Sustainable Access to Sulfonic Acids from Halides and Thiourea Dioxide with Air

Hui Zhang,^a Ming Wang *^a and Xuefeng Jiang *^{a,b}

^a Shanghai Key Laboratory of Green Chemistry and Chemical Process, School of Chemistry and Molecular Engineering, East China Normal University, 3663 North Zhongshan Road, Shanghai 200062, P. R. China

^b State Key Laboratory of Elemento-organic Chemistry, Nankai University, Tianjin 300071, P. R. China

Supporting Information

Table of Contents

I. General Information	S2
II. General procedure for synthesis of aryl sulfonic acid	S2
III. General procedure for synthesis of alkyl sulfonic acid	S3
IV. The optimization of reaction conditions	S4
V. Mechanistic study	S6
VI. Characterization of sulfonic acid product	
VII. X-Ray crystal structure	S24

I. General Information

¹H and ¹³C NMR spectra were recorded on 400 MHz NMR spectrometers (Bruker AVANCE), using D₂O, Chemical shifts are reported in parts per million (ppm), Chemical shifts for protons are reported in part per million relative to chloroform (D₂O & 4.79), Data are represented as follows: Chemical shift, multiplicity (br = broad, s = singlet, d = triplet, q = quartet, m = multiple), coupling constants in Hertz (Hz), integration, Mass spectra were recorded on a Shimadzu GCMS-QP2010 Ultra. IR spectra were recorded on TENSOR (27) Series FT-IR 241. Spectrometers.

II. General procedure for synthesis of aryl sulfonic acid

Under air atmosphere, aromatic iodine **1** (0.5 mmol, 1.0 equiv.), thiourea dioxide (1.5 mmol, 3.0 equiv.), PdCl₂(dppf) (0.0125 mmol, 2.5 mol %), Cs₂CO₃ (1.0 mmol, 2.0 equiv.), and DMSO (5 mL) were added to a Schlenk tube. The mixture was stirred at 100 0 C for 14 h, and the solvent was removed under vacuum. Water was added to dilute the residue, and the mixture was acidified with aq. HCl. Some insoluble impurities were filtered through a medium filter paper. The filtrate was extracted with DCM, and the aqueous layer was concentrated to remove the solvent under vacuum. Subsequently, 20 mL MeOH/DCM (1:1) was added to the residue solid. The mixture was filtered through a medium filter paper once again, and the filter cake was washed with MeOH/DCM (1:1) several times. The organic layers were combined and evaporated under vacuum. Purification by HPLC afforded aryl sulfonic acid **2** (0.1% CH₃COOH aq / trituration). The method is shown as follow:

	Time(min)	A(%)(0.1% CH ₃ COOH aq)	B(%) (CH ₃ CN)	Speed(mL/min)
1	0.00	95.0	5.0	3.0 mL/min
2	5.00	95.0	5.0	
3	8.00	45.0	55.0	
4	16.00	30.0	70.0	
5	20.00	30.0	70.0	
6	25.00	5.0	95.0	
7	29.00	5.0	95.0	
8	31.00	95.0	5.0	
9	35.00	95.0	5.0	

III. General procedure for synthesis of alkyl sulfonic acid

Under air atmosphere, alkyl bromide (0.5 mmol, 1.0 equiv.), thiourea dioxide (1.5 mmol, 3.0 equiv.), Cs_2CO_3 (1.0 mmol, 2.0 equiv.), KI (1.0 mmol, 2.0 equiv.) and DMSO (5 mL) were added to a Schlenk tube. The mixture was stirred at 100 °C for 14 h, and the solvent was removed under vacuum. Water was added to dilute the residue, and the mixture was acidified with aq. HCl. Some insoluble impurities were filtered through a medium filter paper. The filtrate was extracted with DCM, and the aqueous layer was concentrated to remove the solvent under vacuum. Subsequently, 20 mL MeOH/DCM (1:1) was added to the residue solid. The mixture was filtered through a medium filter paper once again, and the filter cake was washed with MeOH/DCM (1:1) several times. The organic layers were combined and evaporated under vacuum. Purification by HPLC afforded alkyl sulfonic acid **3**. The method reference the preparation of aryl sulfonic acid.

IV. The optimization of reaction conditions

		of) (10 mol%) /), TBAB (1.5 equiv)	0,0 ∕У ^{\$} _0н
Me 1a	+ S Solvent, 100 G	°C, O ₂ ballon, 14 h Me	2a
Entry	Base	Solvent	Yield ^[a]
1	K ₂ CO ₃ (3 eq)	MeCN	Trace
2	K ₂ CO ₃ (3 eq)	CCl ₃ H	Trace
3	K ₂ CO ₃ (3 eq)	Dioxane	5%
4	K ₂ CO ₃ (3 eq)	DCE	Trace
5	K ₂ CO ₃ (3 eq)	H ₂ O	Trace
6	K ₂ CO ₃ (3 eq)	Toluene	Trace
7	K ₂ CO ₃ (3 eq)	DMF	62 %
8	K ₂ CO ₃ (3 eq)	DMSO	49 %
9	K ₂ CO ₃ (2 eq)	DMF	35 %
10	K ₂ CO ₃ (2 eq)	DMSO	79 %
11	K ₂ CO ₃ (1.5 eq)	DMF	6 %
12	K ₂ CO ₃ (1.5 eq)	DMSO	66 %

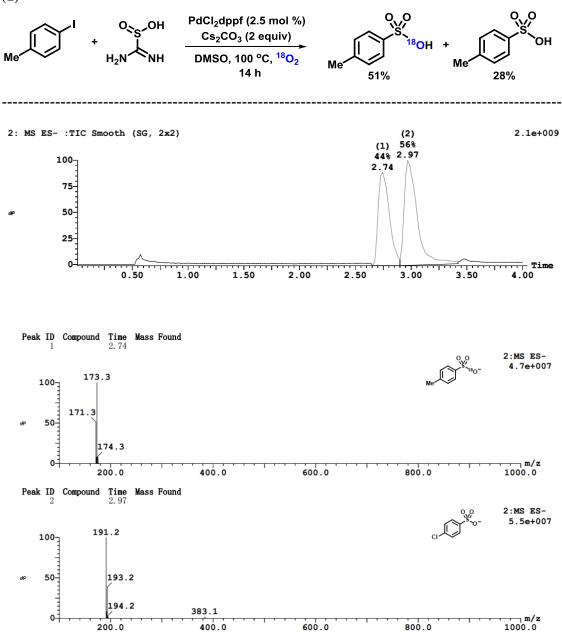
Table S1: Solvent optimization

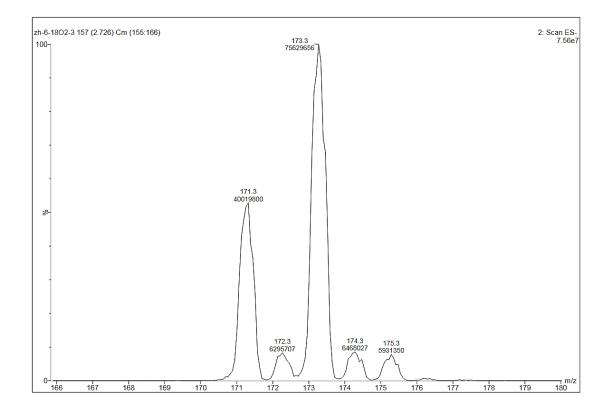
[a]Yield is determined by LC-MS using 4-chlorobenzenesulfonic acid as an internal standard.

