Supplementary Information (37 pp) for

Dipolar Cycloadditions of HMF- based nitrones: stepwise and multicomponent reactions, stereochemical outcome and structural scope

Lianjie Wang, Charlie Verrier, Mohammed Ahmar, Yves Queneau*

¹Université de Lyon, Institut de Chimie et Biochimie Moléculaires et Supramoléculaires, ICBMS, UMR 5246 CNRS, Université Lyon 1, INSA Lyon, CPE Lyon, Bâtiment Edgar Lederer, 1 rue Victor Grignard, 69622 Villeurbanne Cedex, France

Table of Contents

1. General methods	2
2. Synthetic procedures	2
2.1. Procedure for the stepwise approach	2
2.1.1. Preparation of the nitrone	2
2.1.2. Cycloadditions	3
2.2. Procedure for the multicomponent approach	3
3. Figures supporting the study if the stereochemical outcome of the reaction	4
4. Characterization of Products	8
5. NMR Spectra	17

1. General methods

The reagents were bought from Aldrich and used directly without purification. HMF was purchased from Carbosynth, GMF was prepared as previously reported from isomaltulose which was a gift from Cargill. The reactions were monitored by TLC, on Silica Gel 60 F254 (Merck), and detection was carried out with UV light (254 nm) and 1% potassium permanganate solution in water containing 1% NaHCO₃. Silica gel (Kieselgel 60, 70-230 mesh ASTM, Merck) was employed for column chromatography. The ¹H NMR (300 MHz, 400 or 500 MHz) and ¹³C NMR (75 MHz, 100 MHz or 125 MHz) spectra were recorded with Brucker ALS300, DRX300 and DRX400 spectrometers. Chemical shifts are given in ppm. Coupling constants are expressed in Hertz and splitting pattern abbreviations are: s, singlet; d, doublet; t, triplet; q, quartet; m, multiplet; br, broad. High resolution mass spectra were obtained using an electro spray technique in positive mode, with a Thermo-Finnigan MAT 95 XL spectrometer.

2. Synthetic procedures

2.1. Procedure for the stepwise approach

2.1.1. Preparation of the nitrone

In a dry round bottom flask were placed HMF (1 equiv.), *N*-methyl hydroxylamine hydrochloride (1.2 equiv.), NaHCO₃ (1.5 equiv.), anhydrous MgSO₄ (2 equiv.), and. anhydrous isopropanol was added ([HMF] = 0.2M), and the solution was stirred at room temperature for 16h. The reaction mixture was then filtered on celite, using isopropanol to rinse the flask and the celite. The solvent was removed under reduced pressure to give the pure nitrone **1a** as a yellowish powder.

The same procedure was applied to HMF and *N*-benzyl and *N*-tert-butyl hydroxylamines, and to DBDPS-HMF and *N*-methyl hydroxylamine leaing to nitrones **1b**, **1c** and **1d**, respectively.

In the case of GMF, EtOH was used as the solvent, leading to 1e.

2.1.2. Cycloadditions

In a dry MW tube were placed nitrone (1mmol), dipolarophile (2 equiv.), 4 Å molecular sieves (5 pellets), *i*-PrOH (0.5 mL). The tube was sealed and placed at 80°C for 16h. The crude mixture was diluted in EtOAc and filtered through a short column of silica, rinsing with EtOAc. The filtrate was concentrated under reduced pressure, and the crude mixture was then subjected to flash chromatography yielding the pure HMF-derived isoxazolidine as a mixture of isomers.

2.2. Procedure for the multicomponent approach

In a dry MW tube were placed HMF (1 mmol), *N*-methylhydroxylamine hydrochloride (1.1 mmol), 4 Å molecular sieves (5 pellets), NaHCO₃ (1.2 equiv.), *i*-PrOH (0.5 mL) and the alkene (dipolarophile, 2 equiv.). The tube was sealed and placed at 80°C for 16h. The crude mixture was diluted in EtOAc and filtered through a pad of silica, rinsing with EtOAc. The filtrate was concentrated under reduced pressure, internal standard was added (1,3,5-trimethoxybenzene, 0.33 mmol, 0.33 equiv) and crude NMR yield was measured. The crude mixture was then subjected to flash chromatography yielding the pure HMF-derived isoxazolidine as a mixture of isomers.

3. Figures supporting the study if the stereochemical outcome of the reaction

Figure S1. ¹H NMR spectra of the crude mixture 2/2' in CDCl₃ at room temperature. Most signals are broad due to the presence of rotamers

Slow equilibrium beetween two rotamers observed by NMR at 25 °C

Figure S2. Slow equilibrium between 2 and 2' in CDCl₃ at room temperature.

NMR analysis in DMSO at 90°C (fig. S3) shows well defined signals and coupling constant could be measured. Figure 1b shows the signals of each pair of regio-isomers, that could be confirmed by 2D NMR analysis.

Figure S3. ¹H NMR spectra of the crude mixture in DMSO at 90°C. Attribution of signals of **2** and **2**'.

