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1.3. List of variables and abbreviations 

 

The list of variables and abbreviations used in this research are detailed in Table S1 and S2. 

 

Table S1. Variables, explanation, and unit. 

Variables  Explanation Unit 

ce Concentration of electrolyte M 

ce,n Normalized concentration of electrolyte - 

cl Concentration of linker  M 

cl,n Normalized concentration of linker - 

V Applied voltage V 

Vn Normalized applied voltage - 

t Reaction time h 

tn Normalized reaction time - 

Overall input parameter 
The average from the combination of the normalized input 

parameters 
- 

Crystallinity Crystallinity % 

Crystallinityn Normalized crystallinity - 

Purity Purity % 

Purityn Normalized purity - 

Yield Yield % 

Yieldn Normalized yield - 

E-factor E-factor kg kg–1 

E-factorn Normalized E-factor - 

Energy Energy kWh kg–1 

Energyn Normalized energy - 

Carbon footprint Carbon footprint kg kg–1 

Carbon footprintn Normalized carbon footprint - 

fce,n
 Normalized factor contribution of electrolyte concentration - 

fce,n
 Normalized factor contribution of applied voltage - 

fce,n
 Normalized factor contribution of reaction time - 

fce,n
 Normalized factor contribution of linker concentration - 

me Mass of electrolyte salt g 

ml Mass of linker g 

di Individual desirability function - 

D Global desirability function - 
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Table S2. Abbreviation and explanation. 

Abbreviation Explanation 

AI Artificial intelligence 

ANOVA Analysis of variance 

BET Brunauer–Emmett–Teller theory for surface area measurement 

CCC Central composite circumscribed  

CCF Central composite design face-centered 

CCI Central composite inscribed 

DoE Design of experiment 

TGA Thermogravimetric Analysis 

ML Machine learning 

MOF Metal organic framework 

RF Random forest algorithm 

SEM Scanning electron microscopy 

SSD Squared standard deviation 

SVM Support vector machine algorithm 

XRD X-ray diffraction 

ZIF Zeolitic imidazolate framework 
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2. From experimental design to artificial intelligence 

 

Synergistic combination of Design of experiments (DoE) and Artificial intelligence (AI) methodologies 

in the optimization of hyperdimensional systems is presented in Fig. S1. This flow chart is an extension 

of Fig. 1. The red dashed box covers the steps in performing DoE. The blue dashed box contains the 

steps in developing a surrogate function where the support vector machine (SVM) was chosen based on 

the validation result. The yellow dashed box contains the steps of implementing an evolutionary 

algorithm. In AI Module 1, the SVM generates excessive virtual datasets followed by the desirability 

function to find the optimum condition. AI module 2 implements an evolutionary algorithm on 50 initial 

virtual datasets from the SVM to be followed by the desirability function for final optimization. 

 

Fig. S1. General flow-chart. Synergistic combination of Design of Experiments (DoE) and Artificial 

Intelligence (AI) methodologies in the optimization of hyperdimensional systems. An extension from 

Fig. 1. DoE = design of experiment, CCI = central composite inscribed, CCC = central composite 

circumscribed, CCF = central composite face-centered, ANOVA = analysis of variance, SVM = 

support vector machine, MSE = mean squared error. 
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2.1. Data presentation and normalization 

 
The setting parameters and their factor levels are presented in Table S3. CCF-DoE methodology from 

the four parameters and three factor levels generated 27 experiments, including repetition, as tabulated 

in Table S4. 

 

Table S3. Setting parameters. The minimum, maximum, and intermediate values of the input 

parameters. 

Parameters Unit Factor levels 

ce M 0.01 0.155 0.3 

V V 2 11 20 

t h 0.2 0.6 1 

cl M 0.5 0.125 0.2 
 

 

 

 

Table S4. Experimental parameters and responses. a the reactions did not produce any precipitate at all, 
b the reactions generated amorphous products. The obtained minimumc and maximumd values of each 

parameter and response are given at the end of the table. 

Entries 

Parameters Product quality Process sustainability 

Ce 

(M) 

V 

(V) 

t 

(h) 

Cl 

(M) 

Crystallinity 

(%) 

Purity 

(%) 

Yield  

(%) 

E-factor 

(kg kg–1) 

Energy 

(kWh kg–1) 

Carbon 

footprint 
(kg kg–1) 

1a 0.010 2 0.2 0.50 0.00 0.00 0.00 na. na. na. 

2b 0.300 2 0.2 0.50 0.00 0.00 0.00 na. na. na. 

3b 0.010 20 0.2 0.50 0.00 0.00 0.00 na. na. na. 
4b 0.300 20 0.2 0.50 0.00 0.00 0.00 na. na. na. 

5 0.010 2 1.0 0.50 29.78 75.16 33.97 24.01 0.84 51.33 

6b 0.300 2 1.0 0.50 0.00 0.00 0.00 na. na. na. 
7b 0.010 20 1.0 0.50 0.00 0.00 0.00 na. na. na. 

8 0.300 20 1.0 0.50 6.51 23.12 16.60 13.29 28.23 43.46 

9a 0.010 2 0.2 2.00 0.00 0.00 0.00 na. na. na. 
10 0.300 2 0.2 2.00 88.46 92.83 15.04 251.80 3.09 491.92 

11 0.010 20 0.2 2.00 70.96 94.17 24.30 105.16 19.52 239.67 
12 0.300 20 0.2 2.00 40.14 74.41 18.23 145.03 25.45 302.03 

13a 0.010 2 1.0 2.00 0.00 0.00 0.00 na. na. na. 

14 0.300 2 1.0 2.00 19.99 39.40 27.03 56.37 1.75 110.93 
15 0.010 20 1.0 2.00 100.00 97.60 77.00 6.71 6.14 19.16 

16 0.300 20 1.0 2.00 26.92 61.04 51.03 11.90 9.20 30.32 

17 0.155 11 0.6 1.25 51.83 66.55 43.24 16.14 5.91 36.47 
18 0.155 11 0.6 1.25 51.02 67.48 48.39 15.78 5.71 35.60 

19 0.155 11 0.6 1.25 51.45 65.47 47.21 16.10 5.98 36.45 

20 0.010 11 0.6 1.25 71.30 77.65 41.62 22.90 6.35 53.76 
21 0.155 2 0.6 1.25 47.56 66.02 39.15 40.23 1.20 80.33 

22 0.155 20 0.6 1.25 42.32 77.39 71.05 8.39 6.64 21.71 

23 0.155 11 0.2 1.25 67.27 87.09 45.55 38.16 5.69 79.75 
24 0.155 11 1.0 1.25 43.28 64.36 59.59 7.12 4.35 17.41 

25 0.155 11 0.6 0.50 12.84 48.91 43.09 6.50 6.02 16.20 

26 0.155 11 0.6 2.00 35.09 77.48 65.62 14.61 3.95 32.75 
27 0.300 11 0.6 1.25 13.88 49.21 41.24 17.57 6.29 37.32 

                      

minc 0.01 2 0.20 0.50 0.00 0.00 0.00 6.50 0.84 16.20 

maxd 0.30 20 1.00 2.00 100.00 100.00 100.00 251.80 28.23 491.92 

 

 

 

It can be seen from Table S3 that the factor levels for each parameter can be observed. Table S4 gives 

the results of 27 experiments generated by the CCF-DoE methodology and the experiments’ 
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corresponding responses. To facilitate the comparison of the obtained data during graphical 

visualization, both parameters and responses were also presented in the normalized format, which 

allowed all the data to be shown on the same scale. A min-max normalization strategy,1 where the 

lowest and the highest of the actual value is weighted as zero and one, respectively, was applied in this 

work. The min-max equation is shown in equation (S1): 

 

xn=
(x-xmin)

(xmax-xmin)
  (S1) 

 

where xn is the normalized value, x is the actual value of a parameter or response, xmin is the minimum 

actual value of this parameter or response, and xmax is the maximum actual value of this parameter or 

response. The overall input parameter is defined as the average from the combination of the normalized 

input parameters, which is calculated according to equation (S1-b): 

 

𝑂𝑣𝑒𝑟𝑎𝑙𝑙 𝑖𝑛𝑝𝑢𝑡 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟 =
(𝑐𝑒,𝑛+𝑐𝑙,𝑛+𝑡𝑛+𝑉𝑛)

4
       (S1-b) 

 

where ce,n, cl,n, tn and Vn is normalized concentration of electrolyte, normalized concentration of linker, 

normalized reaction time, and normalized applied voltage, respectively. 

The normalized datasets are presented in Table S5. The normalized parameters and responses are also 

presented in bar charts to facilitate comparison, as presented in Fig. S2-S4. 
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Table S5. Normalized experimental parameters and responses. a the reactions did not produce any precipitate at all, b the reactions generated amorphous products. 

