_2 supply = 200 kWh/tonne O_2

Overall CO₂ emission = $\frac{0.17 \frac{kg}{kWh} * 200 \frac{kWh}{tO_2}}{1000 kg} * \frac{1 t}{1000 kg} = 0.034 \text{ kg/kg O}_2$

For methanol, 1.66 kg O₂ is produced per kg methanol.

Thus, environmental burden from O₂ production = $\frac{0.034 \text{ kg } \text{CO}_2 e}{\text{kg } \text{O}_2} * \frac{1.66 \text{ kg } \text{O}_2}{\text{kg methanol}} = 0.06 \text{ kg } \text{CO}_2 e/\text{kg}$ methanol

b) <u>For H₂:¹</u>

H₂ supply has been considered by polymer electrolyte membrane-based water electrolysis.

GWI of H₂ via water electrolysis = $\frac{0.17 \frac{kg}{kWh} * 50 \frac{kWh}{kg H_2}}{10\%} = 8.50 \text{ kg CO}_2 \text{e/kg H}_2}$ For methanol, 0.02 kg H₂ is produced (10% selectivity) per kg methanol.

Thus, environmental burden from H₂ production = $\frac{8.5 \ kg \ CO_2 e}{kg \ H_2} * \frac{0.02 \ kg \ H_2}{kg \ methanol} = 0.17 \ kg \ CO_2 e/kg$ methanol

c) <u>For H₂O:³⁴</u>

Underground water pumping energy = 0.45 kWh/m^3

Average treatment energy before supply = 0.327 kWh/m^3

Total energy = 0.78 kWh/m³ = (0.78/1000) = $\frac{0.78 \, kWh}{m^3} * \frac{m^3}{1000 \, kg} = 7.8 \times 10^{-4} \, kWh/kg$ EEF = 0.17 kg CO₂e/kWh

GWI for water treatment and supply = $\frac{0.00078 \, kWh}{kg} * \frac{0.17 \, kg \, CO_2 e}{kWh} = 1.326 \times 10^{-4} \, kg \, CO_2 e/kg \, H_2 O$ For methanol, 0.94 kg water is required per kg methanol.

Thus, GWI = $\frac{0.000133 \ kg \ CO_2 e}{kg \ H_2 O} * \frac{0.94 \ kg \ H_2 O}{kg \ methanol} = 0.00012 \ kg \ CO_2 e/kg \ methanol$

Table S9: Comparison between electrochemical and thermochemical CO_2 conversion as compared to incumbent routes

	Incumbent		Electrochemical	Thermochemical			
			(with -0.8 kg C	(with -0.8 kg CO ₂ e/kg CO ₂ as			
			capture f	ootprint)			
Products	Industrial Production	GWI (kg	One-step, GWI	Two-step GWI	GWI (kg		
	Process	CO ₂ e/kg)	(kg CO ₂ e/kg)	(kg CO ₂ e/kg)	CO ₂ e/kg)#		
Formic acid	Methyl formate hydrolysis	1.1-1.5 ²⁷	3.62	-	0.54-1.5827		
Syngas	- Steam-methane-	1.74 ²⁷	1.66	-	1.92-2.5127		
(CO+ H ₂)	reforming						
	- Coal gasification						
Methanol	Reforming of syngas	0.68-1.0827	6.11	5.38	1.21-1.44 ²⁷		
Methane	- Natural gas (75-99 vol%	0.6628	4.76	2.65	3.0-5.027		
	methane)	0.4635					
	- Sabatier reaction	0.527					
Ethylene	Steam cracking of naptha	1.936,77	3.68	2.00	3.30 ³⁷		
Ethanol	- Corn fermentation	0.0038	4.85	3.84	N/A		
	- Ethylene hydration	-0.5 ^{39,40}					
Acetic Acid	Methanol carbonylation	1.75 ³⁶	4.87	4.44	N/A		
	with CO						
n-Propanol	Hydroformylation of	4.44***	3.92	2.75	N/A		
	ethylene						

*EEF = $0.17 \text{ kg CO}_2\text{e/kWh}$ (see details in Table S6)

***ecoinvent V3.5 (IPCC GWP100a), [#]We assumed similar environmental impact (GWI) of steam-methane-reforming and water electrolysis for H_2 supply at 0.17 kg CO₂e/kWh.