Figure S4. Specific signals of **2** and **2'** in ¹H NMR spectrum used for estimating the selectivity by integration measurements

Figure S5. ¹³C DEPT NMR spectrum of **2** and **2'** showing the presence of four isomers (C₃ signals)

Figure S6. 2D NOESY spectrum showing the NOE effect between H_3 and H_5 on both stereoisomers of **2** showing a cis relationship between H_3 and H_5 for the major isomer

Figure S7. Structure of *cis* and *trans* 2 with 2D NOESY indications on the relationship between H_3 and H_5

4. Characterization of Products

(Z)-1-(5-(Hydroxymethyl)furan-2-yl)-N-methylmethanimine oxide 1a

HO
$$6 1 0 + N - Me$$

¹H NMR (400 MHz, CDCl₃) δ 7.65 (d, J = 3.4 Hz, 1H, H₃), 7.56 – 7.40 (m, 1H, H₇), 6.49 – 6.30 (m, 1H, H₄), 4.62 (s, 2H, H₆), 3.81 (s, 3H, N-CH₃). ¹³C NMR (100 MHz, CDCl₃) δ 155.7 (C₅), 146.5 (C₂), 126.5 (C₇), 116.5 (C₃), 110.4 (C₄), 57.6 (C₆), 52.9 (CH₃). HRMS (ESI) m/z: Calcd for [M+Na]⁺ C₇H₉NNaO₃ 178.0475; Found 178.0472.

(Z)-N-Benzyl-1-(5-(hydroxymethyl)furan-2-yl)methanimine oxide 1b

¹H NMR (300 MHz, DMSO-*d*₆) δ 8.22 (s, 1H, H₇), 7.52 – 7.43 (m, 3H, H₃ & Ph), 7.42 – 7.32 (m, 3H, Ph), 6.44 (d, *J* = 3.3 Hz, 1H, H₄), 5.05 (s, 2H, H₈), 4.43 (s, 2H, H₆). ¹³C NMR (75 MHz, DMSO-*d*₆) δ 156.7 (C₅), 146.3 (C₂), 134.6, 129.0, 128.4, 128.3 (C_{Ph}), 124.4 (C₇), 114.4 (C₃), 109.1 (C₄), 68.2 (C₈), 55.7 (C₆). HRMS (ESI) m/z: Calcd for [M+H]⁺ C₁₃H₁₄NO₃ 232.0968; Found 232.0966.

(Z)-N-tert-Butyl-1-(5-(hydroxymethyl)furan-2-yl)methanimine oxide 1c

¹H NMR (300 MHz, CDCl₃) δ 7.70 (s, 1H, H₇), 7.67 (d, *J* = 3.4 Hz, 1H, H₃), 6.41 (dd, *J* = 3.4, 0.6 Hz, 1H, H₄), 4.62 (s, 2H, H₆), 1.57 (s, 9H, C(CH₃)₃). ¹³C NMR (75 MHz, CDCl₃) δ 155.2 (C₅), 147.4 (C₂), 121.6 (C₇), 115.8 (C₃), 110.2 (C₄), 69.8 (C₈), 57.5 (C₆), 28.1 (C(<u>C</u>H₃)₃). HRMS (ESI) m/z: Calcd for [M+Na]⁺ C₁₀H₁₅NNaO₃ 220.0944; Found 220.0940.

(Z)-1-(5-(((tert-Butyldiphenylsilyl)oxy)methyl)furan-2-yl)-N-methylmethanimine oxide 1d

¹H NMR (300 MHz, CDCl₃) δ 7.76 – 7.62 (m, 5H, H₃&H_{Ph}), 7.51 – 7.32 (m, 7H, H₇&H_{Ph}), 6.43 – 6.23 (m, 1H, H₄), 4.66 (s, 2H, H₆), 3.81 (s, 3H, N-CH₃), 1.06 (s, 9H, C(CH₃)₃). ¹³C NMR (75 MHz, CDCl₃)

δ 155.5 (C₅), 146.2 (C₂), 135.7, 133.2, 129.9, 127.8 (C_{Ph}), 126.3 (C₇), 116.3 (C₃), 110.0 (C₄), 59.0 (C₆), 52.7 (N-CH₃), 26.8 (C(<u>C</u>H₃)₃), 19.3 (<u>C</u>(CH₃)₃). HRMS (ESI) m/z: Calcd for [M+H]⁺ C₂₃H₂₈NO₃Si 394.1833; Found 394.1834.