Entries 
Normalized parameters Overall input 

parameters 
Normalized product quality Normalized process sustainability 

ce,n Vn tn cl,n   Crystallinityn Purityn Yieldn E-factorn Energyn Carbon footprintn  

1a 0.0 0.0 0.0 0.0 0.00 0.000 0.000 0.000 na. na. na. 

2b 1.0 0.0 0.0 0.0 0.25 0.000 0.000 0.000 na. na. na. 

3b 0.0 1.0 0.0 0.0 0.25 0.000 0.000 0.000 na. na. na. 

4b 1.0 1.0 0.0 0.0 0.50 0.000 0.000 0.000 na. na. na. 

5 0.0 0.0 1.0 0.0 0.25 0.298 0.752 0.340 0.071 0 0.074 

6b 1.0 0.0 1.0 0.0 0.50 0.000 0.000 0.000 na. na. na. 

7b 0.0 1.0 1.0 0.0 0.50 0.000 0.000 0.000 na. na. na. 

8 1.0 1.0 1.0 0.0 0.75 0.065 0.231 0.166 0.028 1 0.057 

9a 0.0 0.0 0.0 1.0 0.25 0.000 0.000 0.000 na. na. Na.  

10 1.0 0.0 0.0 1.0 0.50 0.885 0.928 0.150 1 0.082 1 

11 0.0 1.0 0.0 1.0 0.50 0.710 0.942 0.243 0.402 0.682 0.47 

12 1.0 1.0 0.0 1.0 0.75 0.401 0.744 0.182 0.565 0.899 0.601 

13a 0.0 0.0 1.0 1.0 0.50 0.000 0.000 0.000 na. na.  Na. 

14 1.0 0.0 1.0 1.0 0.75 0.200 0.394 0.270 0.203 0.033 0.199 

15 0.0 1.0 1.0 1.0 0.75 1.000 0.976 0.770 0.001 0.194 0.006 

16 1.0 1.0 1.0 1.0 1.00 0.269 0.610 0.510 0.022 0.306 0.03 

17 0.5 0.5 0.5 0.5 0.50 0.518 0.666 0.432 0.039 0.185 0.043 

18 0.5 0.5 0.5 0.5 0.50 0.510 0.675 0.484 0.038 0.178 0.041 

19 0.5 0.5 0.5 0.5 0.50 0.514 0.655 0.472 0.039 0.188 0.043 

20 0.0 0.5 0.5 0.5 0.37 0.713 0.776 0.416 0.067 0.201 0.079 

21 0.5 0.0 0.5 0.5 0.37 0.476 0.66 0.391 0.138 0.013 0.135 

22 0.5 1.0 0.5 0.5 0.62 0.423 0.774 0.710 0.008 0.212 0.012 

23 0.5 0.5 0.0 0.5 0.37 0.673 0.871 0.456 0.129 0.177 0.134 

24 0.5 0.5 1.0 0.5 0.62 0.433 0.644 0.596 0.003 0.128 0.003 

25 0.5 0.5 0.5 0.0 0.37 0.128 0.489 0.431 0 0.189 0 

26 0.5 0.5 0.5 1.0 0.62 0.351 0.775 0.656 0.033 0.114 0.035 

27 1.0 0.5 0.5 0.5 0.62 0.139 0.492 0.412 0.045 0.199 0.044 
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 Fig. S2. Normalized product quality responses (refer to Table S5). The corresponding true product quality values are shown in Table S4. 

 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27

N
o

rm
a

liz
e

d
 r

e
s
p
o

n
s
e

s

Entries

crystallinity purity yieldCrystallinityn Purityn Yieldn



S13 
 

 

Fig. S3. Normalized process sustainability responses (refer to Table S5). The corresponding true product quality values are shown in Table S4. 

 

 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27

N
o

rm
a

liz
e

d
 r

e
s
p
o

n
s
e

s

Entries

E-factor Energy Carbon footprintE-factorn Energyn
Carbon footprintn



S14 
 

 

Fig. S4. Normalized product quality and process sustainability responses (refer to Table S5). The corresponding true values are shown in Table S4. 
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2.2. ANOVA analysis for determining factor contributions 

 

To find out the extent of the impact of the input variables on each response, the sum of squared deviation 

(SSD) was calculated. The SSD of parameter i is defined by equation (S2): 

 

SSD = ∑ (x̅i,j-x̅grand)
2N

j=1
   (S2) 

 

where x̅i,j
 is the mean value of one response when input variable i is at level j, x̅grand

 is the grand mean 

value of one response. There are four different input variables at three different levels, and therefore N 

= 3 in equation (S2) (see Table S3). The percentage contribution of normalized input variable i can be 

obtained from equation (S3): 

 

 fi,n=
SSD

∑ SSD
K
i=1

   (S3) 

 

where K is the total number of input variables, and n indicates normalization. 

 

The factor contribution is presented relative to the total contribution (normalized), as shown in Table 

S6 and illustrated in Fig. S5. The factor contribution is also presented in Pareto charts, as depicted in 

Fig. S6-S7. The Pareto chart gives information on individual parameter contribution as well as 

cumulative contribution. 

 

 

Table S6. Factor contributions for each response in a normalized format. For a visual comparison of 

the data, see the radar chart under Fig. S5. 

  Crystallinity
n
 Purity

n
 Yieldn E-factorn Energy

n
 Carbon footprint

n
 

fce,n
 0.15 0.19 0.25 0.12 0.14 0.13 

fVn
 0.16 0.20 0.23 0.18 0.55 0.16 

fTn
 0.08 0.14 0.25 0.53 0.19 0.55 

fcl,n
 0.61 0.47 0.27 0.17 0.12 0.16 

SUM 1.00 1.00 1.00 1.00 1.00 1.00 
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Fig. S5. Factor contributions. Factor contribution for each response under product quality (a) and 

process sustainability (b). The actual factor contributions values are provided in Table S6. 
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Fig. S6. Pareto charts product quality. The factor contribution of the product quality metrics, namely 

crystallinity (a), purity (b), and yield (c). The blue axis represents individual factor contribution; the 

orange axis represents cumulative factor contribution. 
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Fig. S7. Pareto charts process sustainability. The factor contribution of the process sustainability 

metrics, namely E-factor (a), energy (b), and carbon footprint (c). The blue axis represents individual 

factor contribution, orange axis represents cumulative factor contribution. 
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2.3. Individual correlation (main effect) calculations 

 

The individual correlation plot (also called the main effect) is used to compare the relative strength of 

the effects of the parameters. The sign of a main effect informs the direction of the effect, and the 

magnitude of a main effect indicates the strength of the effect. The methodology was adapted from the 

literature.2 To determine the main effect, the lowest and the highest values in each parameter were 

grouped, and then the responses from each dataset (lowest dataset and highest dataset) were averaged. 

Individual correlation between each parameter and each response was computed. The results are 

presented in Fig. 2e. 

An example is given in Fig. S8 to calculate the main effect of the electrolyte on crystallinity. The plot 

between electrolyte concentration and crystallinity is also presented, demonstrating that an increase in 

electrolyte concentration from 0.01 M to 0.3 M causes an approx. 10% decrease in the average 

crystallinity. By applying the same calculation principle, the individual correlation between each 

parameter and each response was computed. The results are presented in Fig. 2e. 

 

 

Fig. S8. Calculation and plot for the individual correlation of the electrolyte on the crystallinity. 
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2.4. Two-factor-responses interactions calculations 

 

The interaction of parameters can influence the quality of the final product. The two-factor-responses 

interactions for all factors and responses are given in Fig. S10-S15. As an example, the interaction 

between electrolyte concentration (Ce) and voltage (V) on crystallinity is given in Fig. S9. To study the 

interaction between Ce and V, it is important to calculate the average crystallinity values for the four 

possible combinations of Ce at the lowest value (Low Ce), Ce at the highest value (High Ce), V at the 

lowest value (Low V), and V at the highest value (High V). Parallel lines in the interaction plot indicate 

no interaction, and non-parallel lines indicate parameter interactions. This methodology was adapted 

from the literature.2   

  

Fig. S9. Two-factor-responses interactions. (a) Experimental table with a classification of different 

electrolyte and voltage combinations, where yellow indicates the combination of the lowest electrolyte 

with the highest voltage, orange indicates the combination of the highest electrolyte with the lowest 

voltage, blue indicates the combination of the lowest electrolyte with the highest voltage, and green 

indicates the combination of the highest electrolyte with the highest voltage. (b) the average crystallinity 

of each combination. (c) the interaction plot between electrolyte and voltage to crystallinity is shown. 