Me 1a H ₂ N H ₂ N	PdCl ₂ (dppf) (10 mol%) S OH DMSO, 100 °C, O ₂ ballon, 1	<u>→ </u>
Entry	Base	Yield ^[a]
1	КОН	67%
2	Cs ₂ CO ₃	>95%
3	K_3PO_4	88%
4	NaHCO ₃	85%
5	DBU	85%
6	DIPEA	85%
7	DABCO	75%

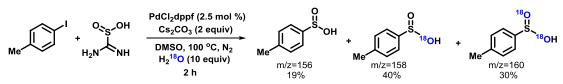
Table S2 Base optimization

[a] Yield is determined by LC-MS using 4-chlorobenzenesulfonic acid as an internal standard

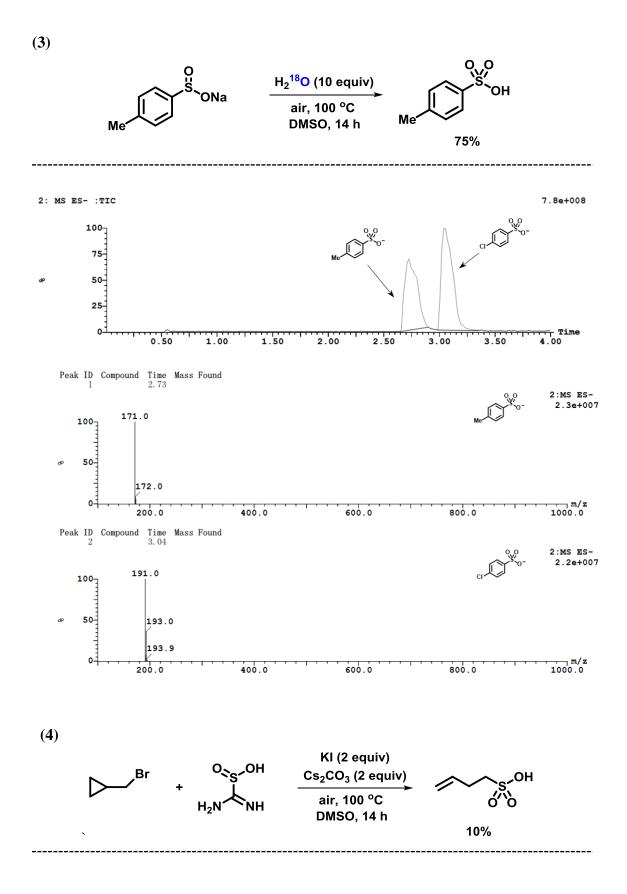

Table S3 Pd catalyst optimization

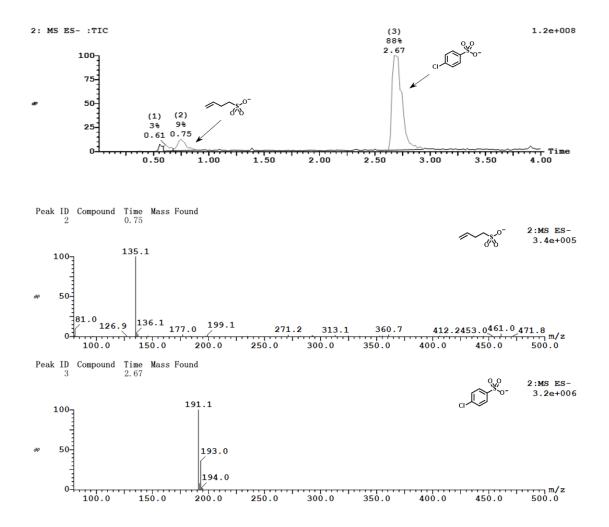

Me 1a +	H_2N H_2N H_1N H_1N H_1N H_1N H_1N H_1N $H_1(Pd] (2.5 \text{ mol\%}), Cs_2CO_3 (2 \text{ equiv})$ $DMSO, 100 \text{ °C, air, 14 h}$	Me 2a
Entry	[Pd]	Yield ^[a]
1	PdCl ₂	6%
2	Pd(OAc) ₂	6%
3	Pd(dba) ₂	5%
4	$Pd(acac)_2$	10%
5	PdCl ₂ (dppm)	10%
6	PdCl ₂ (dppp)	54%
7	PdCl ₂ (dppf)	87%

[a] Yield is determined by LC-MS using 4-chlorobenzenesulfonic acid as an internal standard


V. Mechanistic study

(1)

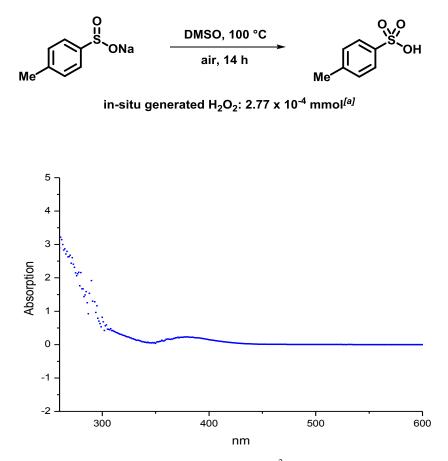



(2)

S8

(5) Control Experiments

All the reactions were conducted under standard conditions with certain amounts of additives.¹ The corresponding yields were determined by LC-MS using 4-chlorobenzenesulfonic acid as an internal standard.

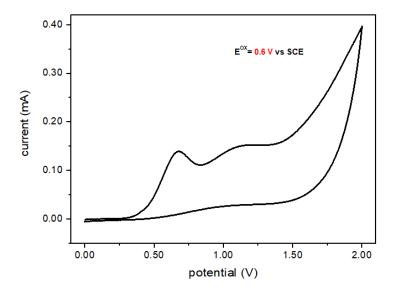

Me Me Me Me Me Me Me Me Me Me					
Entry	Additives (x equiv)	Funcations	Yields		
1	-	-	84%		
2	1,3-diphenylisobenofuran (1 equiv)	O ₂ ⁻ inhibitor	75%		
3	9,10-dimethylanthr (1 equiv)	O ₂ ⁻ inhibitor	86%		
4	NaN ₃ (1 equiv)	HO [•] inhibitor	72%		
5	Co(acac) ₂ (0.06 equiv)	¹ O ₂ inhibitor	89%		
6	^t BuOH (1 equiv)	HO [•] inhibitor	72%		

(6) Studies on Hydrogen Peroxide

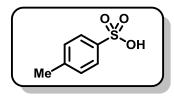
The amount of H_2O_2 was determined by titration with iodide ion, as described previously in the literature^{2, 3} in which the reflux procedures was instead by stirring at room temperature. In an iodometric titration, the formation of I_3^- and the consumption of H_2O_2 follows a one-to-one ratio as eqs S1-3. The concentration H_2O_2 can be derived from the concentration of $I_3(Abs@361 nm = \varepsilon b[I_3^-])$. All iodometric titrations are conducted anaerobically to avoid the oxidation of Γ to I_3^- by O_2 .

2 H ₂ O ₂	+	2	\longrightarrow	H ₂ O	+	1/2 O ₂	+	I ₂	(eq S1)
I ₂	+	- ۱	\rightarrow	I ₃					(eq S2)
H_2O_2	+	2 1		H ₂ O	+	1/2 O ₂	+	3	(eq S3)

Figure S2: Ultraviolet-visible Absorption of Reaction Systems

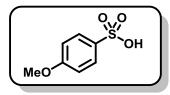


[a] Experiments data based on the UV-Vis Absorption of I^{3-} Generated by different concentration of H_2O_2 and standard curve of the amount of I^{3-} for its quantitative studies.

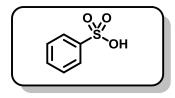

(7) Electrochemical Measurements

Cyclic voltammetry was performed in a three-electrode cell connected to a schlenk line under nitrogen at room temperature. Samples were prepared with 0.4 mmol of substrate in 10 mL of 0.1 M tetra-n-butylammonium hexafluorophosphate in dry, degassed N, N-Dimethylformamide. Measurements employed a platinum plate working electrode, platinum wire counter electrode, saturated calomel electrode as reference electrode, and a scan rate of 100 mV/s, ranging from 0 V to 3.0 V. Reductions were measured by scanning potentials in the negative direction and oxidations in the positive direction; the platinum plate working electrode was polished between each scan.