(Z)-N-Methyl-1-(5-(α-D-glucopyranosyloxymethyl)-furan-2-yl)methanimine oxide 1e

¹H NMR (300 MHz, MeOD) δ 7.99 (s, 1H, H₇), 7.65 (d, *J* = 3.5 Hz, 1H, H₃), 6.67 (d, *J* = 3.5 Hz, 1H, H₄), 4.93 (d, *J* = 3.7 Hz, 1H, H₁), 4.73 (d, *J* = 13.2 Hz, 1H, H_{6a}), 4.63 (d, *J* = 13.2 Hz, 1H, H_{6b}), 3.84 (s, 3H, N-CH₃), 3.80 (dd, *J* = 11.8, 2.4 Hz, 1H, H₆), 3.75 – 3.57 (m, 3H, H₆), H₃, H₅), 3.44 (dd, *J* = 9.8, 3.7 Hz, 1H, H₂), 3.39 – 3.29 (m, 1H, H₄). ¹³C NMR (75 MHz, MeOD) δ 154.0 (C₅), 146.4 (C₂), 128.7 (C₇), 117.1 (C₃), 111.7 (C₄), 98.2 (C₁), 73.5 (C₃), 72.6 (C₅), 72.0 (C₂), 70.3 (C₄), 61.1 (C₆), 60.7 (C₆), 51.1 (CH₃). HRMS (ESI) m/z: Calcd for [M+H]⁺ C₁₃H₂₀NO₈ 318.1183; Found 318.1178.

Methyl 3-(4 and 5-(hydroxymethyl)furan-2-yl)-2-methylisoxazolidine-5-carboxylate 2+2'

Mixture of isomers. HRMS (ESI) m/z: Calcd for [M+H]⁺ C₁₁H₁₆NO₅ 242.1023; Found 242.1030.

See section 3 for details in NMR of various streoisomers.

Data for the major isomer cis-2 (Fig S3): Methyl *cis*-3-(5-(hydroxymethyl)furan-2-yl)-2-methylisoxazolidine-5-carboxylate 2

¹H NMR (500 MHz, DMSO- d_6 , 90°C) δ 6.31 (d, J = 3.1 Hz) and 6.21 (d, J = 3.1 Hz, 2H, H₃·&H₄·), 4.94 – 4.76 (m, 1H, OH), 4.71 (dd, J = 9.1, 5.9 Hz) and 4.65 (dd, J = 8.9, 5.9 Hz, H₅), 4.39 (d, J = 5.0 Hz, 2H, CH₂OH), 3.99 (t, J = 7.4 Hz), and 3.78 (1H, H₃), 3.72 (s, 3H, CO₂CH₃), 2.88 (ddd, J = 12.5, 9.1, 7.6 Hz) and 2.78 (ddd, J = 12.6, 8.9, 7.0 Hz) and 2.75 – 2.67 (m,H₄), 2.60 (s, 3H, N-CH₃). ¹³C NMR (125 MHz, DMSO-*d*₆) δ 170.8 (<u>C</u>=O), 155.2 (C₅·), 150.1 (C₂·), 108.1 (C₃·), 106.9 (C₄·), 74.5 (C₅), 64.3 and 63.4 (C₃), 55.5 (<u>C</u>H₂OH), 51.4 (CO₂<u>C</u>H₃), 42.9 (N-<u>C</u>H₃), 36.8 (C₄).

Methyl 2-benzyl-3-(4 and 5-(hydroxymethyl)furan-2-yl)isoxazolidine-5-carboxylate 3

Mixture of isomers. HRMS (ESI) m/z: Calcd for [M+H]⁺ C₁₇H₂₀NO₅ 318.1336; found 318.1337.

Signals extracted from the spectrum of the mixture for the major isomer: Methyl 2-benzyl-3-(5-(hydroxymethyl)furan-2-yl)isoxazolidine-5-carboxylate **3**

¹H NMR (500 MHz, DMSO- d_6 , 90°C) δ 7.43 – 7.13 (m, 5H, H_{Ph}), 6.33 (d, J = 3.1 Hz , H₃·) & 6.21 (d, J = 3.2 Hz, H₄·), 4.77 (dd, J = 9.1, 5.8 Hz), 4.69 (dd, J = 8.5, 6.4 Hz) (H₅), 4.46 – 4.35 (m, 2H, CH₂OH), 4.28 (t, J = 6.8 Hz, H₃), 3.97 (s, 2H, H₆), 3.71 (s, 3H, CO₂CH₃), 2.87 – 2.69 (m, 2H, H₄). ¹³C NMR (125 MHz, DMSO- d_6) δ 170.9 (C=O), 155.1 (C₅·), 150.5 (C₂·), 137.3, 128.1, 127.4, 126.3 (C_{Ph}), 108.0 (C₃·), 106.9 (C₄·), 74.8, 73.9 (C₅), 65.4, 64.2, 62.1, 61.6 (C₃), 59.5, 58.9, 58.8, 58.5 (C₆), 55.5 (CH₂OH), 51.4 (CO₂CH₃), 36.6 (C₄).

Methyl 2-(tert-butyl)-3-(4 and 5-(hydroxymethyl)furan-2-yl)isoxazolidine-5-carboxylate 4

Mixture of isomers. HRMS (ESI) m/z: Calcd for [M+H]⁺ C₁₄H₂₂NO₅ 284.1492; found 284.1496.