Calculation for EE (with One-step Methanol as Reference)

Assuming 1000 kg/day basis of methanol, Calculated thermodynamic voltage = 1.21 V Assumed anodic overpotential = 0.8 V Assumed cathodic overpotential = 0.6 V Total voltage = 1.21 + 0.6 + 0.8 V = 2.61 V Assumed faradaic efficiency = 90% Number of electrons per mole = 6 Molar mass = 32.04 Calculated current = $\frac{1000 \ kg \ 1 \ day \ 1000 \ g \ mol}{86400 \ s \ 1 \ kg \ 32.04 \ g} * 6e^{-} * \frac{96485 \ C}{mol} = 209124.45 \ A = 209.12$ A/kg Total current = $\frac{209.12 \ A}{0.9} = 232.36 \ A + 2.61 \ V + 24h * \frac{1 \ kWh}{1000 \ Wh} = 14.55 \ kWh$ Electrochemical conversion energy = $\frac{232.36 \ A + 2.61 \ V + 24h * \frac{1 \ kWh}{1000 \ Wh} = 14.55 \ kWh$ Higher heating value = $\frac{22.88 \ MJ * \frac{277 \ kWh}{1 \ MJ} = 6.36 \ kWh}{1 \ MJ} = 6.36 \ kWh$

Table S10: Future projections for electricity emission factor (EEF) for US grid mix⁴¹

Year	Projected Renewable Share	Projected EEF (kg CO ₂ e/kWh)
	(%)	
2020	20	0.430
2030	33	0.317
2040	41	0.297
2050	51	0.256

Contour Plots for Electrochemical CO₂- Derived Products

d)

c)

Figure S1: Effect of EEF and EE on GWI for electrosynthesis products. a) Syngas, b) Formic acid, c) Methane, d) Ethanol, e) Acetic acid, f) n-Propanol. 10wt% feed concentration has been considered for liquid products. CO_2 capture footprint has been considered as -0.8 kg CO_2 e/kg CO_2 captured.

<u>Relation Between Distillation Feed Concentration with Energy for Separation</u></u>

Figure S2: Relation between feed concentration in distillation and required energy for separation (with methanol as reference)

Sensitivity Analysis for Electrosynthesis of Two-step Methanol

Table S11:	Performance	metrics	for	sensitivity	analysi	is
						~~

	Scenario 1	Base case	Scenario 2
Faradaic Efficiency (%)	45	90	100
Overpotential (V)	0.3	0.6	0.9
PSA Energy (kWh/kg)	0.125	0.25	0.375
CO ₂ Capture Footprint (kg CO ₂ e/kg	-0.4	-0.8	-1.2
CO ₂)			
Product Feed Concentration (wt%)	5	10	15

*EEF = $0.17 \text{ kg CO}_2 \text{e/kWh}$

Figure S3: Sensitivity analysis for two-step methanol based on performance metrics

Bibliography

- 1 L. Bertuccioli, A. Chan, D. Hart, F. Lehner, B. Madden and E. Standen, *Study on development of water electrolysis in the EU, Fuel Cells and hydrogen Joint Undertaking*, 2014.
- 2 R. H. Elder, A. Azapagic and R. W. K. Allen, *Energy Environ. Sci.*, 2015, **8**, 1775–1789.
- 3 C. S. Chen, J. H. Wu and T. W. Lai, J. Phys. Chem. C, 2010, 114, 15021–15028.
- 4 C. Chiang, K. Lin and H. Chuang, J. Clean. Prod., DOI:10.1016/j.jclepro.2017.11.229.
- 5 M. De Saint, P. Baurens and C. Bouallou, *Int. J. Hydrogen Energy*, 2014, **39**, 17024–17039.
- 6 B. Müller, K. Müller and D. Teichmann, 2013, 2002–2013.
- 7 A. A. Kiss, J. J. Pragt, H. J. Vos, G. Bargeman and M. T. De Groot, *Chem. Eng. J.*, 2016, **284**, 260–269.
- 8 L. K. Rihko-struckmann, A. Peschel, R. Hanke-rauschenbach and K. Sundmacher, *Ind. Eng. Chem. Res.*, 2010, 11073–11078.
- 9 J. Gao, J. Chunmiao and Bi. Liu, *Catal. Sci. Technol.*, 2017, 7, 5602–5607.
- 10 J. Bierhals and M. Griesheim, Ullman's Encycl. Ind. Chem., DOI:10.1002/14356007.a05.
- 11 C. M. Kalamaras and A. M. Efstathiou, in *Conference Papers in Energy*, Hindawi Publishing Corporation, 2013, vol. 2013.
- 12 J. Hietala, A. Vuori, P. Johnsson, I. Pollari, W. Reutemann and H. Kieczka, *Ullman's Encycl. Ind. Chem.*
- 13 S. Rönsch, J. Schneider, S. Matthischke, M. Schlüter, M. Götz, J. Lefebvre, P. Prabhakaran and S. Bajohr, *Fuel*, 2016, **166**, 276–296.
- 14 G. Hammer, T. Lubcke, R. Kettner, M. R. Pillarella, H. Recknagel, A. Commichau, H.-J. Neumann and B. Paczynska-Lahme, *Ullman's Encycl. Ind. Chem.*, DOI:10.1002/14356007.a17.
- 15 E. Fiedler, G. Grossmann, D. B. Kersebohm, G. Weiss and C. Witte, *Ullman's Encycl. Ind. Chem.*, DOI:10.1002/14356007.a16.
- 16 H. Zimmermann and R. Walzi, Ullman's Encycl. Ind. Chem., DOI:10.1002/14356007.a10.
- 17 N. Kosaric, Z. Duvnjak, A. Farkas, H. Sahm, S. Bringer-Meyer, O. Goebel and D. Mayer, *Ullman's Encycl. Ind. Chem.*
- 18 U.S. Patent US 3686334 A, 1972, 1–4.
- 19 C. Le Berre, P. Serp, P. Kalck and G. P. Torrence, Ullman's Encycl. Ind. Chem.
- 20 A. J. Papa, Ullman's Encycl. Ind. Chem., DOI:10.1002/14356007.a22.
- 21 Organic Compounds: Physical and Thermochemical Data, http://www2.ucdsb.on.ca/tiss/stretton/database/organic_thermo.htm, (accessed 4 July 2020).
- 22 D. R. Lide, CRC handbook of chemistry and physics, CRC press, 2004, vol. 85.
- 23 Hydrogen Tools, Lower-and-higher-heating-values-fuels, https://h2tools.org/hyarc/calculatortools/lower-and-higher-heating-values-fuels, (accessed 5 July 2020).