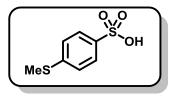
Figure S3: Cyclic Voltammogram of Sodium *p*-Toluenesulfinate



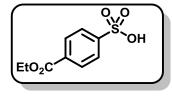
VI. Characterization of sulfonic acid product


(4-methylbenzenesulfonic acid) 2a. Prepared following general procedure using aryl iodine 1a (109.1 mg, 0.5 mmol), thiourea dioxide (162.2 mg, 1.5 mmol), PdCl₂(dppf) (9.2 mg, 0.0125 mmol), Cs₂CO₃ (325.8 mg,

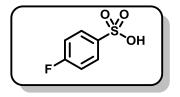
1.0 mmol), DMSO (5 mL), the reaction mixture was stirred at 100 °C for 14 h to afford product **2a** in 78% yield. ¹**H NMR (400 MHz, D₂O)** δ 7.56 (d, J = 8.0 Hz, 2H), 7.21 (d, J = 8.0 Hz, 2H), 2.24 (s, 3H). ¹³C NMR (100 MHz, D₂O) δ 142.4, 139.4, 129.3, 125.3, 20.4. **IR** v 1477, 1161, 1033, 816, 686, 565 cm⁻¹. **HRMS (ESI)** for C₇H₇O₃S: Calculated: 171.0121, [M-H]⁻ found: 171.0112.


(4-methoxybenzenesulfonic acid) 2b. Prepared following general procedure using aryl iodine 1b (117.1 mg, 0.5 mmol), thiourea dioxide (162.2 mg, 1.5 mmol), PdCl₂(dppf) (9.2 mg, 0.0125 mmol), Cs₂CO₃ (325.8 mg,

1.0 mmol), DMSO (5 mL), the reaction mixture was stirred at 100 °C for 14 h to afford product **2b** in 71% yield. ¹H NMR (**400 MHz, D₂O**) δ 7.66 – 7.64 (m, 2H), 6.92 (dd, J = 6.8, 2.0 Hz, 2H), 3.73 (s, 3H). ¹³C NMR (**100 MHz, D₂O**) δ 161.1, 134.9, 127.3, 114.0, 55.5. **IR** v 1598, 1226, 1091, 1024, 835, 698 cm⁻¹. **HRMS (ESI)** for C₇H₇O₄S: Calculated: 187.0071, [M-H]⁻ found: 187.0061.

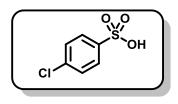

(**benzenesulfonic acid**) **2c**. Prepared following general procedure using aryl iodine **1c** (102.0 mg, 0.5 mmol), thiourea dioxide (162.2 mg, 1.5 mmol), PdCl₂(dppf) (9.2 mg, 0.0125 mmol), Cs₂CO₃ (325.8 mg, 1.0 mmol),

DMSO (5 mL), the reaction mixture was stirred at 100 °C for 14 h to afford product **2c** in 86% yield. ¹H NMR (400 MHz, D₂O) δ 7.85 (dd, J = 8.0, 1.6 Hz, 2H), 7.63 – 7.52 (m, 3H). ¹³C NMR (100 MHz, D₂O) δ 142.3, 131.7, 129.1, 125.4. IR v 1658, 1446, 1178, 1126, 1018, 733 cm⁻¹. HRMS (ESI) for C₆H₅O₃S: Calculated: 156.9965,

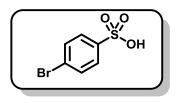

(4-(methylthio)benzenesulfonic acid) 2d. Prepared following general procedure using aryl iodine 1d (125.1 mg, 0.5 mmol), thiourea dioxide (162.2 mg, 1.5 mmol), PdCl₂(dppf) (9.2 mg, 0.0125 mmol), Cs₂CO₃ (325.8 mg,

1.0 mmol), DMSO (5 mL), the reaction mixture was stirred at 100 °C for 14 h to afford product **2d** in 53% yield. ¹**H** NMR (**400** MHz, **D**₂**O**) δ 7.72 (d, *J* = 8.4 Hz, 2H), 7.40 (d, *J* = 8.4 Hz, 2H), 2.53 (s, 3H). ¹³C NMR (**100** MHz, **D**₂**O**) δ 142.8, 138.7, 126.0, 125.8, 14.1. **IR** v 1653, 1508, 1084, 1020, 833, 675 cm⁻¹. **HRMS (ESI)** for C₇H₇O₃S₂: Calculated: 202.9842, [M-H]⁻ found: 202.9834.

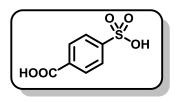
(4-(ethoxycarbonyl)benzenesulfonic acid) 2e. Prepared following general procedure using aryl iodine 1e (138.0 mg, 0.5 mmol), thiourea dioxide (162.2 mg, 1.5 mmol), PdCl₂(dppf) (9.2 mg, 0.0125 mmol), Cs₂CO₃ (325.8 mg,


1.0 mmol), DMSO (5 mL), the reaction mixture was stirred at 100 °C for 14 h to afford product **2e** in 60% yield. ¹**H NMR (400 MHz, D₂O)** δ 8.14 (d, *J* = 8.4 Hz, 2H), 7.91 (d, *J* = 8.4 Hz, 2H), 4.41 (q, *J* = 7.1 Hz, 2H), 1.40 (t, *J* = 7.1 Hz, 3H). ¹³C NMR (**100 MHz, D₂O**) δ 167.9, 146.6, 132.4, 130.0, 125.7, 62.6, 13.4. **IR** v 1716, 1458, 1398, 1184, 1101, 630 cm⁻¹. **HRMS (ESI)** for C₉H₉O₅S: Calculated: 229.0176, [M-H]⁻ found: 229.0170.

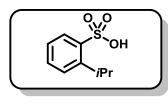
(**4-fluorobenzenesulfonic acid**) **2f**. Prepared following general procedure using aryl iodine **1f** (111.0 mg, 0.5 mmol), thiourea dioxide (162.2 mg, 1.5 mmol), PdCl₂(dppf) (9.2 mg, 0.0125 mmol), Cs₂CO₃ (325.8 mg,


1.0 mmol), DMSO (5 mL), the reaction mixture was stirred at 100 °C for 14 h to afford product **2f** in 41% yield. ¹H NMR (**400 MHz**, **D**₂**O**) δ 7.93 – 7.85 (m, 2H), 7.36 – 7.27 (m, 2H). ¹³C NMR (100 MHz, **D**₂**O**) δ 164.1 (*J* = 249.9 Hz), 138.6, 128.1 (*J* = 9.3 Hz), 115.9 (*J* = 22.6 Hz). ¹⁹F NMR (376 MHz, **D**₂**O**) δ -109.05. IR v 1662,

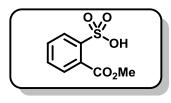
1467, 1020, 829, 613 cm⁻¹. **HRMS** (**ESI**) for $C_6H_4O_3FS$: Calculated: 174.9871, [M-H]⁻ found: 174.9861.