 

As shown in Fig. S9.c, at low voltage (2 V), increasing the electrolyte concentration increases the 

average crystallinity by about 20%. Meanwhile, at high voltage (20 V), increasing the electrolyte 

concentration decreases the average crystallinity by around 24%. Fig. S9 shows that to get the highest 
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crystallinity, the combination of high voltage and low electrolyte concentration is desired (indicated by 

blue color).  

By applying the same principle as described in Fig. S9, the factor interaction can be calculated for all 

the parameter combinations and responses. The two-factor-responses interaction plots are described in 

Fig. S10-S15, where parallel lines indicate no interaction and non-parallel lines indicate parameter 

interactions. 

 

Fig. S10. Two-factor-responses interactions on crystallinity. Interaction between two factors and its 

effect on crystallinity.  

 

Fig. S11. Two-factor-responses interactions on purity. Interaction between two factors and its effect on 

purity. 
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Fig. S12. Two-factor-responses interactions on yield. Interaction between two factors and its effect on 

yield.  

 

 

Fig. S13. Two-factor-responses interactions on E-factor. Interaction between two factors and its effect 

on E-factor.  
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Fig. S14. Two-factor-responses interactions on energy. Interaction between two factors and its effect 

on energy.  

 

 

Fig. S15. Two-factor-responses interactions on carbon footprint. Interaction between two factors and 

its effect on carbon footprint. 
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Fig. S16. Mind map of the multivariable correlations in the electrochemical synthesis of ZIF-8. Input parameters are represented in blue, product quality in red, 

and process sustainability in green. The intermediate correlations are shown in yellow. The solid line indicates a direct parameter-response effect; the dashed 

line indicates an indirect parameter-response effect.  
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Fig. S17. Mind map of the multivariable correlations on crystallinity. Input parameters are represented in blue, product quality in red, and process sustainability 

in green. The intermediate correlations are shown in yellow. The solid line indicates a direct parameter-response effect; the dashed line indicates an indirect 

parameter-response effect. 
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Fig. S18. Mind map of the multivariable correlations on purity. Input parameters are represented in blue, product quality in red, and process sustainability in 

green. The intermediate correlations are shown in yellow. The solid line indicates a direct parameter-response effect; the dashed line indicates an indirect 

parameter-response effect. 

 

 



S27 
 

 

 

Fig. S19. Mind map of the multivariable correlations on yield. Input parameters are represented in blue, product quality in red, and process sustainability in 

green. The intermediate correlations are shown in yellow. The solid line indicates a direct parameter-response effect; the dashed line indicates an indirect 

parameter-response effect. 
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Fig. S20. Mind map of the multivariable correlations on E-factor. Input parameters are represented in blue, product quality in red, and process sustainability in 

green. The intermediate correlations are shown in yellow. The solid line indicates a direct parameter-response effect; the dashed line indicates an indirect 

parameter-response effect. 
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Fig. S21. Mind map of the multivariable correlations on energy. Input parameters are represented in blue, product quality in red, and process sustainability in 

green. The intermediate correlations are shown in yellow. The solid line indicates a direct parameter-response effect; the dashed line indicates an indirect 

parameter-response effect. 
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Fig. S22. Mind map of the multivariable correlations on carbon footprint. Input parameters are represented in blue, product quality in red, and process 

sustainability in green. The intermediate correlations are shown in yellow. The solid line indicates a direct parameter-response effect; the dashed line indicates 

an indirect parameter-response effect.
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2.5. Determination of crystallinity 

 

The percentage of relative crystallinity was calculated in a manner consistent with previous studies,3–5 

through a comparison of the integral-breadth of the most intense XRD peak (2θ ≈7.5°). The calculation 

process is illustrated in Fig. S23. The baseline and the integral breadth were determined by the Origin 

software using Pseudo-Voigt fitting by applying equation (S4). The highest integral-breadth was 

achieved by a sample from Entry 15, which was then used as a reference to calibrate the crystallinity of 

other samples using equation (S5), where β
i
 is the integral breadth of experiment i and β

15
 is the highest 

integral breadth of Entry 15. 

 

Integral-breadth (β) =
peak area

peak height
 (S4) 

 

Crystallinity =
β

i

β
15

×100% (S5) 

 

Fig. S23. Determination of relative crystallinity. An example of integral breadth determination from a 

sample from Entry 15, which has the highest integral breadth value.   
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2.6. Determination of purity 

 

In contrast to the relative crystallinity, where the degree of crystallinity or the quality of the crystalline 

part among the products is compared, the purity evaluates the ratio of the desired ZIF-8 products to the 

whole products that may be present in the yield, including amorphous and other possible crystalline 

materials. 

The percentage of purity was determined by XRD measurements by dividing the area under the peaks 

corresponding to the XRD pattern of ZIF-8 with the whole integral of the XRD pattern, following 

equation (S6). An example of the purity calculation from Entry 15 is given in Fig. S24. 

 

Purity = 
(peak area of ZIF-8)

(total peak area in XRD)
×100%    (S6) 

 

 

Fig. S24. Determination of purity. An example of purity determination of a sample from Entry 15. 
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2.7. Determination of yield 

 

Yield is defined as the ratio between the amount of experimental and theoretical products, as shown by 

equation (S7). 

 

Yield = (
experimental product (g)

theoretical product (g)
) × 100% (S7) 

 

An example of yield determination based on Entry 15 in Table S4 is given as the following. 

Stoichiometric of the reaction formation of ZIF-8 is presented in the reaction scheme below; 

 

2C4H6N2  +  Zn  →  C8H10N4Zn     

   (ZIF-8) 

 

mass of Zn consumed is 0.126 g 

mol of Zn consumed = 
mass of Zn (g)

Ar of Zn (g mol
-1

)
 = 

0.126 g

65.4 (g mol
-1

)
= 0.002 mol 

 

as mol of zinc consumed is equivalent to mol of ZIF-8 produced, the theoretical amount of ZIF-8 

produced based on zinc as the limiting reactant can be calculated by the following: 

 

theoretical product (ZIF-8) = mol of ZIF-8 × Molecular mass of ZIF-8 

    = 0.002 mol × 227.58 g mol-1 

    = 0.445 g 

 

experimental product (ZIF-8) = 0.337 g 

 

following equation (S7), the yield from Entry 15 in Table S4 is: 

Yield = (
0.337 g

0.445 g
)× 100% = 77% 

  



S34 
 

2.8. Determination of E-factor  

 

E-factor is defined as the mass ratio between the amount of waste and the product, as shown in equation 

(S8). 

 

E-factor = 
waste (kg)

product (kg)
   (S8) 

 

As per convention, waste is defined as the amount of all reagents minus the weight of the product, 

excluding water. Based on the reported synthetic details, the approximate E-factors were calculated by 

excluding the amount of water used as solvents and also during the washing procedures.6,7 An example 

of E-factor calculation for Entry 15 is detailed by the following: 

 

Electrolyte (KCl) = 0.01 M → 0.0112 g 

Linker (C4H6N2) = 2 M → 2.46 g 

Zn electrode = 0.126 g 

ZIF-8 product = 0.337 g 

 

   2C4H6N2       +        Zn         +          KCl           →    C8H10N4Zn     +     waste 

    (2.460 g)     +   (0.126 g)   +    (0.0112 g)     →      (0.337 g)     +   (2.260 g) 

 

Total amount of reactants = (2.460 + 0.126 + 0.0112) = 2.597 g 

Amount of waste  = Total amount of reactants - amount of final product  

= (2.597 – 0.337) = 2.260 g 

 

 E-factor =
waste (kg)

product (kg)
 = 

0.00226 (kg)

0.000337 (kg)
 = 6.69 kg kg

−1
 

 

The complete datasets of E-factor calculation results are tabulated in Table S7. 
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Table S7. Experimental runs, reaction conditions, and E-factor. 

Entries 
ce 

(M) 

V 

(V) 

t 

(h) 

cl 

(M) 

Zn consumed 

(g) 

ml 

(g) 

me 

(g) 

Total reactant 

(g) 

ZIF-8 product 

(g) 

Waste 

(g) 

E-factor 

(kg kg–1) 

1 0.01 2 0.2 0.50 0.000 0.62 0.011 0.626 0.000 0.626 na. 
2 0.30 2 0.2 0.50 0.017 0.62 0.335 0.967 0.000 0.967 na. 

3 0.01 20 0.2 0.50 0.029 0.62 0.011 0.655 0.000 0.655 na. 
4 0.30 20 0.2 0.50 0.030 0.62 0.335 0.980 0.000 0.980 na. 

5 0.01 2 1.0 0.50 0.013 0.62 0.011 0.639 0.025 0.614 24.01 
6 0.30 2 1.0 0.50 0.052 0.62 0.335 1.002 0.000 1.002 na. 