Signals extracted from the spectrum of the mixture for the major isomer: Methyl 2-(tertbutyl)-3-(5-(hydroxymethyl)furan-2-yl)isoxazolidine-5-carboxylate **4**

¹H NMR (500 MHz, DMSO- d_6 , 90°C) δ 6.23 (d, J = 3.1 Hz, 1H, H₃·), 6.17 (d, J = 3.2 Hz, 1H, H₄·), 4.67 (dd, J = 8.5, 5.2 Hz) & 4.62 – 4.52 (m) (1H, H₅), 4.44 – 4.29 (m, 3H, CH₂OH & H₃), 3.72 (s, 3H, CO₂CH₃), 2.86 – 2.72 (m), 2.62 – 2.46 (m) (2H, H₄), 1.08 (s, 9H, C(CH₃)₃). ¹³C NMR (125 MHz, DMSO- d_6) δ 169.9 (CO₂CH₃), 154.4 (C₅·), 153.6 (C₂·), 106.8, 106.7 (C₃·&C₄·), 74.0 (C₅), 66.3 (C₃), 57.9 (C(CH₃)₃), 55.5 (CH₂OH), 51.3 (CO₂CH₃), 39.2 (C₄), 25.3 (C(CH₃)₃).

Methyl 3-(4-(((tert-butyldiphenylsilyl)oxy)methyl)furan-2-yl)-2-methylisoxazolidine-4carboxylate **5**

This compound could be isolated from the mixture of isomers by chromatography on silica gel. ¹H NMR (400 MHz, DMSO- d_6 , 90°C) δ 7.72 – 7.58 (m, 4H, H_{Ph}), 7.51 – 7.34 (m, 6H, H_{Ph}), 6.38 (d, J = 3.2 Hz, 1H, H₃·), 6.21 (d, J = 3.2 Hz, 1H, H₄·), 4.70 (s, 2H, H₆·), 4.13 (d, J = 6.7 Hz, 2H, H₅), 3.98 (d, J = 7.1 Hz, 1H, H₃), 3.72 – 3.61 (m, 4H, H₄&CO₂CH₃), 2.57 (s, 3H, N-CH₃), 1.04 (s, 9H, C(CH₃)₃). ¹³C NMR (100 MHz, DMSO- d_6) δ 172.3 (C=O), 154.1 (C₅·), 150.8 (C₂·), 135.5, 133.7, 130.2, 128.2 (C_{Ph}), 109.7 (C₃·), 109.0 (C₄·), 68.2 (C₅), 59.0 (C₆·), 52.8 (C₃), 52.5 (C₄), 42.9 (N-CH₃), 27.1 (C(CH₃)₃), 19.3 (C(CH₃)₃). HRMS (ESI) m/z: Calcd for [M+H]⁺ C₂₇H₃₄NO₅Si 480.2201; Found 480.2200.

Butyl 3-(4 and 5-(hydroxymethyl)furan-2-yl)-2-methylisoxazolidine-5-carboxylate 6

Mixture of isomers. HRMS (ESI) m/z: Calcd for [M+Na]⁺ C₁₄H₂₁NNaO₅ 306.1312; Found 306.1308.

Signals extracted from the spectrum of the mixture for the major isomer: Butyl 3-(5-(hydroxymethyl)furan-2-yl)-2-methylisoxazolidine-5-carboxylate **6**

¹H NMR (500 MHz, DMSO- d_6 , 90°C) δ 6.34, 6.29, 6.24, 6.22, 6.20, 6.16, and 6.13 (6d, J = 3.2 Hz, 2H, H₃, & H₄), 4.66 & 4.60 (dd, J = 8.9, 5.8 Hz, 1H, H₅), 4.42 – 4.29 (4s, 2H, CH₂OH), 4.20 – 4.05 (m, 2H, H₆), 3.98 (t, J = 7.3 Hz, 1H, H₃), 2.87 (ddd, J = 12.5, 9.1, 7.7 Hz), 2.77 (ddd, J = 12.7, 9.0, 7.0 Hz) and 2.66 (dddd, J = 12.5, 9.4, 7.9, 5.9 Hz, 2H, H₄), 2.61 – 2.49 (4s, 3H, N-CH₃), 1.64 – 1.49 (m, 2H, H₇), 1.41 – 1.26 (m, 2H, CO₂(CH₂)₂CH₂CH₃), 0.93 – 0.75 (m, 3H, CO₂(CH₂)₃CH₃). ¹³C NMR (125 MHz, DMSO- d_6) δ 171.5, 171.2, 170.9, 169.8 (C=O), 155.6, 155.23, 155.21, 154.9 (C₅), 150.4, 150.3, 149.52, 149.47 (C₂), 109.2, 108.8, 108.50, 108.47 (C₃), 107.5, 107.40, 107.39, 107.3 (C₄), 75.0, 74.1 (C₅), 64.5 (C₆), 63.7 (C₃), 55.7 (CH₂OH), 43.3, 43.0, 42.7, 42.3 (N-CH₃), 37.0 (C₄), 30.0 (C₇), 18.4 (CO₂(CH₂)₂CH₂CH₃), 13.1 (CO₂(CH₂)₃CH₃).