(4-chlorobenzenesulfonic acid) 2g. Prepared following general procedure using aryl iodine 1g (119.2 mg, 0.5 mmol), thiourea dioxide (162.2 mg, 1.5 mmol), PdCl₂(dppf) (9.2 mg, 0.0125 mmol), Cs₂CO₃ (325.8 mg,

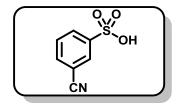
1.0 mmol), DMSO (5 mL), the reaction mixture was stirred at 100 °C for 14 h to afford product **2g** in 74% yield. ¹H NMR (**400 MHz**, **D**₂**O**) δ 7.31 (d, *J* = 8.0 Hz, 2H), 7.03 (d, *J* = 8.4 Hz, 2H). ¹³C NMR (**100 MHz**, **D**₂**O**) δ 140.7, 136.7, 128.8, 126.8. IR v 1724, 1479, 1089, 829, 760, 563 cm⁻¹. HRMS (ESI) for C₆H₄O₃ClS: Calculated: 190.9575, [M-H]⁻ found: 190.9567.


(**4-bromobenzenesulfonic acid**) **2h**. Prepared following general procedure using aryl iodine **1h** (141.5 mg, 0.5 mmol), thiourea dioxide (162.2 mg, 1.5 mmol), PdCl₂(dppf) (9.2 mg, 0.0125 mmol), Cs₂CO₃ (325.8 mg,

1.0 mmol), DMSO (5 mL), the reaction mixture was stirred at 100 °C for 14 h to afford product **2h** in 75% yield. ¹H NMR (**400 MHz, D₂O**) δ 7.56 – 7.51 (m, 2H), 7.51 – 7.46 (m, 2H). ¹³C NMR (**100 MHz, D₂O**) δ 141.4, 131.9, 127.1, 125.3. **IR** v 1751, 1577, 1473, 1070, 821, 632 cm⁻¹ **HRMS** (**ESI**) for C₆H₄O₃⁸¹BrS: Calculated: 234.9050, [M-H]⁻ found: 234.9044.

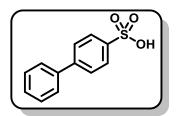

(4-sulfobenzoic acid) 2i. Prepared following general procedure using aryl iodine 1i (124.0 mg, 0.5 mmol), thiourea dioxide (162.2 mg, 1.5 mmol), PdCl₂(dppf) (9.2 mg, 0.0125 mmol), Cs₂CO₃ (325.8 mg, 1.0 mmol),

DMSO (5 mL), the reaction mixture was stirred at 100 °C for 14 h to afford product **2i** in 67% yield. ¹H NMR (**400 MHz, D**₂O) δ 8.03 (d, *J* = 8.4 Hz, 2H), 7.87 (d, *J* = 8.4 Hz, 2H). ¹³C NMR (**100 MHz, D**₂O) δ 170.9, 145.9, 134.4, 130.0, 125.6. IR v 1728, 1516, 1452, 1200, 835, 630 cm⁻¹. HRMS (ESI) for C₇H₅O₅S: Calculated: 200.9863,

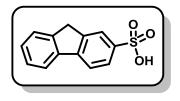

(**2-isopropylbenzenesulfonic acid**) **2j**. Prepared following general procedure using aryl iodine **1j** (123.1 mg, 0.5 mmol), thiourea dioxide (162.2 mg, 1.5 mmol), PdCl₂(dppf) (9.2 mg, 0.0125 mmol), Cs₂CO₃ (325.8 mg,

1.0 mmol), DMSO (5 mL), the reaction mixture was stirred at 100 °C for 14 h to afford product **2j** in 66% yield. ¹H NMR (**400 MHz**, **D**₂**O**) δ 7.91 (d, *J* = 8.0 Hz, 1H), 7.67 – 7.55(m, 2H), 7.39 – 7.32 (m, 1H), 3.95 – 3.82 (m, 1H), 1.30 (d, *J* = 6.8 Hz, 6H). ¹³C NMR (**100 MHz**, **D**₂**O**) δ 147.8, 139.7, 132.1, 127.7, 126.8, 125.8, 29.3, 23.4. IR v 2960, 2870, 1176, 1082, 763, 613 cm⁻¹ HRMS (ESI) for C₉H₁₁O₃S: Calculated: 199.0434, [M-H]⁻ found: 199.0427.

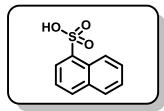
(2-(methoxycarbonyl)benzenesulfonic acid) 2k. Prepared following general procedure using aryl iodine 1k (131.0 mg, 0.5 mmol), thiourea dioxide (162.2 mg, 1.5 mmol), PdCl₂(dppf) (9.2 mg, 0.0125 mmol), Cs₂CO₃


(325.8 mg, 1.0 mmol), DMSO (5 mL), the reaction mixture was stirred at 100 °C for 14 h to afford product **2k** in 62% yield. ¹**H NMR (400 MHz, D₂O)** δ 8.03 – 7.98 (m, 1H), 7.76 – 7.68 (m, 2H), 7.68 – 7.63 (m, 1H), 4.01 (s, 3H). ¹³C NMR (100 MHz, **D₂O)** δ 171.4, 139.9, 131.6, 131.2, 130.6, 128.1, 127.4, 53.6. **IR** v 1736, 1456, 1082, 754, 621 cm⁻¹. **HRMS (ESI)** for C₈H₇O₅S: Calculated: 215.0020, [M-H]⁻ found: 215.0013.

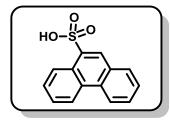
(**3-cyanobenzenesulfonic acid**) **21**. Prepared following general procedure using aryl iodine **11** (114.5 mg, 0.5 mmol), thiourea dioxide (162.2 mg, 1.5 mmol), PdCl₂(dppf) (9.2 mg, 0.0125 mmol), Cs₂CO₃ (325.8 mg,


1.0 mmol), DMSO (5 mL), the reaction mixture was stirred at 100 °C for 14 h to afford product **2l** in 83% yield. ¹H NMR (**400** MHz, **D**₂**O**) δ 8.10 (t, *J* = 1.5 Hz, 1H), 8.02 - 7.98 (m, 1H), 7.86 - 7.81 (m, 1H), 7.61 (t, *J* = 7.9 Hz, 1H). ¹³C NMR (**100**

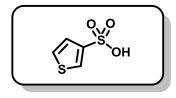
MHz, D₂O) δ 143.6, 135.1, 130.2, 130.0, 129.4, 118.6, 111.9. **IR** v 2236, 1510, 1473, 847, 800, 619 cm⁻¹. **HRMS (ESI)** for C₇H₄O₃NS : Calculated: 181.9917, [M-H]⁻ found: 181.9908.


(**Biphenyl-4-sulfonic acid**) **2m.** Prepared following general procedure using aryl iodine **1m** (140.1 mg, 0.5 mmol), thiourea dioxide (162.2 mg, 1.5 mmol), PdCl₂(dppf) (9.2 mg, 0.0125 mmol), Cs₂CO₃ (325.8 mg,

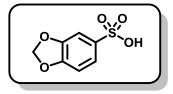
1.0 mmol), DMSO (5 mL), the reaction mixture was stirred at 100 °C for 14 h to afford product **2m** in 81% yield. ¹H NMR (**400** MHz, **D**₂**O**) δ 7.74 (d, *J* = 8.4 Hz, 2H), 7.49 (d, *J* = 8.4 Hz, 2H), 7.40 (d, *J* = 6.8 Hz, 2H), 7.32 – 7.22 (m, 3H). ¹³C NMR (**100** MHz, **D**₂**O**) δ 143.3, 141.2, 139.0, 129.0, 128.2, 127.2, 127.0, 126.0. IR v 1724, 1658, 1456, 1184, 841, 760, 619 cm⁻¹. HRMS (ESI) for C₁₂H₉O₃S: Calculated: 233.0278, [M-H]⁻ found: 233.0272.