7 0.01 20 1.0 0.50 0.146 0.62 0.011 0.772 0.000 0.772 na. 

8 0.30 20 1.0 0.50 0.130 0.62 0.335 1.080 0.075 1.005 13.29 
9 0.01 2 0.2 2.00 0.000 2.46 0.011 2.471 0.000 2.471 na. 

10 0.30 2 0.2 2.00 0.021 2.46 0.335 2.816 0.011 2.805 251.80 
11 0.01 20 0.2 2.00 0.028 2.46 0.011 2.499 0.023 2.476 105.16 

12 0.30 20 0.2 2.00 0.030 2.46 0.335 2.825 0.019 2.806 145.03 

13 0.01 2 1.0 2.00 0.000 2.46 0.011 2.471 0.000 2.471 na. 
14 0.30 2 1.0 2.00 0.053 2.46 0.335 2.848 0.049 2.799 56.37 

15 0.01 20 1.0 2.00 0.126 2.46 0.011 2.597 0.336 2.260 6.71 
16 0.30 20 1.0 2.00 0.127 2.46 0.335 2.922 0.226 2.696 11.90 

17 0.16 11 0.6 1.25 0.068 1.54 0.173 1.779 0.103 1.675 16.14 
18 0.16 11 0.6 1.25 0.067 1.54 0.173 1.778 0.105 1.672 15.78 

19 0.16 11 0.6 1.25 0.069 1.54 0.173 1.780 0.104 1.676 16.10 

20 0.01 11 0.6 1.25 0.047 1.54 0.011 1.596 0.066 1.529 22.90 
21 0.16 2 0.6 1.25 0.031 1.54 0.173 1.742 0.042 1.700 40.23 

22 0.16 20 0.6 1.25 0.077 1.54 0.173 1.788 0.190 1.598 8.39 
23 0.16 11 0.2 1.25 0.028 1.54 0.173 1.739 0.044 1.695 38.16 

24 0.16 11 1.0 1.25 0.108 1.54 0.173 1.819 0.224 1.595 7.12 

25 0.16 11 0.6 0.50 0.077 0.62 0.173 0.865 0.115 0.750 6.50 
26 0.16 11 0.6 2.00 0.076 2.46 0.173 2.709 0.173 2.536 14.61 

27 0.30 11 0.6 1.25 0.073 1.54 0.335 1.946 0.104 1.841 17.57 
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2.9. Determination of energy consumption 

 

Energy consumption during electrochemical synthesis can be calculated by considering the amount of 

zinc consumed and the applied voltage. The methodology to calculate energy consumption is adapted 

from literature.8,9 

An example of calculating energy consumption for electrochemical production ZIF-8 is determined for 

sample Entry 15 using the following: 

 

1. Determine the amount of applied voltage and corresponding Zinc electrode that is dissolved. 

Voltage = 20 V 

Zinc consumed = 0.0019 mol 

 

2.  Determine the charges involved 

1 mol e– = 96500 Coulomb 

 

Zn → Zn2+ + 2e– 

0.0019 mol × 2 mol e– = 0.00385 mol e– 

Total charges=mol e-×charges       (S9) 

𝑇𝑜𝑡𝑎𝑙 𝑐ℎ𝑎𝑟𝑔𝑒𝑠 = 0.00385 × 96500 = 371.95 𝐶𝑜𝑢𝑙𝑜𝑚𝑏 

 

3. Determine the energy 

Energy (kWh)=
Voltage (V) × charge (C) × 0.278

106       (S10) 

Energy (kWh)=
20 V × 371.95 Coulomb × 0.278

106  = 0.00207 kWh  

 

4. Energy per unit product 

Total product = 0.336 g 

Energy per unit product (kWh kg
−1

) = 
Energy (kWh)

total product (kg)
    (S11) 

Energy per unit product (kWh kg
−1) = 

0.00207 kWh

0.000336 kg
= 6.1 kWh kg

−1
 

 

The complete datasets of Energy calculation results are tabulated in Table S8. 
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Table S8. Experimental runs, reaction conditions, and energy consumption. 

Entries 
ce 

(M) 

V 

(V) 

t 

(h) 

cl 

(M) 

Zn consumed 

(g) 

ZIF-8 product 

(g) 

Zn 

(mmol) 

e– 

(mmol) 

Charge 

(Coulomb) 

Energy 

(Wh) 

Energy consumption (kWh 

kg–1) 

1 0.01 2 0.2 0.50 0.000 0.000 0.000 0.000 0.00 0.000 na. 

2 0.30 2 0.2 0.50 0.017 0.000 0.260 0.520 50.18 0.027 na. 

3 0.01 20 0.2 0.50 0.029 0.000 0.444 0.887 85.61 0.476 na. 
4 0.30 20 0.2 0.50 0.030 0.000 0.459 0.918 88.56 0.492 na. 

5 0.01 2 1.0 0.50 0.013 0.025 0.199 0.398 38.38 0.021 0.84 
6 0.30 2 1.0 0.50 0.052 0.000 0.795 1.591 153.50 0.085 na. 

7 0.01 20 1.0 0.50 0.146 0.000 2.233 4.466 430.99 2.396 na. 
8 0.30 20 1.0 0.50 0.130 0.075 1.988 3.977 383.76 2.133 28.23 

9 0.01 2 0.2 2.00 0.000 0.000 0.000 0.000 0.00 0.000 na. 

10 0.30 2 0.2 2.00 0.021 0.011 0.321 0.642 61.99 0.034 3.09 
11 0.01 20 0.2 2.00 0.028 0.023 0.428 0.857 82.66 0.459 19.52 

12 0.30 20 0.2 2.00 0.030 0.019 0.459 0.918 88.56 0.492 25.45 
13 0.01 2 1.0 2.00 0.000 0.000 0.000 0.000 0.00 0.000 na. 

14 0.30 2 1.0 2.00 0.053 0.049 0.811 1.621 156.45 0.087 1.75 

15 0.01 20 1.0 2.00 0.126 0.336 1.927 3.854 371.95 2.068 6.14 
16 0.30 20 1.0 2.00 0.127 0.226 1.942 3.885 374.90 2.084 9.2 

17 0.16 11 0.6 1.25 0.068 0.103 1.040 2.080 200.73 0.613 5.91 
18 0.16 11 0.6 1.25 0.067 0.105 1.025 2.050 197.78 0.604 5.71 

19 0.16 11 0.6 1.25 0.069 0.104 1.055 2.111 203.69 0.622 5.98 
20 0.01 11 0.6 1.25 0.047 0.066 0.719 1.438 138.74 0.424 6.35 

21 0.16 2 0.6 1.25 0.031 0.042 0.474 0.948 91.51 0.050 1.2 

22 0.16 20 0.6 1.25 0.077 0.190 1.178 2.355 227.30 1.263 6.64 
23 0.16 11 0.2 1.25 0.028 0.044 0.428 0.857 82.66 0.252 5.69 

24 0.16 11 1.0 1.25 0.108 0.224 1.652 3.304 318.81 0.974 4.35 
25 0.16 11 0.6 0.50 0.077 0.115 1.178 2.355 227.30 0.695 6.02 

26 0.16 11 0.6 2.00 0.076 0.173 1.162 2.325 224.35 0.686 3.95 

27 0.30 11 0.6 1.25 0.073 0.104 1.117 2.233 215.49 0.659 6.29 
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2.10. Determination of Carbon footprint 

 

For the calculation of the carbon footprint, the energy used for the equipment and the waste generated 

were converted into equivalent CO2. For the energy source, the CO2 coefficient of 0.79 kg CO2 kWh–1 

was chosen for electrical energy provided by the Saudi Arabian national grid.15 The calculation to 

estimate the equivalent CO2 for the incineration of the chemical waste took into account the carbon 

content of the linker 2-methylimidazole (C4H6N2) and KCl incineration, following the methodology as 

reported in the literature,10 and database from CCalC2.16 An example of the calculation for sample Entry 

15 is given below. 