Ethyl 3-(5-(hydroxymethyl)furan-2-yl)-2,5-dimethylisoxazolidine-5-carboxylate 7

¹H NMR (500 MHz, DMSO- d_6 , 90°C) δ 6.30 (d, J = 3.2 Hz) and 6.26 (d, J = 3.1 Hz) and 6.21 (t, J = 3.3 Hz, 2H, H₃·&H₄·), 4.91 – 4.56 (m, 1H, OH), 4.38 (s, 2H, H₆·), 4.23 – 4.08 (m, 2H, CO₂CH₂CH₃), 3.94 (t, J = 7.9 Hz) and 3.73 (t, J = 8.5 Hz, 1H, H₃), 2.57 (s, 3H, N-CH₃), 3.03 (dd, J = 12.6, 9.0 Hz, 3H) and 2.43 (td, J = 12.4, 8.3 Hz, 2H, H₄), 1.44 (s, 3H, H₆), 1.24 (dt, J = 9.6, 7.0 Hz, 3H, CO₂CH₂CH₃). ¹³C NMR (125 MHz, DMSO- d_6) δ 173.1 (C=O), 155.2 (C₅·), 149.6 (C₂·), 108.2 (C₃·), 106.9 (C₄·), 80.4 (C₅), 64.8 (C₃), 60.0 (CO₂CH₂CH₃), 55.4 (C₆·), 43.8 (C₄), 43.0 (N-CH₃), 23.6 (C₆), 13.4 (CO₂CH₂CH₃). HRMS (ESI) m/z: Calcd for [M+H]⁺ C₁₃H₂₀NO₅ 270.1336; Found 270.1333.

3-(5-(Hydroxymethyl)furan-2-yl)-2-methylisoxazolidine-5-carbonitrile 8

This compound could be isolated from the mixture of isomers by chromatography on silica gel. ¹H NMR (500 MHz, DMSO- d_6 , 90°C) δ 6.39 (d, J = 3.2 Hz, 1H, H₃·), 6.25 (d, J = 3.2 Hz, 1H, H₄·), 5.19 (dd, J = 9.2, 4.2 Hz, 1H, H₅), 4.89 (brs, 1H), 4.41 (s, 2H, CH₂OH), 3.77 (t, J = 8.2 Hz, 1H, H₃), 3.04 (ddd, J = 12.8, 9.2, 8.4 Hz, 1H, H₄, a), 2.70 (ddd, J = 12.6, 8.0, 4.2 Hz, 1H, H₄, b), 2.66 (s, 3H, N-CH₃). ¹³C NMR (125 MHz, DMSO- d_6) δ 155.6 (C₅·), 148.5 (C₂·), 119.3 (CN), 108.9 (C₃·), 107.1 (C₄·), 63.9 (C₃), 63.3 (C₅), 55.4 (CH₂OH), 42.3 (N-CH₃), 38.8 (C₄). HRMS (ESI) m/z: Calcd for [M+Na]⁺ C₁₀H₁₂N₂NaO₃ 231.0740; found 231.0748.

3-(5-(Hydroxymethyl)furan-2-yl)-2-methylisoxazolidine-5-carboxamide 9

This compound was able to isolate from the mixture of isomers by chromatography on silica gel. ¹H NMR (500 MHz, DMSO- d_6 , 90°C) δ 6.87 (brs, 2H), 6.28 (d, J = 3.1 Hz, 1H, H₃·), 6.20 (d, J = 3.2 Hz, 1H, H₄·), 4.44 (dd, J = 9.4, 5.7 Hz, 1H, H₅), 4.38 (s, 2H, CH₂OH), 3.73 (t, J = 8.1 Hz, 1H, H₃), 2.86 (ddd, J = 12.5, 9.3, 7.7 Hz, 1H, H₄.a), 2.64 (s, 3H, N-CH₃), 2.58 (ddd, J = 12.5, 8.6, 5.7 Hz, 1H, H₄.b). ¹³C NMR (125 MHz, DMSO- d_6) δ 173.6 (CONH₂), 155.2 (C₅·), 149.8 (C₂·), 108.2 (C₃·), 106.9 (C₄·),

74.9 (C₅), 64.5 (C₃), 55.4 (<u>C</u>H₂OH), 42.8 (N-<u>C</u>H₃), 37.3 (C₄). HRMS (ESI) m/z: Calcd for $[M+H]^+$ C₁₀H₁₅N₂O₄ 227.1026; found 227.1030.

3-(4 and 5-(Hydroxymethyl)furan-2-yl)-N,N,2-trimethylisoxazolidine-5-carboxamide **10** Mixture of isomers. HRMS (ESI) m/z: Calcd for [M+H]⁺ C₁₂H₁₉N₂O₄ 255.1339; found 255.1339.