(**9H-fluorene-2-sulfonic acid**) **2n.** Prepared following general procedure using aryl iodine **1n** (146.1 mg, 0.5 mmol), thiourea dioxide (162.2 mg, 1.5 mmol), PdCl₂(dppf) (9.2 mg, 0.0125 mmol), Cs₂CO₃ (325.8 mg,

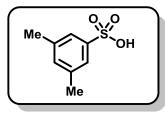
1.0 mmol), DMSO (5 mL), the reaction mixture was stirred at 100 °C for 14 h to afford product **2n** in 72% yield. ¹H NMR (**400 MHz, D**₂O) δ 7.85 (s, 1H), 7.72 (d, *J* = 8.0 Hz, 1H), 7.69 – 7.62 (m, 2H), 7.50 – 7.45 (m, 1H), 7.33 (dd, *J* = 5.5, 2.9 Hz, 2H), 3.66 (s, 2H). ¹³C NMR (**101 MHz, D**₂O) δ 144.3, 143.9, 143.8, 140.5, 139.7, 127.8, 126.9, 125.1, 124.2, 122.0, 120.5, 119.9, 36.3.IR v 1452, 1223, 1184, 1090, 835, 731, 619 cm⁻¹. HRMS (ESI) for C₁₃H₉O₃S: Calculated: 245.0278, [M-H]⁻ found: 245.0273.


(**naphthalene-1-sulfonic acid**) **20.** Prepared following general procedure using aryl iodine **10** (127.0 mg, 0.5 mmol), thiourea dioxide (162.2 mg, 1.5 mmol),

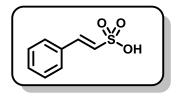
PdCl₂(dppf) (9.2 mg, 0.0125 mmol), Cs₂CO₃ (325.8 mg, 1.0 mmol), DMSO (5 mL), the reaction mixture was stirred at 100 °C for 14 h to afford product **20** in 71% yield. ¹**H NMR (400 MHz, D₂O)** δ 8.60 (d, *J* = 8.8 Hz, 1H), 8.09 (d, *J* = 7.2 Hz, 1H), 8.04 (d, *J* = 8.4 Hz, 1H), 7.97 (d, *J* = 8.0 Hz, 1H), 7.69 (t, *J* = 7.8 Hz, 1H), 7.60 (t, *J* = 7.4 Hz, 1H), 7.52 (t, *J* = 7.8 Hz, 1H). ¹³**C NMR (100 MHz, D₂O)** δ 137.7, 133.9, 132.7, 128.9, 127.9, 127.7, 126.7, 126.1, 124.9, 124.6. **IR** v 1745, 1180, 1070, 800, 768, 746, 613 cm⁻¹. **HRMS (ESI)** for C₁₀H₇O₃S: Calculated: 207.0121, [M-H]⁻ found: 207.0113.


phenanthrene-9-sulfonic acid) 2p. Prepared following general procedure using aryl iodine 1p (152.1 mg, 0.5 mmol), thiourea dioxide (162.2 mg, 1.5 mmol), PdCl₂(dppf) (9.2 mg, 0.0125 mmol), Cs₂CO₃ (325.8 mg,

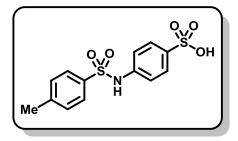
1.0 mmol), DMSO (5 mL), the reaction mixture was stirred at 100 °C for 14 h to afford product **2p** in 64% yield. ¹**H NMR** (**400 MHz, D**₂**O**) δ 8.60 (d, *J* = 8.6 Hz, 1H), 8.09 (d, *J* = 7.3 Hz, 1H), 8.04 (d, *J* = 8.3 Hz, 1H), 7.97 (d, *J* = 8.2 Hz, 1H), 7.69 (t, *J* = 7.7 Hz, 2H), 7.60 (t, *J* = 7.5 Hz, 1H), 7.52 (t, *J* = 7.8 Hz, 2H). ¹³**C NMR** (**100 MHz, D**₂**O**) δ 136.2, 130.6, 130.4, 129.5, 128.9, 128.5, 127.8, 127.1, 127.0, 127.0, 126.0, 125.8, 122.9, 121.9. **IR** v 1726, 1163, 1043, 754, 734, 648 cm⁻¹. **HRMS** (**ESI**) for C₁₄H₉O₃S: Calculated: 257.0278, [M-H]⁻ found: 257.0274.


(thiophene-3-sulfonic acid) 2q. Prepared following general procedure using aryl iodine 1q (105.0 mg, 0.5 mmol), thiourea dioxide (162.2 mg, 1.5 mmol), PdCl₂(dppf) (9.2 mg, 0.0125 mmol), Cs₂CO₃ (325.8 mg,

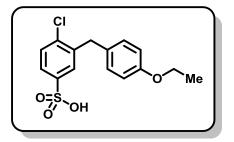
1.0 mmol), DMSO (5 mL), the reaction mixture was stirred at 100 °C for 14 h to afford product **2q** in 77% yield. ¹H NMR (**400** MHz, **D**₂**O**) δ 7.96 (dd, *J* = 3.2, 1.6 Hz, 1H), 7.60 (dd, *J* = 5.2, 3.2 Hz, 1H), 7.40 (dd, *J* = 5.2, 1.6 Hz, 1H). ¹³C NMR (**100** MHz, **D**₂**O**) δ 142.3, 128.4, 127.4, 124.9. IR v 1508, 1178, 1082, 1020, 611 cm⁻¹. HRMS (ESI) for C₄H₃O₃S₂: Calculated: 162.9529, [M-H]⁻ found: 162.9519.


(**benzo[d][1,3]dioxole-5-sulfonic acid**) **2r.** Prepared following general procedure using aryl iodine **1r** (124.0 mg, 0.5 mmol), thiourea dioxide (162.2 mg, 1.5 mmol),

PdCl₂(dppf) (9.2 mg, 0.0125 mmol), Cs₂CO₃ (325.8 mg, 1.0 mmol), DMSO (5 mL), the reaction mixture was stirred at 100 °C for 14 h to afford product **2r** in 82% yield. ¹**H NMR (400 MHz, D₂O)** δ 7.35 (dd, *J* = 8.0, 1.6 Hz, 1H), 7.25 (d, *J* = 2.0 Hz, 1H), 6.94 (d, *J* = 8.4 Hz, 1H), 6.05 (s, 2H). ¹³**C NMR (100 MHz, D₂O)** δ 149.7, 147.5, 136.1, 120.4, 108.2, 106.0, 102.1. **IR** v 2831, 1163, 1118, 1072, 808, 708, 629 cm⁻¹. **HRMS (ESI)** for C₇H₅O₅S: Calculated: 200.9863, [M-H]⁻ found: 200.9856.


(**3,5-dimethylbenzenesulfonic acid**) **2s.** Prepared following general procedure using aryl iodine **1s** (116.0 mg, 0.5 mmol), thiourea dioxide (162.2 mg, 1.5 mmol), PdCl₂(dppf) (9.2 mg, 0.0125 mmol), Cs₂CO₃ (325.8 mg,

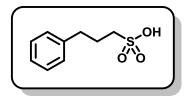
1.0 mmol), DMSO (5 mL), the reaction mixture was stirred at 100 °C for 14 h to afford product **2s** in 65% yield. ¹H NMR (**400 MHz, D**₂O) δ 7.40 (s, 2H), 7.22 (s, 1H), 2.32 (s, 6H). ¹³C NMR (**100 MHz, D**₂O) δ 142.1, 139.3, 132.8, 122.7, 20.3. IR v 1452, 1205, 1086, 1020, 706 cm⁻¹. HRMS (ESI) for C₈H₉O₃S: Calculated: 185.0278, [M-H]⁻ found: 185.0269.