 

# CO2 equivalent from linker (C4H6N2) incineration: 

C4H6N2 + 7.5O2 → 4CO2 + 2NO2 + 3H2O 

CO2 coefficient factor  = 
4 mol CO2

1 mol C4H6N2
× (

44 g mol
-1

82 g mol
-1) = 2.14 g g−1 = 2.14 kg kg

−1
 

Total linker waste = 2.2 g  

CO2 equivalent from linker inceneration = 0.0022 × 2.14 = 0.0048 kg kg
−1

 

Total ZIF-8 product = 0.337 g 

CO2 equivalent from linker inceneration per product = 
0.0048 

0.000337
 = 14.29 kg kg

−1
 

 

# CO2 equivalent from electrolyte (KCl) incineration: 

KCl waste = 0.0112 g 

From CCalC2 software, incineration of 0.0112 g KCl is equivalent to 0.0166 kg kg–1 

 

#CO2 equivalent from electricity grid = 0.79 Kg CO2/kWh 

Energy consumption per kg ZIF-8 = 6.14 kWh kg–1  

CO2 equivalent from ZIF-8 production = 6.14 × 0.79 = 4.85 kg kg
−1

 

 

TOTAL carbon footprint  = CO2 from waste + CO2 from electricity 

    = 14.29 + 0.0166 + 4.85  

= 19.15 kg kg–1 

 

The complete datasets of Energy calculation results are tabulated in Table S9. 
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Table S9. Experimental runs, reaction conditions, and carbon footprint. 

Entries 
ce  

(M) 

V 

(V) 

t 

(h) 

cl  

(M) 

Zn 

consumed 

(g) 

Linker 

(g) 

Electrolyte 

(g) 

Total 

reactant 

(g) 

ZIF-8 

product 

(g) 

Linker 

waste 

(g) 

Electrolyte 

waste 

(g) 

*CO2 

from 

linker 

(kg kg–1) 

*CO2 from 

electrolyte 

(kg kg–1) 

Energy 

consumption 

(kWh kg–1) 

*CO2 from 

energy 

(kg kg–1) 

Total *CO2 

from ZIF-8 

synthesis (kg 

kg–1) 

1 0.010 2 0.2 0.50 0.000 0.615 0.011 0.626 0.000 0.615 0.011 na. na. na. na. na. 

2 0.300 2 0.2 0.50 0.017 0.615 0.335 0.967 0.000 0.632 0.335 na. na. na. na. na. 

3 0.010 20 0.2 0.50 0.029 0.615 0.011 0.655 0.000 0.644 0.011 na. na. na. na. na. 

4 0.300 20 0.2 0.50 0.030 0.615 0.335 0.980 0.000 0.645 0.335 na. na. na. na. na. 

5 0.010 2 1.0 0.50 0.013 0.615 0.011 0.639 0.026 0.602 0.011 50.45 0.22 0.84 0.66 51.33 

6 0.300 2 1.0 0.50 0.052 0.615 0.335 1.002 0.000 0.667 0.335 na. na. na. na. na. 

7 0.010 20 1.0 0.50 0.146 0.615 0.011 0.772 0.000 0.761 0.011 na. na. na. na. na. 

8 0.300 20 1.0 0.50 0.130 0.615 0.335 1.080 0.076 0.669 0.335 18.95 2.21 28.23 22.30 43.46 

9 0.010 2 0.2 2.00 0.000 2.460 0.011 2.471 0.000 2.460 0.011 na. na. na. na. na. 

10 0.300 2 0.2 2.00 0.021 2.460 0.335 2.816 0.011 2.470 0.335 474.46 15.02 3.09 2.44 491.92 

11 0.010 20 0.2 2.00 0.028 2.460 0.011 2.499 0.024 2.464 0.011 224.01 0.24 19.52 15.42 239.67 

12 0.300 20 0.2 2.00 0.030 2.460 0.335 2.825 0.019 2.471 0.335 273.28 8.65 25.45 20.11 302.03 

13 0.010 2 1.0 2.00 0.000 2.460 0.011 2.471 0.000 2.460 0.011 na. na. na. na. na. 

14 0.300 2 1.0 2.00 0.053 2.460 0.335 2.848 0.050 2.463 0.335 106.18 3.37 1.75 1.38 110.93 

15 0.010 20 1.0 2.00 0.126 2.460 0.011 2.597 0.337 2.249 0.011 14.30 0.02 6.14 4.85 19.16 

16 0.300 20 1.0 2.00 0.127 2.460 0.335 2.922 0.226 2.361 0.335 22.31 0.74 9.20 7.27 30.32 

17 0.155 11 0.6 1.25 0.068 1.538 0.173 1.779 0.104 1.502 0.173 30.96 0.83 5.91 4.67 36.47 

18 0.155 11 0.6 1.25 0.067 1.538 0.173 1.778 0.106 1.499 0.173 30.28 0.82 5.71 4.51 35.60 

19 0.155 11 0.6 1.25 0.069 1.538 0.173 1.780 0.104 1.503 0.173 30.89 0.83 5.98 4.73 36.45 

20 0.010 11 0.6 1.25 0.047 1.538 0.011 1.596 0.067 1.518 0.011 48.65 0.08 6.35 5.02 53.76 

21 0.155 2 0.6 1.25 0.031 1.538 0.173 1.742 0.042 1.527 0.173 77.33 2.05 1.20 0.95 80.33 

22 0.155 20 0.6 1.25 0.077 1.538 0.173 1.788 0.190 1.425 0.173 16.01 0.45 6.64 5.24 21.71 

23 0.155 11 0.2 1.25 0.028 1.538 0.173 1.739 0.044 1.522 0.173 73.31 1.95 5.69 4.50 79.75 

24 0.155 11 1.0 1.25 0.108 1.538 0.173 1.819 0.224 1.422 0.173 13.59 0.39 4.35 3.44 17.41 

25 0.155 11 0.6 0.50 0.077 0.615 0.173 0.865 0.115 0.577 0.173 10.69 0.75 6.02 4.76 16.20 

26 0.155 11 0.6 2.00 0.076 2.460 0.173 2.709 0.174 2.362 0.173 29.13 0.50 3.95 3.12 32.75 

27 0.300 11 0.6 1.25 0.073 1.538 0.335 1.946 0.105 1.506 0.335 30.75 1.60 6.29 4.97 37.32 

 

*equivalent CO2 emission 
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2.11. Machine learning algorithm and data generation 

 

Support Vector Machine (SVM) was chosen to fit the data in this study due to several merits. First, it 

is robust to outliers as the decision boundary is only determined by the support vectors, which are a 

subset of the training data samples close to the boundary. Second, SVM uses kernels to model non-

linear hyperplane as a decision boundary as it is analogous to mapping the input data into a higher-

dimensional space for an easier separation. Last, SVM suffers less from the overfitting issue when the 

training data set is small, compared to other regression models. 

Random Forest (RF) is a widely used machine learning method, which construct multiple trees to do 

classification or regression. However, when we use RF for regression, the amount of data will have a 

large impact on the performance of RF models. In our case, we only have a small number of training 

records, the RF model will be easily overfitted and the prediction value will be extremely discrete, 

finally leading to poor performance. 

All codes used in this paper are implemented by Python. Pandas5 package is used to import all the 

original data and export all the generated data. The support vector machine (SVM) model is 

implemented and trained by Scikit-learn6 package. All visualization work is accomplished by using 

Matplotlib7 package. Radial basis function kernel was used in SVM model due to its fitting flexibility 

for high-dimension data. The parameter of SVM model such as ‘gamma’ is crucial for its performance. 

A too small value of gamma leads to low accuracy, while a high value of gamma could cause overfitting 

problem.  To choose the best parameters for SVM model such as ‘gamma’ and ‘C’, cross validation 

method was applied. After cross validation, gamma is set to 1, and C is set to 10. Min-max normalization 

method was used to scale all the input and output variables to a certain range (0~1). 

Before data generation process, all the input is scaled from 0 to 1 as mentioned. The step value of 0.04 

was used to generate a 4-dimension grid (for 4 input variables in this experiment). For each dimension 

there are (1 / 0.04) + 1= 26 steps, so the total number of generated points are 26×26×26×26 = 456,976. 

The machine learning model was also validated for its reliability. The validity test was also compared 

to other machine learning algorithm, e.g., Random Forest (RF), and the results are given in Fig. S25 

and Fig. S26.  
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2.12. Machine learning model validity test 

 

The validity of the machine learning model was tested by comparing the prediction with the 

experimental results from two machine learning algorithms: Support Vector Machine (SVM) and 

Random Forest (RF). The better model is indicated by a higher regression coefficient (R2) value and a 

lower mean square error (MSE) value. The model comparison on the product quality responses 

(crystallinity, purity, and yield) and process sustainability responses (E-factor, energy, and carbon 

footprint) is presented in Fig. S25 and Fig. S26, respectively. The results show that the fittings using 

the SVM model are better than those of the RF model. 