- 24 The Engineering ToolBox, Heat of Combustion, https://www.engineeringtoolbox.com/standardheat-of-combustion-energy-content-d_1987.html, (accessed 5 July 2020).
- E. Jeng and F. Jiao, *React. Chem. Eng.*, DOI:10.1039/D0RE00261E.
- A. Paturska, M. Repele and G. Bazbauers, *Energy Procedia*, 2015, **72**, 71–78.
- 27 J. Artz, T. E. Müller, K. Thenert, J. Kleinekorte, R. Meys, A. Sternberg, A. Bardow and W. Leitner, *Chem. Rev.*, 2018, **118**, 434–504.
- 28 A. Sternberg, C. M. Jens and A. Bardow, *Green Chem.*, 2017, **19**, 2244–2259.
- 29 J. David and H. Herzog, *Energy*, 2000, 13–16.
- 30 C. M. Summers, *Sci. Am.*, 1971, **225**, 148–160.
- 31 L. J. Müller, A. Kätelhön, S. Bringezu, S. McCoy, S. Suh, R. Edwards, V. Sick, S. Kaiser, R. Cuéllar-Franca, A. El Khamlichi, J. H. Lee, N. von der Assen and A. Bardow, *Energy Environ. Sci.*, 2020, 13, 2979–2992.
- 32 Canada Energy Regulator, Canada's Renewable Power Landscape 2017 Energy Market Analysis, https://www.cer-rec.gc.ca/nrg/sttstc/lctrct/rprt/2017cndrnwblpwr/index-eng.html, (accessed 15 July 2020).
- 33 P. Markewitz, J. Marx, A. Schreiber and P. Zapp, *Energy Procedia*, 2013, **37**, 2864–2876.
- A. K. Plappally and J. H. Lienhard V, *Renew. Sustain. Energy Rev.*, 2012, 16, 4818–4848.
- 35 W. Hoppe, N. Thonemann and S. Bringezu, J. Ind. Ecol., 2018, 22, 327–340.
- 36 M. Jouny, G. S. Hutchings and F. Jiao, *Nat. Catal.*, 2019, **2**, 1062–1070.
- 37 S. J. Bennett, D. J. Schroeder and S. T. Mccoy, *Energy Procedia*, 2014, **63**, 7976–7992.
- 38 M. Jouny, W. Luc and F. Jiao, Ind. Eng. Chem. Res., 2018, 57, 2165–2177.
- 39 N. Thonemann and M. Pizzol, *Energy Environ. Sci.*, 2019, **12**, 2253–2263.
- 40 P. De Luna, C. Hahn, D. Higgins, S. A. Jaffer, T. F. Jaramillo and E. H. Sargent, *Science (80-.).*, , DOI:10.1126/science.aav3506.
- 41 U.S Energy Information Administration, *Annual Energy Outlook 2020*, 2020.