Signals extracted from the spectrum of the mixture for the major isomer: 3-(5-(Hydroxymethyl)furan-2-yl)-N,N,2-trimethylisoxazolidine-5-carboxamide **10**

¹H NMR (500 MHz, DMSO- d_6 , 90°C) δ 6.31 (d, J = 3.2 Hz, 1H, H₃·), 6.21 (d, J = 3.1 Hz, 1H, H₄·), 4.89 (dd, J = 8.5, 5.6 Hz, 1H, H₅), 4.41 (s, 2H, CH₂OH), 3.90 (t, J = 7.6 Hz, 1H, H₃), 3.10 – 2.81 (m, 7H, H_{4,a} & CON(CH₃)₂), 2.63 – 2.53 (m, 4H, H_{4, b} & N-CH₃). ¹³C NMR (125 MHz, DMSO- d_6) δ 168.2 (CONMe₂), 155.1 (C₅·), 150.6 (C₂·), 107.9 (C₃·), 106.9 (C₄·), 73.8 (C₅), 64.3 (C₃), 55.6 (CH₂OH), 43.0 (N-CH₃), 35.6 (C₄ & CON<u>Me₂</u>).

Diethyl (3-(4 and 5-(hydroxymethyl)furan-2-yl)-2-methylisoxazolidin-5-yl)phosphonate **11** Mixture of isomers. HRMS (ESI) m/z: Calcd for [M+Na]⁺ C₁₃H₂₂NNaO₆P 342.1077; found 342.1081.

Signals extracted from the spectrum of the mixture for the major isomer: Diethyl (3-(5-(hydroxymethyl)furan-2-yl)-2-methylisoxazolidin-5-yl)phosphonate **11**

¹H NMR (500 MHz, DMSO- d_6 , 90°C) δ 6.39 (d, J = 3.2 Hz) & 6.32 (t, J = 3.6 Hz) & 6.24 – 6.19 (m) (H₃, & H₄), 4.45 (dd, J = 8.6, 1.7 Hz) 4.33 (td, J = 7.2, 3.7 Hz) (H₅), 4.40 (s, 2H, CH₂OH), 4.17 – 4.06 (m, 4H, PO(OCH₂CH₃)₂), 4.00 (d, J = 12.8 Hz), 3.97 – 3.91 (m), 2.78 – 2.64 (m, H₃&H₄), 2.58 (s, 3H, N-CH₃), 1.33 – 1.25 (m) & 1.26 – 1.14 (m) (PO(OCH₂CH₃)₂). ¹³C NMR (125 MHz, DMSO- d_6) δ 155.4 , (C₅), 149.8 (C₂), 108.2 (C₃), 106.9 (C₄), 71.8, 70.5 (C₅), 65.63 , 63.92 (C₃) 62.0 – 61.1 (PO(OCH₂CH₃)₂), 55.5 (CH₂OH), 43.3 (N-CH₃), 34.9 (C₄), 15.7 (ddd, J = 21.8, 5.4, 2.8 Hz, PO(OCH₂CH₃)₂).

3-(5-(Hydroxymethyl)furan-2-yl)-2-methylhexahydrobenzo[d]isoxazol-4(2H)-one 12

¹H NMR (500 MHz, DMSO- d_6 , 90°C) δ 6.30 (d, J = 3.1 Hz, 1H, H₃·), 6.21 (d, J = 3.1 Hz, 1H, H₄·), 4.57 (dt, J = 7.2, 4.7 Hz, 1H, H_{7a}), 4.40 (s, 2H, CH₂OH), 4.10 (d, J = 5.6 Hz, 1H, H₃), 3.49 – 3.42 (m, 1H, H_{3a}), 2.58 (s, 3H, N-CH₃), 2.46 (dt, J = 16.0, 8.0 Hz, 1H, H_{5a}), 2.35 (dt, J = 16.1, 5.4 Hz, 1H, H_{5b}), 2.08 – 1.96 (m, 1H, H_{7a}), 1.91 – 1.81 (m, 2H, H₆), 1.79 – 1.72 (m, 1H, H_{7b}). ¹³C NMR (125 MHz, DMSO- d_6) δ 207.8 (C=O), 155.1 (C₅·), 150.8 (C₂·), 108.1 (C₃·), 106.9 (C₄·), 76.7 (C_{7a}), 65.7 (C₃), 58.6 (C_{3a}), 55.5 (CH₂OH), 43.1 (N-CH₃), 39.0 (C₅), 25.4 (C₇), 18.6 (C₆). HRMS (ESI) m/z: Calcd for [M+H]⁺ C₁₃H₁₈NO₄ 252.1230; found 252.1230.