 

Fig. S25. Validity evaluation of the training dataset for product quality. (a-c) SVM and (d-f) RF models 

for crystallinity, purity, and yield.  
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Fig. S26. Validity evaluation on the training dataset of process sustainability quality. (a-c) SVM and 

(d-f) RF models for E-factor, energy, and carbon footprint. 
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2.13. Sampling points  

 

The sampling distributions in the Central-Composite Design that applies the face-centered model of 

DoE are displayed in Fig. S27a. The CCD model comprises the factorial parts, which are located at the 

corners of the design space, the axial parts that are located in the center of the design space, and the 

center point. The total number of experiments depends on the number of variables (k), which is 

calculated by 2k+2k+n0, where 2k and 2k represent the factorial and axial runs, respectively, and n0 is 

the number of repeated experiments at the center point.11 

As there are four parameters to be optimized in this work (electrolyte concentration, applied voltage, 

reaction time, and linker concentration), and each parameter has three levels, the conventional one-

factor at-a-time approach thus would have resulted in 34 = 81 experiments. Nevertheless, by applying 

the CCF model of DoE, the total number of experiments can be reduced to 27 experiments, including 

16 factorial points, six axial points, and five center points with three repetitions, to ensure 

reproducibility.  

Fig. S27b illustrates the evolution of the sampling points generated by grid-search methods. The 

number of samples was expanded from the initial 27 datasets into much larger datasets. A more detailed 

illustration of the sampling points in the 4D spaces for both DoE and machine learning are visualized 

in Supplementary Video 1 and Video 2. 

 

Fig. S27. Distribution of sampling points. (a) sampling points generated from the CCF model of DoE, 

(b) the extended sampling points distribution generated from the grid search method of machine 

learning. 
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2.14. Code for machine learning fitting and optimization 

 

The code for the machine learning fitting and all the details of implementation were written in Python. 

The full code is available from the corresponding author upon reasonable request. 

 

A. AI-module 1: SVM + Grid search + Desirability function 

 

import numpy as np 

import matplotlib.pyplot as plt 

from sklearn.svm import SVR 

from matplotlib import cm 

import pandas as pd 

import matplotlib 

import time 

import geatpy as ea 

 

data = pd.read_excel('CCF design Rifan - 20200303.xlsx') 

data = data.iloc[:,[2,3,4,5,6,7,8,9]].dropna() 

 

data_train = data.iloc[1:,:] 

 

data_train = data_train.iloc[:,[0,1,2,3,4]] 

 

ori_features = data_train.iloc[:,:-1].values 

 

minmin = np.min(ori_features,axis=0) 

maxmax = np.max(ori_features,axis=0) 

features = (ori_features -minmin)/(maxmax-minmin) 

labels_4 = data_train.iloc[:,-1].values / 100 

labels_5 = data.iloc[1:,5].values / 100 

labels_6 = data.iloc[1:,6].values / 100 

 

clf_4 = SVR(gamma=1,C=10,epsilon=0.001) 

clf_5 = SVR(gamma=1,C=10,epsilon=0.001) 

clf_6 = SVR(gamma=1,C=10,epsilon=0.001) 

 



S45 
 

clf_4 = clf_4.fit(features, labels_4) 

clf_5 = clf_5.fit(features, labels_5) 

clf_6 = clf_6.fit(features, labels_6) 

 

data = pd.read_excel('sustainability.xlsx') 

data = data.iloc[:,[1,2,3,4,5,6,7]].dropna() 

data = data.iloc[1:,:] 

data_1 = data.iloc[:,[0,1,2,3,4]] 

data_2 = data.iloc[:,[0,1,2,3,5]] 

data_3 = data.iloc[:,[0,1,2,3,6]] 

ori_features = data_1.iloc[:,:-1].values 

minmin = np.min(ori_features,axis=0) 

maxmax = np.max(ori_features,axis=0) 

features = (ori_features -minmin)/(maxmax-minmin) 

 

labels = data_1.iloc[:,-1].values 

label_min = np.min(labels) 

label_max = np.max(labels) 

labels_1 = (labels - label_min) / (label_max - label_min) 

 

labels = data_2.iloc[:,-1].values 

label_min = np.min(labels) 

label_max = np.max(labels) 

labels_2 = (labels - label_min) / (label_max - label_min) 

 

labels = data_3.iloc[:,-1].values 

label_min = np.min(labels) 

label_max = np.max(labels) 

labels_3 = (labels - label_min) / (label_max - label_min) 

 

clf_1 = SVR(gamma=1,C=1) 

clf_2 = SVR(gamma=1,C=1) 

clf_3 = SVR(gamma=1,C=1) 

 

clf_1 = clf_1.fit(features, labels_1) 

clf_2 = clf_2.fit(features, labels_2) 

clf_3 = clf_3.fit(features, labels_3) 
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def aim_max(a,b,c,d): 

    feature = np.concatenate([a,b,c,d],-1) 

    return clf_4.predict(feature) + clf_5.predict(feature) + clf_6.predict(feature) 

 

def aim_min(a,b,c,d): 

    feature = np.concatenate([a,b,c,d],-1) 

    return clf_1.predict(feature) + clf_2.predict(feature) + clf_3.predict(feature) 

 

class MyProblem(ea.Problem):  

    def __init__(self): 

        name = 'MyProblem'  

        M = 10  

        maxormins = [-1] * M  

        Dim = 4  

        varTypes = [0] * Dim  

        lb = [0] * Dim  

        ub = [1] * Dim  

        lbin = [1] * Dim  

        ubin = [1] * Dim  

        ea.Problem.__init__(self, name, M, maxormins, Dim, varTypes, lb, ub, lbin, ubin) 

    def aimFunc(self, pop):  

        x1 = pop.Phen[:, [0]] 

        x2 = pop.Phen[:, [1]] 

        x3 = pop.Phen[:, [2]] 

        x4 = pop.Phen[:, [3]] 

 

        pop.ObjV = np.zeros((pop.Phen.shape[0], self.M)) 

        pop.ObjV[:,[0]] = np.clip(clf_4.predict(np.concatenate([x1,x2,x3,x4],-1)).reshape(-1,1),0,1) 

        pop.ObjV[:,[1]] = np.clip(clf_5.predict(np.concatenate([x1,x2,x3,x4],-1)).reshape(-1,1),0,1) 

        pop.ObjV[:,[2]] = np.clip(clf_6.predict(np.concatenate([x1,x2,x3,x4],-1)).reshape(-1,1),0,1) 

        pop.ObjV[:,[3]] = -np.clip(clf_1.predict(np.concatenate([x1,x2,x3,x4],-1)).reshape(-1,1),0,1) 

        pop.ObjV[:,[4]] = -np.clip(clf_2.predict(np.concatenate([x1,x2,x3,x4],-1)).reshape(-1,1),0,1) 

        pop.ObjV[:,[5]] = -np.clip(clf_3.predict(np.concatenate([x1,x2,x3,x4],-1)).reshape(-1,1),0,1) 

        pop.ObjV[:,[6]] = -x1 

        pop.ObjV[:,[7]] = -x2 

        pop.ObjV[:,[8]] = -x3 
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        pop.ObjV[:,[9]] = -x4 

 

    def calReferObjV(self): 

        ObjV1 = np.ones((100)) 

        ObjV2 = np.ones((100)) 

        ObjV3 = np.ones((100)) 

        ObjV4 = np.zeros((100)) 

        ObjV5 = np.zeros((100)) 

        ObjV6 = np.zeros((100)) 

        ObjV7 = np.zeros((100)) 

        ObjV8 = np.zeros((100)) 

        ObjV9 = np.zeros((100)) 

        ObjV10 = np.zeros((100)) 

        globalBestObjV = np.array([ObjV1, 

ObjV2,ObjV3,ObjV4,ObjV5,ObjV6,ObjV7,ObjV8,ObjV9,ObjV10]).T 

        print(globalBestObjV.shape) 

        return globalBestObjV 

 

if __name__ == "__main__": 

    problem = MyProblem()    

    Encoding = 'RI'       

    NIND = 50        

    Field = ea.crtfld(Encoding, problem.varTypes, problem.ranges, problem.borders) 

    population = ea.Population(Encoding, Field, NIND)  

    myAlgorithm = ea.moea_NSGA3_templet(problem, population) 

    myAlgorithm.drawing = 0 

    myAlgorithm.MAXGEN = 50  

 

    NDSet = myAlgorithm.run()  

    NDSet.save()             

 

    PF = problem.getReferObjV() 

    myAlgorithm.drawing = 1 

    if PF is not None: 

        metricName = [['IGD']] 