((E)-2-phenylethene-1-sulfonic acid) 2t. Prepared following general procedure using beta-bromostyrene 1t (91.5 mg, 0.5 mmol), thiourea dioxide (162.2 mg, 1.5 mmol), PdCl₂(dppf) (9.2 mg, 0.0125 mmol), Cs₂CO₃

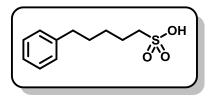
(325.8 mg, 1.0 mmol), DMSO (5 mL), the reaction mixture was stirred at 100 °C for 14 h to afford product **2t** in 57% yield. ¹**H NMR (400 MHz, D₂O)** δ 7.60 (dt, *J* = 5.6, 3.5 Hz, 2H), 7.51 – 7.45 (m, 3H), 7.35 (d, *J* = 15.7 Hz, 1H), 7.03 (d, *J* = 15.7 Hz, 1H). ¹³C NMR (100 MHz, D₂O) δ 136.9, 133.5, 130.2, 129.1, 127.9, 127.7. IR v 1744, 1579, 1186, 1035, 746 cm⁻¹. HRMS (ESI) for C₈H₇O₃S: Calculated: 183.0121,


(4-((4-methylphenyl)sulfonamido)benzenesulf onic acid) 2u. Prepared following general procedure using aryl iodine 1u (186.6 mg, 0.5 mmol), thiourea dioxide (162.2 mg, 1.5 mmol), PdCl₂(dppf) (9.2 mg, 0.0125 mmol), Cs₂CO₃

(325.8 mg, 1.0 mmol), DMSO (5 mL), the reaction mixture was stirred at 100 °C for 14 h to afford product **2u** in 83% yield. ¹**H NMR** (**400 MHz, D₂O**) δ 7.65 – 7.60 (m, 2H), 7.55 (d, *J* = 8.4 Hz, 2H), 7.15 – 7.10 (m, 2H), 7.06 (d, *J* = 8.1 Hz, 2H), 2.10 (s, 3H). ¹³**C NMR** (**100 MHz, D₂O**) δ 145.3, 139.3, 138.8, 134.1, 129.9, 126.9, 126.9, 120.2, 20.6. **IR** v 1329, 1157, 1090, 839, 914, 613 cm⁻¹. **HRMS** (**ESI**) for C₁₃H₁₂O₅NS₂: Calculated: 326.0162, [M-H]⁻ found: 326.0160.

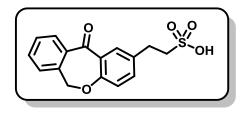

(4-chloro-3-(4-ethoxybenzyl)benzenesulfonic acid) 2v. Prepared following general procedure using aryl iodine 1v (186.3 mg, 0.5 mmol), thiourea dioxide (162.2 mg, 1.5 mmol), PdCl₂(dppf) (9.2 mg, 0.0125 mmol), Cs₂CO₃

(325.8 mg, 1.0 mmol), DMSO (5 mL), the reaction mixture was stirred at 100 °C for 14 h to afford product **2v** in 52% yield. ¹H NMR (**400 MHz, D₂O**) δ 7.52 (s, 1H), 7.40 (d, *J* = 7.9 Hz, 1H), 7.00 (d, *J* = 8.2 Hz, 1H), 6.75 (d, *J* = 8.3 Hz, 2H), 6.43 (d, *J* = 8.4 Hz, 2H), 3.60 (s, 2H), 3.47 (q, *J* = 6.8 Hz, 2H), 0.97 (t, *J* = 6.9 Hz, 3H). ¹³C NMR (**100 MHz, D₂O**) δ 156.6, 141.6, 139.6, 136.6, 131.0, 129.8, 129.7, 127.9, 124.9, 114.4, 63.6, 37.9, 14.1. **IR** v 1510, 1232, 1163, 1026, 736, 648 cm⁻¹. **HRMS** (**ESI**) for C₁₅H₁₄O₄CIS: Calculated: 325.0307, [M-H]⁻ found: 325.0303.

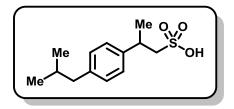

(4-(2-(6-methoxynaphthalen-2-yl)p
ropanamido)benzenesulfonic acid)
2w. Prepared following general
procedure using aryl iodine 1w
(215.6 mg, 0.5 mmol), thiourea

dioxide (162.2 mg, 1.5 mmol), PdCl₂(dppf) (9.2 mg, 0.0125 mmol), Cs₂CO₃ (325.8 mg, 1.0 mmol), DMSO (5 mL), the reaction mixture was stirred at 100 °C for 14 h to afford product **2w** in 56% yield. ¹**H NMR** (**400 MHz, D₂O**) δ 7.54 (d, *J* = 7.6 Hz, 2H), 7.33 – 7.16 (m, 3H), 7.03-7.01 (m, 3H), 6.51 (d, *J* = 7.9 Hz, 1H), 6.34 (s, 1H), 3.51 (d, *J* = 5.7 Hz, 1H), 3.10 (s, 3H), 1.15 (d, *J* = 5.6 Hz, 3H). ¹³C NMR (**100 MHz, D₂O**) δ 174.9, 156.7, 139.8, 138.5, 135.7, 133.2, 128.9, 128.4, 127.0, 126.3, 125.5, 120.2, 118.2, 105.4, 54.5, 46.5, 17.7. **IR** v 1508, 1233, 1163, 1091, 1031, 835 cm⁻¹. **HRMS** (**ESI**) for C₂₀H₁₈O₅NS: Calculated: 384.0911, [M-H]⁻ found: 384.0907.

(**3-phenylpropane-1-sulfonic acid**) **3a.** Prepared following general procedure using alkyl bromide **2a'** (99.50 mg, 0.5 mmol), thiourea dioxide (99.6 mg, 1.5 mmol), KI (166.00 mg, 1.0 mmol), Cs₂CO₃ (325.8 mg,

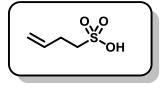

1.0 mmol), DMSO (5 mL), the reaction mixture was stirred at 100 °C for 14 h to afford product **3a** in 57% yield. ¹H NMR (**400 MHz, D**₂O) δ 7.29 (t, *J* = 7.4 Hz, 2H), 7.22-7.18 (m, 3H), 2.83 (dd, *J* = 9.0, 6.7 Hz, 2H), 2.67 (dd, *J* = 14.1, 6.5 Hz, 2H), 2.03 – 1.93 (m, 2H). ¹³C NMR (**100 MHz, D**₂O) δ 141.5, 128.6, 128.5, 126.2, 50.4, 33.6, 25.8. IR v 2830, 1452, 1169, 1032, 750, 629 cm⁻¹. HRMS (ESI) for C₉H₁₁O₃S: Calculated: 199.0434, [M-H]⁻ found: 199.0426.

(5-phenylpentane-1-sulfonic acid) 3b. Prepared following general procedure using alkyl bromide 2b' (113.6 mg, 0.5 mmol), thiourea dioxide (162.2 mg, 1.5 mmol), KI (166.00 mg, 1.0 mmol), Cs₂CO₃

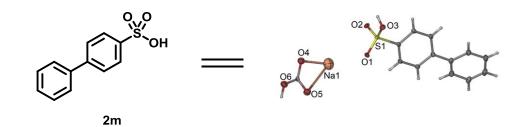

(325.8 mg, 1.0 mmol), DMSO (5 mL), the reaction mixture was stirred at 100 °C for

14 h to afford product **3b** in 43% yield. ¹H NMR (**400** MHz, **D**₂**O**) δ 7.15 (t, *J* = 7.1 Hz, 2H), 7.07-7.02 (m, 3H), 2.80 – 2.72 (m, 2H), 2.44 (t, *J* = 7.1 Hz, 2H), 1.72 –1.60 (m, 2H), 1.51 –1.39 (m, 2H), 1.29 – 1.19 (m, 2H). ¹³C NMR (**100** MHz, **D**₂**O**) δ 142.7, 128.4, 128.3, 125.6, 51.1, 35.1, 30.5, 27.6, 24.0. IR v 1594, 1454, 1167, 1016, 765, 613 cm⁻¹. HRMS (ESI) for C₁₁H₁₅O₃S : Calculated: 227.0747, [M-H]⁻ found: 227.0742.