3-(5-(Hydroxymethyl)furan-2-yl)-2-methylhexahydro-4H-cyclopenta[d]isoxazol-4-one 13

¹H NMR (500 MHz, DMSO- d_6 , 90°C) δ 6.34 (d, J = 3.1 Hz, 1H, H₃·), 6.23 (d, J = 3.1 Hz, 1H, H₄·), 4.85 (t, J = 5.7 Hz, 1H, H_{6a}), 4.41 (s, 2H, CH₂OH), 3.72 (d, J = 5.2 Hz, 1H, H₃), 3.37 – 3.27 (m, 1H, H_{3a}), 2.53 (s, 3H, N-CH₃), 2.51 – 2.45 (m, 1H, H_{5,a}), 2.30 (dddd, J = 18.3, 9.5, 3.2, 1.5 Hz, 1H, H_{5,b}), 2.23 – 2.13 (m, 1H, H_{6,a}), 2.09 – 2.01 (m, 1H, H_{6,b}). ¹³C NMR (125 MHz, DMSO- d_6) δ 216.0 (C=O), 155.5 (C₅·), 149.6 (C₂·), 108.7 (C₃·), 107.0 (C₄·), 79.4 (C_{6a}), 68.4 (C₃), 59.8 (C_{3a}), 55.5 (CH₂OH), 42.1 (N-CH₃), 34.7 (C₅), 24.0 (C₆). HRMS (ESI) m/z: Calcd for [M+H]⁺ C₁₂H₁₆NO₄ 238.1074; found 238.1076.

Methyl 2-methyl-3-(4 and 5-(α -D-glucopyranosyloxymethyl)-furan-2-yl)isoxazolidine-5-carboxylate 14

Mixture of isomers. HRMS (ESI) m/z: Calcd for $[M+H]^+ C_{17}H_{26}NO_{10}$ 404.1551; found 404.1560.

Signals extracted from the spectrum of the mixture for the major isomer: Methyl 2-methyl-3- $(5-(\alpha-D-glucopyranosyloxymethyl)-furan-2-yl)$ isoxazolidine-5-carboxylate **14**

¹H NMR (500 MHz, DMSO- d_6 , 90°C) δ 6.41 – 6.27 (m, 2H, H₃ & H₄), 4.80 – 4.76 (m, 1H, H₁·), 4.72 (dd, J = 9.1, 5.9 Hz) and 4.66 (dd, J = 8.9, 5.9 Hz) (H₅··), 4.53 – 4.43 (m, 2H, H₆), 4.08 – 3.99 (m, 1H, H₃··), 3.73 (s, 3H, CO₂C<u>H₃</u>), δ 3.68 – 3.63 (m), 3.62 – 3.57 (m), 3.56 – 3.50 (m), 3.49 – 3.43 (m) (4H, H₃·, H₅·, H₆·), 3.27 (dd, J = 10.2, 4.2 Hz, H₂·), 3.16 (t, J = 9.3 Hz, 1H, H₄·), 2.83 – 2.69 (m, 1H, H₄··), 2.56 (s, 3H, N-CH₃). ¹³C NMR (125 MHz, DMSO- d_6) δ 170.8 (<u>C</u>=O), 151.1 (C₂ & C₅), 109.5, 107.8 (C₃ & C₄), 97.5 (C₁·), 74.5 (C₅··), 73.1, 72.5, 71.7 (C₃· & C₂· & C₅·), 70.3 (C₄·), 67.2 , 66.3 (C₃··), 60.9 (C₆·), 60.28 (C₆), 51.4 (CO₂<u>C</u>H₃), 42.1 (N-CH₃), 36.7 (C₄··).

N,N,2-Trimethyl-3-(4 and 5-(α -D-glucopyranosyloxymethyl)-furan-2-yl)isoxazolidine-5-carboxamide **15**

Mixture of isomers. HRMS (ESI) m/z: Calcd for [M+H]⁺ C₁₈H₂₉N₂O₉ 417.1868; found, 417.1864.

Signals extracted from the spectrum of the mixture for the major isomer: N,N,2-Trimethyl-3-(5-(α -D-glucopyranosyloxymethyl)-furan-2-yl)isoxazolidine-5-carboxamide **15**

¹H NMR (500 MHz, DMSO- d_6 , 90°C) δ 6.48 – 6.15 (m, 2H, H₃&H₄), 4.91 (dd, J = 8.5, 5.9 Hz, 1H, H₅..), 4.80 (t, J = 4.4 Hz, 1H, H₁.), 4.59 (d, J = 13.1 Hz, 1H, H_{6,a}), 4.48 (dd, J = 13.1, 1.6 Hz, 1H, H_{6,b}), 4.02 – 3.89 (m, 1H, H₃..), 3.67 (dd, J = 11.4, 2.6 Hz, 1H, H₆., a), 3.57 – 3.41 (m, 3H, H₆., b, H₃., H₅.), 3.29 (dd, J = 9.6, 3.7 Hz, 1H, H₂.), 3.18 (t, J = 9.2 Hz, 1H, H₄.), 3.00 – 2.83 (m, 6H, CON(C<u>H₃</u>)₂), 2.59 (s, 4H, N-C<u>H₃</u>, H₄..). ¹³C NMR (125 MHz, DMSO- d_6) δ 170.7, 169.4, 169.1, 168.9 (<u>C</u>ON(CH₃)₂), 152.6, 151.9 (C₂, C₅), 110.4, 108.9 (C₃, C₄), 98.5 (C₁.), 74.6 (C₅..), 74.5, 74.0, 73.3, 72.6, 71.2 (C₃. & C₅. & C₂. & C₄.), 68.9, 65.0 (C₃...), 61.8 (C₆.), 61.3 (C₆), 44.0 (N-<u>C</u>H₃), 36.4 (CON(<u>C</u>H₃)₂) & C₄..).

