Electronic Supporting Information

Unraveling the Cation and Anion Effects and Kinetics for Ionic Liquid

Catalyzed Direct Synthesis of Methyl Acrylate at Mild Condition

Gang Wang a, b, Zengxi Li a, b*, Chunshan Li a, b, c*, Suojiang Zhang b, c

^a School of Chemical Sciences, University of Chinese Academy of Sciences, 100049, People's

Republic of China

^b Beijing Key Laboratory of Ionic Liquids Clean Process, State Key Laboratory of Multiphase Complex Systems, The National Key Laboratory of Clean and Efficient Coking Technology, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, People's Republic of China

^c Innovation Academy for Green Manufacture, Chinese Academy of Sciences, Beijing, China Corresponding E-mail: lizengxi@ucas.ac.cn (Prof. Z.X. Li)

csli@home.ipe.ac.cn (Prof. C.S. Li)

I. Purity of [Cation]F-type ionic liquid

[Cation]F	Purity /% a	[Cation]F	Purity /% a
[EMIM]F	99	[Hpy]F	99
[PMIM]F	99	[Opy]F	98
[BMIM]F	99	[N2,2,2,2]F	99
[HMIM]F	99	[N3,3,3,3]F	99
[Epy]F	98	[N4,4,4,4]F	98
[Bpy]F	98	[N8,8,8,8]F	99

Table S1 Purity of [Cation]F-type ionic liquids

^{*a*} The purity of ILs-F were determined with ¹⁹F-NMR.

II. ¹⁹F-NMR spectra for purity determination of [Cation]F-type ionic liquid

III. Supplementary experiments for catalytic system evaluation

 Table S2 Yield of 1-methoxy-1-trimethylsilyloxyethene and MA during synthesis reaction with catalysis of [Cation]F^a

Ionic liquid	Yield of 1-methoxy-1-trimethylsilyloxyethene $/\%$ ^b	Yield of MA /%
[EMIM]F	51.1	0
[PMIM]F	53.9	0
[BMIM]F	56.8	0
[HMIM]F	51.7	0
[EPy]F	44.1	0
[BPy]F	46.9	0
[HPy]F	50.7	0
[OPy]F	48.1	0
[N2,2,2,2]F	57.3	0
[N3,3,3,3]F	60.9	0
[N4,4,4,4]F	56.7	0
[N8,8,8,8]F	53.8	0

^{*a*} Reaction condition: 0.1 mol/L methyl acetate, trioxane and BSA in the solvent of CH₂Cl₂, 5 wt.% [Cation]F ionic liquid catalyst, 25°C, 3 h.

^b The yield was calculated based on methyl acetate.

Table S3 Conversion of trioxane during the decomposition reaction without methyl acetate ^a

Ionic liquid Conversion of trioxane /% Selectivity of formaldehyde /%	Ionic liquid	Conversion of trioxane /%	Selectivity of formaldehyde /%
---	--------------	---------------------------	--------------------------------

[N3,3,3,3]Cl/CuCl	77.4	100
[N3,3,3,3]Cl/FeCl ₃	84.5	100
[N3,3,3,3]Cl/ZnCl ₂	88.3	100
[N3,3,3,3]Cl/AlCl ₃	93.6	100

^{*a*} Reaction condition: 0.1 mol/L trioxane in CH₂Cl₂, 5 wt.% [N3,3,3,3]Cl/MCl_x ionic liquid catalyst, 25°C, 3 h.

Table S4 Yield and selectivity of MA during the aldol reaction between 1-methoxy-1-trimethylsilyloxyethene and trioxane ^a

Ionic liquid	Yield of MA $/\%$ ^b	Selectivity of MA /% b
[N3,3,3,3]Cl/CuCl	48.8	99.7
[N3,3,3,3]Cl/FeCl ₃	60.3	99.8
[N3,3,3,3]Cl/ZnCl ₂	72.5	100
[N3,3,3,3]Cl/AlCl ₃	83.2	100

^{*a*} Reaction condition: 0.1 mol/L 1-methoxy-1-trimethylsilyloxyethene and trioxane in CH₂Cl₂, 5 wt.% [N3,3,3,3]Cl/MCl_x ionic liquid catalyst, 25°C, 2.5 h.

^b The yield and selectivity were calculated based on 1-methoxy-1-trimethylsilyloxyethene

IV. MS information of intermediates