(2-(11-oxo-6,11-dihydrodibenzo[b,e]oxepin-2yl)ethane-1-sulfonic acid) 3c. Prepared following general procedure using alkyl bromide 2c' (158.6 mg, 0.5 mmol), thiourea dioxide

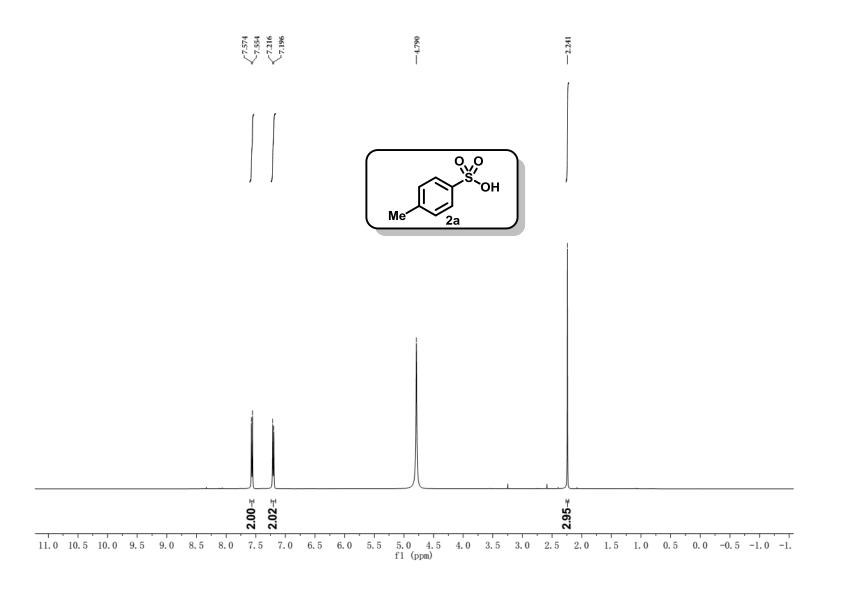

(162.2 mg, 1.5 mmol), KI (166.00 mg, 1.0 mmol), Cs₂CO₃ (325.8 mg, 1.0 mmol), DMSO (5 mL), the reaction mixture was stirred at 100 °C for 14 h to afford product **3c** in 53% yield. ¹**H NMR (400 MHz, D₂O)** δ 7.73 (d, *J* = 2.3 Hz, 1H), 7.64 (dd, *J* = 7.7, 1.0 Hz, 1H), 7.59 (td, *J* = 7.2, 1.2 Hz, 1H), 7.46 (td, *J* = 7.6,0.8 Hz, 1H), 7.32 (dd, *J* = 13.0, 4.7 Hz, 2H), 6.80 (t, *J* = 6.7 Hz, 1H), 4.97 (s, 2H), 3.12 – 3.04 (m, 2H), 2.99 – 2.90 (m, 2H). ¹³C NMR (100 MHz, D₂O) δ 193.7, 159.6, 139.2, 136.6, 135.6, 133.7, 133.2, 130.4, 129.3, 128.8, 128.1, 124.3, 120.8, 73.1, 52.0, 29.4. **IR** v 1489, 1163, 1035, 758, 835, 609 cm⁻¹. **HRMS (ESI)** for C₁₆H₁₃O₅S: Calculated: 317.0489, [M-H]⁻¹ found: 317.0486.

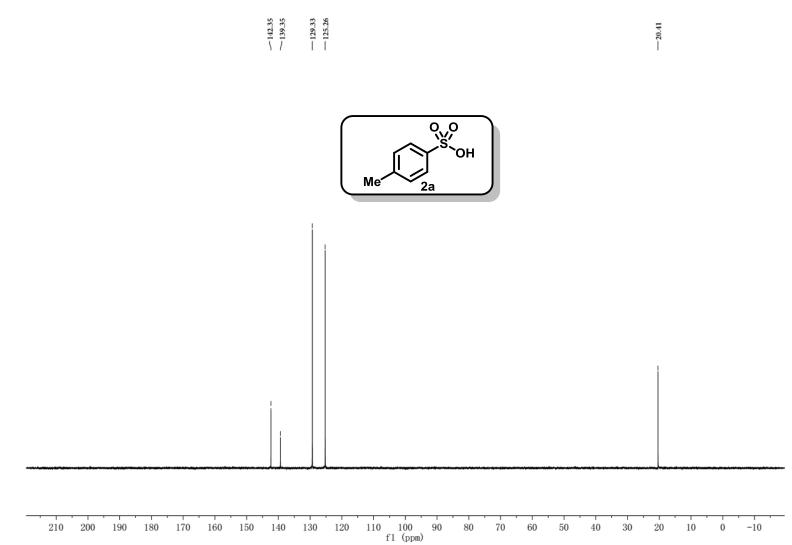
(2-(4-isobutylphenyl)propane-1-sulfonic acid)
3d. Prepared following general procedure using alkyl bromide 2d' (127.6 mg, 0.5 mmol), thiourea dioxide (162.2 mg, 1.5 mmol), KI (166.00 mg, 1.0


mmol), Cs_2CO_3 (325.8 mg, 1.0 mmol), DMSO (5 mL), the reaction mixture was stirred at 100 °C for 14 h to afford product **3d** in 61% yield. ¹H NMR (**400 MHz**, **D**₂**O**) δ 7.19 (d, J = 8.1 Hz, 2H), 7.11 (d, J = 8.0 Hz, 2H), 3.32 – 3.21 (m, 1H), 3.21 – 3.07 (m, 2H), 2.40 (d, J = 7.1 Hz, 2H), 1.84 – 1.71 (m, J = 13.3, 6.6 Hz, 1H), 1.36 (d,

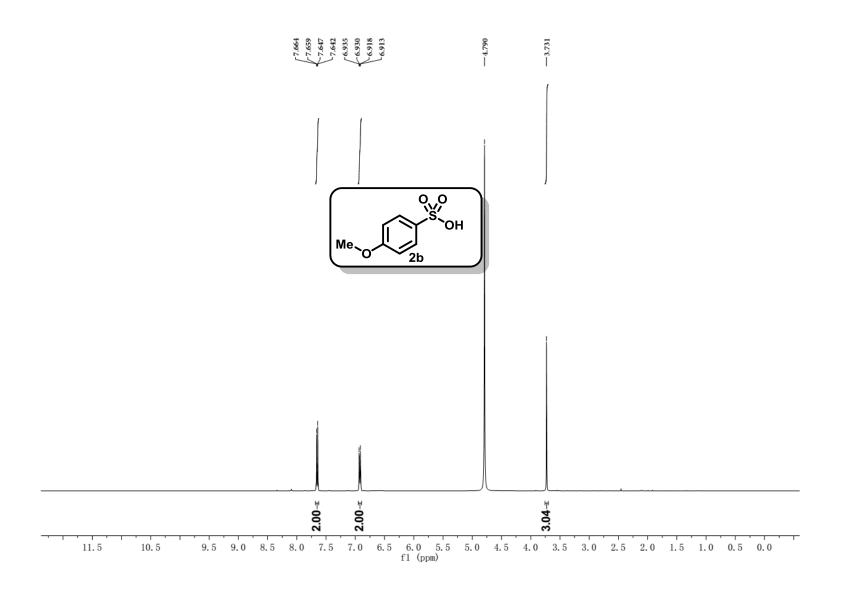
J = 6.8 Hz, 3H), 0.84 (d, J = 6.6 Hz, 6H). ¹³C NMR (100 MHz, D₂O) δ 143.4, 140.1, 129.4, 126.7, 58.3, 44.4, 35.8, 29.7, 21.8, 21.4. IR v 2960, 2913, 1151, 1020, 847, 629 cm⁻¹. HRMS (ESI) for C₁₃H₁₉O₃S: Calculated: 255.1060, [M-H]⁻ found: 255.1059.