2-Methyl-3-(4 and 5-(α-D-glucopyranosyloxymethyl)-furan-2-yl)isoxazolidine-5carboxamide **16**

Mixture of isomers. HRMS (ESI) m/z: Calcd for [M+H]⁺ C₁₆H₂₅N₂O₉ 389.1555; found 389.1542.

 $15\ /\ 37$

Signals extracted from the spectrum of the mixture for the major isomer: 2-Methyl-3-(5-(α -D-glucopyranosyloxymethyl)-furan-2-yl)isoxazolidine-5-carboxamide **16**

This compound was able to isolate from the mixture of isomers by chromatography on silica gel. ¹H NMR (400 MHz, DMSO- d_6 , 90°C) δ 6.39 – 6.36 (m) & 6.35 (d, J = 3.2 Hz) (2H, H₃ & H₄), 4.77 (dd, J = 5.3, 3.6 Hz, 1H, H₁·), 4.57 (d, J = 13.2 Hz, 1H, H_{6,a}), 4.50 – 4.37 (m, 2H, , H_{6,b} & H₅··), 4.22 – 4.11 (m, 1H) (m, 1H, H₃··), 3.68 – 3.59 (m, 1H, H₆·, a), 3.58 – 3.37 (m, 3H, H₆·, b, H₃·, H₅·), 3.27 (dd, J = 9.7, 3.7 Hz, 1H, H₂·), 3.21 – 3.10 (m, 1H, H₄··), 2.70 (dd, J = 9.0, 6.9 Hz, 1H, H₄··, a), 2.61 (s, 3H, N-CH₃), 2.59 – 2.53 (m, 1H, H₄··, b). ¹³C NMR (100 MHz, DMSO- d_6) δ 173.2 (CONH₂), 152.2, 152.0 (C₂, C₅), 110.4, 109.1 (C₃, C₄), 100.0, 98.5 (C₁·), 76.6 (C₅··), 73.9, 73.4, 72.5, 71.2 (C₃·& C₅·& C₂·& C₄·), 69.3 (C₃··), 61.7 (C₆·), 61.2 (C₆), 43.6 (N-<u>C</u>H₃), 38.0 (C₄··).

5. NMR Spectra of isoxazolidine products

(Z)-1-(5-(Hydroxymethyl)furan-2-yl)-N-methylmethanimine oxide 1a

 $(Z)-1-(5-(((tert-Butyldiphenylsilyl) oxy) methyl) furan-2-yl)-N-methylmethanimine oxide \ {\bf 1d}$

$(Z)-N-Methyl-1-(5-(\alpha-D-glucopyranosyloxymethyl)-furan-2-yl) methanimine oxide 1e$

Methyl 3-(4 and 5-(hydroxymethyl)furan-2-yl)-2-methylisoxazolidine-5-carboxylate **2+2**' See section 3

Methyl 2-benzyl-3-(4 and 5-(hydroxymethyl)furan-2-yl)isoxazolidine-5-carboxylate 3

Methyl 2-(tert-butyl)-3-(4 and 5-(hydroxymethyl)furan-2-yl)isoxazolidine-5-carboxylate 4

Methyl 3-(5-(((tert-butyldiphenylsilyl)oxy)methyl)furan-2-yl)-2-methylisoxazolidine-4carboxylate **5**

Butyl 3-(4 and 5-(hydroxymethyl)furan-2-yl)-2-methylisoxazolidine-5-carboxylate 6

Ethyl 3-(5-(hydroxymethyl)furan-2-yl)-2,5-dimethylisoxazolidine-5-carboxylate 7

Mixture of 3-(4 and 5-(Hydroxymethyl)furan-2-yl)-2-methylisoxazolidine-5-carbonitrile 8

3-(4 and 5-(Hydroxymethyl)furan-2-yl)-N,N,2-trimethylisoxazolidine-5-carboxamide 10

Diethyl (3-(4 and 5-(hydroxymethyl)furan-2-yl)-2-methylisoxazolidin-5-yl)phosphonate 11

3-(5-(Hydroxymethyl)furan-2-yl)-2-methylhexahydro-4H-cyclopenta[d]isoxazol-4-one 13

Methyl 2-methyl-3-(4 and 5-(α -D-glucopyranosyloxymethyl)-furan-2-yl)isoxazolidine-5-carboxylate **14**

N,N,2-Trimethyl-3-(4 and 5-(α -D-glucopyranosyloxymethyl)-furan-2-yl)isoxazolidine-5-carboxamide **15**