        [NDSet_trace, Metrics] = ea.indicator.moea_tracking(myAlgorithm.pop_trace, PF, metricName, 

problem.maxormins) 
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        ea.trcplot(Metrics, labels = metricName, titles = metricName) 

    result = pd.read_csv('./Result/ObjV.csv',header=None).values 

    result = np.clip(result,-1,1) 

    rank_list = [] 

    for i in result: 

        value = 1 

        for j in i: 

            if j >= 0: 

                value *= j 

            elif j < 0: 

                value *= (1 + j) 

        rank_list.append(value ** 0.1) 

    max_index = rank_list.index(max(rank_list)) 

    paras = pd.read_csv('./Result/Phen.csv',header=None).values 

    f_out = open('final_result.txt','w') 

    f_out.write('input parameters:' + str(paras[max_index]) + '\n\n') 

    f_out.write('output responses:' + str([abs(i) for i in result[max_index]]) + '\n') 

    f_out.close() 
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B. AI-module 2: SVM + NSGA-II + Desirability function 

 

import numpy as np 

import matplotlib.pyplot as plt 

from sklearn.svm import SVR 

from matplotlib import cm 

import pandas as pd 

import matplotlib 

import time 

import geatpy as ea 

import psutil 

import os  

 

#start = time.clock() 

 

data = pd.read_excel('CCF design Rifan - 20200303.xlsx') 

data = data.iloc[:,[2,3,4,5,6,7,8,9]].dropna() 

 

data_train = data.iloc[1:,:] 

 

data_train = data_train.iloc[:,[0,1,2,3,4]] 

 

ori_features = data_train.iloc[:,:-1].values 

 

minmin = np.min(ori_features,axis=0) 

maxmax = np.max(ori_features,axis=0) 

features = (ori_features -minmin)/(maxmax-minmin) 

labels_4 = data_train.iloc[:,-1].values / 100 

labels_5 = data.iloc[1:,5].values / 100 

labels_6 = data.iloc[1:,6].values / 100 

 

clf_4 = SVR(gamma=1,C=10,epsilon=0.001) 

clf_5 = SVR(gamma=1,C=10,epsilon=0.001) 

clf_6 = SVR(gamma=1,C=10,epsilon=0.001) 

 

clf_4 = clf_4.fit(features, labels_4) 

clf_5 = clf_5.fit(features, labels_5) 
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clf_6 = clf_6.fit(features, labels_6) 

 

data = pd.read_excel('sustainability.xlsx') 

data = data.iloc[:,[1,2,3,4,5,6,7]].dropna() 

data = data.iloc[1:,:] 

data_1 = data.iloc[:,[0,1,2,3,4]] 

data_2 = data.iloc[:,[0,1,2,3,5]] 

data_3 = data.iloc[:,[0,1,2,3,6]] 

ori_features = data_1.iloc[:,:-1].values 

minmin = np.min(ori_features,axis=0) 

maxmax = np.max(ori_features,axis=0) 

features = (ori_features -minmin)/(maxmax-minmin) 

 

labels = data_1.iloc[:,-1].values 

label_min = np.min(labels) 

label_max = np.max(labels) 

labels_1 = (labels - label_min) / (label_max - label_min) 

 

labels = data_2.iloc[:,-1].values 

label_min = np.min(labels) 

label_max = np.max(labels) 

labels_2 = (labels - label_min) / (label_max - label_min) 

 

labels = data_3.iloc[:,-1].values 

label_min = np.min(labels) 

label_max = np.max(labels) 

labels_3 = (labels - label_min) / (label_max - label_min) 

 

clf_1 = SVR(gamma=1,C=1) 

clf_2 = SVR(gamma=1,C=1) 

clf_3 = SVR(gamma=1,C=1) 

 

clf_1 = clf_1.fit(features, labels_1) 

clf_2 = clf_2.fit(features, labels_2) 

clf_3 = clf_3.fit(features, labels_3) 

 

result = [] 
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grid = np.arange(0,1.04,0.04) 

max_value = -10 

for i in grid: 

    for j in grid: 

        for k in grid: 

            for l in grid: 

                value = 1 

                a = np.clip(clf_4.predict(np.array([i,j,k,l]).reshape(1,-1)),0,1) 

                b = np.clip(clf_5.predict(np.array([i,j,k,l]).reshape(1,-1)),0,1) 

                c = np.clip(clf_6.predict(np.array([i,j,k,l]).reshape(1,-1)),0,1) 

                d = np.clip(clf_1.predict(np.array([i,j,k,l]).reshape(1,-1)),0,1) 

                e = np.clip(clf_2.predict(np.array([i,j,k,l]).reshape(1,-1)),0,1) 

                f = np.clip(clf_3.predict(np.array([i,j,k,l]).reshape(1,-1)),0,1) 

                one_result = [a,b,c,d,-e,-f,-i,-j,-k,-l] 

                for ele in one_result: 

                    if ele >= 0: 

                        value *= j 

                    elif ele < 0: 

                        value *= (1 + j)  

                value = value ** 0.1   

                if value > max_value: 

                    max_value = value 

                    final_result = one_result             

print(final_result) 

#end = time.clock() 

#print('time:',end-start) 
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3. Response surface plot 

3.1. Response surface plot of product quality 

 

The response surface plots from the SVM fits of the parameters on product quality can be visualized in 

the 4D diagram shown in Fig. S28, where the interaction of the four input parameters to each product 

quality response can be observed. 

 

 

Fig. S28. 4D response surface for product quality. Response surface plots from the SVM fits of the 

parameters on crystallinity (a-c), purity (d-f), and yield (g-i). Ce is electrolyte concentration, V is applied 

voltage, T is reaction time, Cl is linker concentration. The values of the responses are normalized, where 

zero and one are the lowest and the highest, respectively (refer to Table S3). The color bar indicates the 

degree of the responses, where dark red and dark blue indicate the highest and the lowest response 

values, respectively. The sampling points generated from the DoE are placed as the dots in each surface 

plot. The 4D plot consists of 456,976 data points generated through the predictive machine learning 

through the SVM surrogate function. 
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Fig. S28a-c shows that as the electrolyte concentration increased, the crystallinity decreased when the 

voltage increased. This suggests the existence of an interaction between the electrolyte and voltage 

towards crystallinity. The same observation applies between reaction time and electrolyte 

concentration.  

In Fig. S28d-f, the response surface of the parameters towards purity is presented. A similar trend is 

observed as that for the crystallinity, where interaction between the electrolyte with voltage and reaction 

time present. This implies that the same scenarios that maximize the crystallinity also apply to maximize 

purity. Both crystallinity and purity can be boosted by maximizing the voltage, reaction time, and linker 

concentration while minimizing the electrolyte. 

Taken together, it can be interpreted that high voltage produces more zinc cations as the source of the 

metal node to form MOFs. A longer reaction time allows enough time for nucleation and crystal growth 

to occur. A high linker concentration can ensure that there is enough linker to form a framework with 

the metal cations. Meanwhile, excessive electrolyte concentration seems to inhibit MOFs formation due 

to a possible “salting out” process, as we speculated earlier. Finally, this situation decreases the MOFs 

crystallinity and increases the contaminants, which decreases the purity. 

Fig. S28g-i presents the response surface parameters towards yield. Interestingly, these figures show a 

different trend to that of crystallinity and purity. These figures show that the maximum area of yield is 

always observed at high voltage, high linker concentration, and long reaction time, regardless of the 

electrolyte concentration. These observations imply that by considering parameter interactions, the 

electrolyte concentration seems to have the smallest effect on the yield. 
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3.2. Response surface plot of process quality 

 

The response surface plots from the SVM fits of the parameters on process sustainability can be 

visualized in 4D diagrams, as shown in Fig. S29, where the interaction of four input parameters with 

each process sustainability response can be observed. 

 

 

 
Fig. S29. 4D response surface for process sustainability. Response surface plots from the SVM fits of 

the parameters on E-factor (a-c), Energy (d-f), and Carbon footprint (g-i). Ce is electrolyte 

concentration, V is applied voltage, T is reaction time, Cl is linker concentration. The values of the 

responses are normalized, with zero and one being the lowest and the highest, respectively (refer to 

Table S3). The color bar indicates the degree of the responses, where dark red and dark blue indicate 

the highest and the lowest response values, respectively. The sampling points generated from the DoE 

are placed as the dots in each surface plot. The 4D plot consists of 456,976 data points generated through 

the predictive machine learning through the SVM surrogate function. 
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In Fig. S29a-c, the most desired regions with the lowest E-factors are indicated by the blue area in the 

surface plots. It can be seen that high linker concentration, low voltage, and short reaction time do not 

minimize the environmental impact. An explanation could be that at low voltage and short reaction 

time, there is not enough metal cations, driving force, and time to form the MOFs. As a result, excessive 

linker concentrations become waste, which causes increasing E-factor.  

As shown in Fig. S29d-f, the response surface plots exhibit a different trend to that of the E-factor. A 

combination of high voltage, short reaction time, high linker concentration, and high electrolyte 

concentration are not preferred to minimize energy consumption. A plausible argument could be that 

increasing the electrolyte at high voltage and a short reaction time decreases the solubility of the linker, 

thus requiring more energy to dissolve the linker. Prolonging the reaction time while increasing the 

linker concentration seems to decrease the energy used during the MOFs synthesis. This is because a 

longer reaction time and an increased linker concentration drive the reaction to the formation of the 

desired MOFs product, thus utilizing the energy more efficiently and resulting in an overall decrease in 

the energy consumption per generated product. 

Interestingly, the response surface plots of carbon footprint (Fig. S29g-i) are almost identical to the E-

factor. The carbon footprint represents the CO2 emissions equivalent from the generated waste and 

energy consumption. This similarity of the response surface between E-factor and carbon footprint can 

be explained because the dominant content in both E-factor and carbon footprint is the same, which is 

the waste from the unreacted linker. 
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4. Optimization strategy 

 

An optimization approach that transforms multiple variables into one variable is known as “Derringer’s 

Desirability function”.12–14 Desirability criteria can be set depending on the requirement, i.e., whether 

the observed variables should be maximized or minimized. In the first step, an individual desirability 

function (di,) for each observed variable (y
i
) must be created using the suitable formula, equation (S12) 

and equation (S13). Desirability has values between 0 and 1, where (di,) = 0 indicates an undesirable 

response, and (di,) = 1 represents a completely desirable value. If the observed variables must be 

maximized, di,max is expressed in equation (S12).  

 

di,max = 

[
 
 
 

0 if y
i
 < Li

(
yi-Li

Ui-Li
)

s

if Li ≤ y
i
 ≤ Ui

1 if y
i
 > Ui ]

 
 
 

      (S12) 

where 𝑈𝑖 is the highest value for the response, 𝐿𝑖 is the lowest limit of the value, and s is a power value 

named “weight”, set by the analyst to determine how important it is for 𝑦𝑖 to be close to the maximum. 

The equation for 𝑑𝑖,𝑚𝑖𝑛 when it has to be minimized is expressed in equation (S13). 

 

di,min = 

[
 
 
 

1 if y
i
 < Li

(
Ui-yi

Ui-Li
)

s

if Li ≤ y
i
 ≤ Ui

0 if y
i
 > Ui ]

 
 
 

      (S13) 

 

Once all the variables are transformed into desirability functions, they are combined to reveal the best 

joint responses in Global Desirability (D) using equation (S14): 

D = (d1
r1×d2

r2×……×dn
rn)

1

∑ ri       (14) 

 

where ri is the importance of each variable relative to the other variables. In this case, since all the 

variables are equally important, r equals 1 for each individual desirability. 

 

In this work, all the variables were assumed to be equally important, and two optimization objectives 

are presented. In the first optimization objective, only product quality (crystallinity, purity, and yield) 

was considered to be maximized. The results are tabulated in Table S10. In the second optimization 

objective, both product quality (crystallinity, purity, and yield) and process sustainability (E-factor, 

energy, carbon footprint) were considered for optimization, and the results are given in Table 11. 
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Table S10. Optimization objective 1. The goal of optimization objective 1 is to maximize the product 

quality (crystallinity, purity, and yield) 

Variable Goal Lower limit Upper limit Result di 

ce in range 0.01 0.30 0.04 1.00 

V in range 2.00 20.00 20.00 1.00 

t in range 0.20 1.00 0.90 1.00 

cl in range 0.50 2.00 1.94 1.00 

Crystallinity maximize 0.00 100.00 93.34 0.93 

Purity maximize 0.00 100.00 100.00 1.00 

Yield maximize 0.00 100.00 87.79 0.88 

E-factor in range 6.50 251.80 22.42 1.00 

Energy in range 0.84 28.23 7.85 1.00 

Carbon footprint in range 15.45 476.90 46.13 1.00 

Global desirability         0.98 

 

The desirability function of input parameters was set to one as the goal for these was to be in range, 

which implies having a desirability of one whenever the result is within the defined range. Furthermore, 

the calculation of the global desirability was computed, and the results are shown in Table S11. 

 

Table S11. Optimization objective 2. The goal of optimization objective 2 is to maximize the product 

quality (crystallinity, purity, and yield) and minimize the process sustainability (E-factor, energy, and 

carbon footprint). 

Variable Goal 
Lower 

limit 

Upper 

limit 
result di 

ce in range 0.01 0.30 0.07 1.00 

V in range 2.00 20.00 18.56 1.00 

t in range 0.20 1.00 0.90 1.00 

cl in range 0.50 2.00 1.76 1.00 

Crystallinity maximize 0.00 100.00 84.58 0.85 

Purity maximize 0.00 100.00 99.96 1.00 

Yield maximize 0.00 100.00 88.30 0.88 

E-factor minimize 6.50 251.80 9.34 0.99 

Energy minimize 0.84 28.23 6.47 0.79 

Carbon footprint minimize 15.45 476.90 19.43 0.99 

Global desirability         0.95 

 

 

 

The applied methodologies (both AI Module 1 and AI Module 2) were able to generate a single optimum 

condition. The single solution of the optimum condition for each optimization objective with different 
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methodologies is compared in Table S12. The normalized and true value of the variables at each 

optimization objective, which corresponds with Table S12, are also represented as bar charts, as 

illustrated in Fig. S30. 

 

Table S12. Single optimum solution. True values of all variables for each scenario with different 

approaches 

Variable 

Objective 1 Objective 2 

Target DoE 

AI 

Module 

1 

AI 

Module 

2 

Target DoE 

AI 

Module 

1 

AI 

Module 

2 

Electrolyte (M) in range 0.01 0.04 0.04 in range 0.01 0.07 0.07 

Voltage (V) in range 20.00 20.00 20.00 in range 20.00 18.56 18.54 

Time (h) in range 1.00 0.90 0.91 in range 1.00 0.90 0.93 

Linker (M) in range 2.00 1.94 1.94 in range 2.00 1.76 1.86 

Crystallinity (%) Max 100.00 93.34 94.71 Max 100.00 84.58 85.64 

Purity (%) Max 97.60 100.00 100.00 Max 97.60 99.96 100.00 

Yield (%) Max 77.00 87.79 86.53 Max 77.00 88.30 89.18 

E-factor (kg kg–1) in range 6.71 22.42 21.21 min 6.71 9.34 11.24 

Energy (kWh kg–1) in range 6.14 7.85 7.96 min 6.14 6.47 6.81 

Carbon footprint (kg kg–1) in range 19.15 46.13 52.36 min 19.15 19.43 27.03 
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Fig. S30. Normalized and true values of the variables as results of DoE, AI Module 1 and AI Module 2 

at optimization objective 1 (a-c)), and objective 2 (d-f). 
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5. Structure and morphology characterizations 

 

The XRD patterns and SEM images of the electrochemical products tabulated in Table S4 are presented 

in Fig. S31-S49.   

 

 

Fig. S31. XRD pattern (a) and SEM image (b) of a sample from Entry 5. 

 

 

 

 

Fig. S32. XRD pattern (a) and SEM image (b) of a sample from Entry 8 
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Fig. S33. XRD pattern (a) and SEM image (b) of a sample from Entry 10 

 

 

 

 

Fig. S34. XRD pattern (a) and SEM image (b) of a sample from Entry 11 
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Fig. S35. XRD pattern (a) and SEM image (b) of a sample from Entry 12 

 

 

 

 

Fig. S36. XRD pattern (a) and SEM image (b) of a sample from Entry 14 
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Fig. S37. XRD pattern (a), SEM image (b), TGA (c), and BET measurement (d) of a sample from 

Entry 15 

 

 

 

Fig. S38. XRD pattern (a) and SEM image (b) of a sample from Entry 16 
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Fig. S39. XRD pattern (a) and SEM image (b) of a sample from Entry 17 

 

 

 

Fig. S40. XRD pattern (a) and SEM image (b) of a sample from Entry 18 
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Fig. S41. XRD pattern (a) and SEM image (b) of a sample from Entry 19 

 

 

 

Fig. S42. XRD pattern (a) and SEM image (b) of a sample from Entry 20 
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Fig. S43. XRD pattern (a) and SEM image (b) of a sample from Entry 21 

 

 

 

Fig. S44. XRD pattern (a) and SEM image (b) of a sample from Entry 22 
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Fig. S45. XRD pattern (a) and SEM image (b) of a sample from Entry 23 

 

 

 

Fig. S46. XRD pattern (a) and SEM image (b) of a sample from Entry 24 
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Fig. S47. XRD pattern (a) and SEM image (b) of a sample from Entry 25 

 

 

 

 

Fig. S48. XRD pattern (a) and SEM image (b) of a sample from Entry 26 
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Fig. S49. XRD pattern (a) and SEM image (b) of a sample from Entry 27. 
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