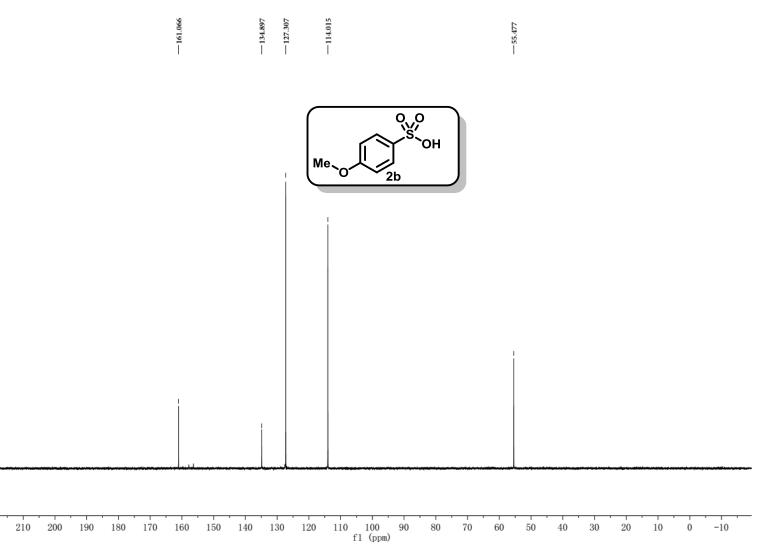
(**3-Butene-1-sulfonic acid**) **5.** Prepared following general procedure using alkyl bromide **4** (67.5 mg, 0.5 mmol), thiourea dioxide (162.2 mg, 1.5 mmol), KI (166.00 mg, 1.0 mmol), Cs_2CO_3 (325.8 mg, 1.0 mmol), DMSO (5 mL), the

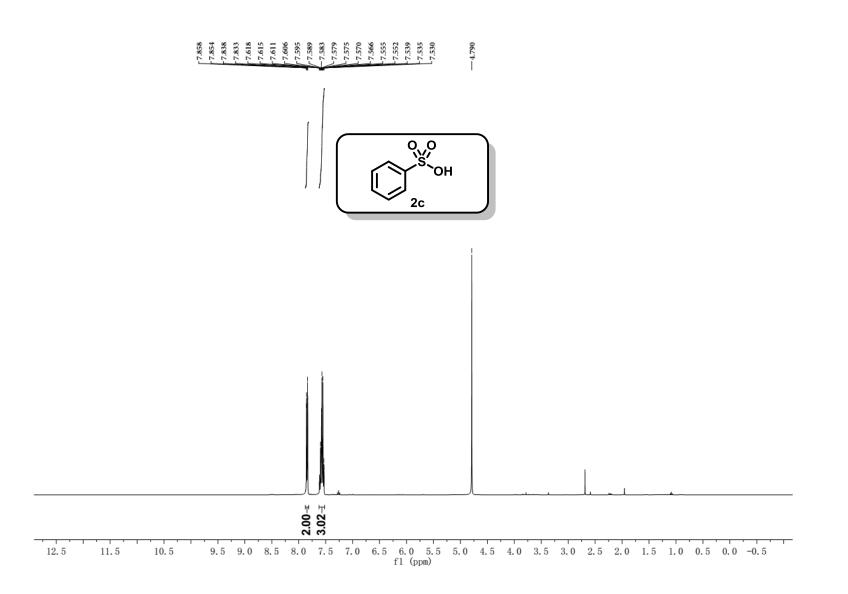

reaction mixture was stirred at 100 °C for 14 h to afford product **5** in 10% yield. ¹**H NMR (400 MHz, D₂O)** δ 6.30 – 6.14 (m, 1H), 5.51 – 5.34 (m, 2H), 3.34 – 3.22 (m, 2H), 2.81 – 2.70 (m, 2H). ¹³**C NMR (100 MHz, D₂O)** δ 136.4, 116.5, 50.6, 28.7. **IR** v 1653, 1204, 1174, 1045, 594 cm⁻¹. **HRMS (ESI)** for C₄H₇O₃S: Calculated: 135.0121, [M-H]⁻ found: 135.0111.

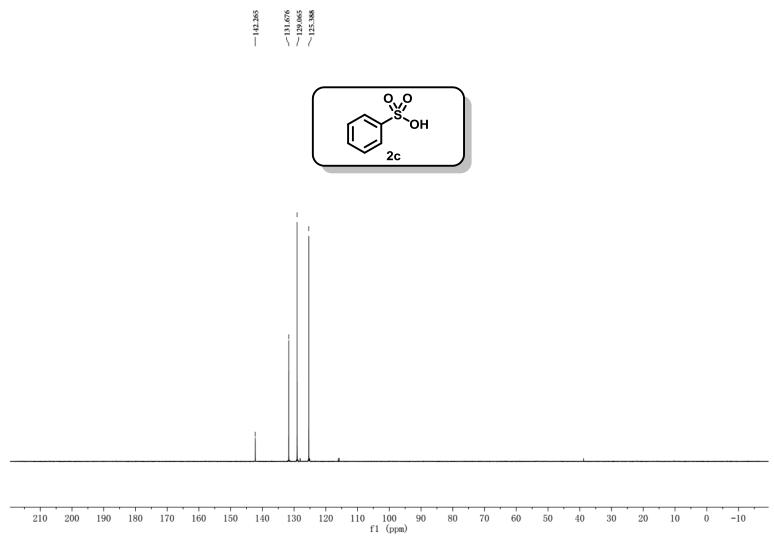


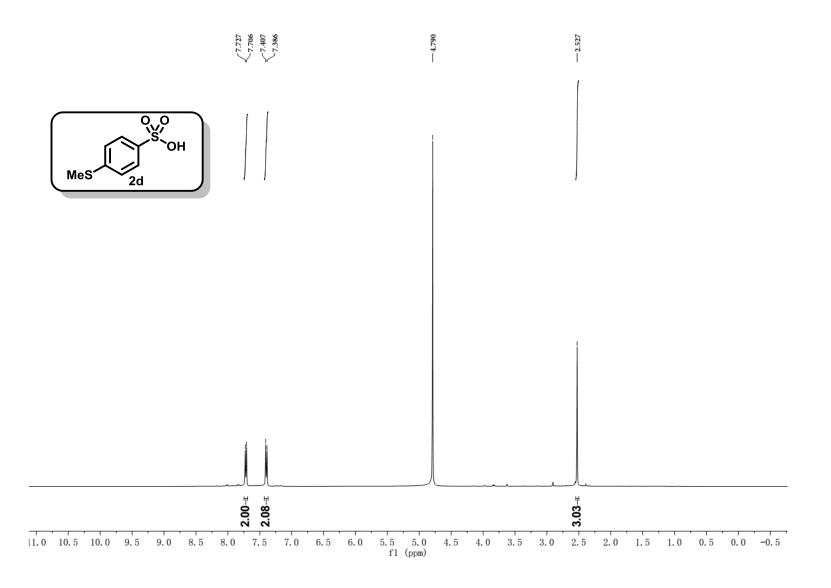
Bond precision:	O-C 0.0030			
		Wavelength $= 1.54184$		
Cell:		a =16.2484(1)	$\alpha = 90$	
		b=11.3597(1)	$\beta = 100.148(1)$	
		c=8.2456(1)	$\gamma = 90$	
Temperature:		100 K		
Volume:		1498.14(2)		
Space group:		P 1 21/c 1		
Sum formula		C13 H11 Na O6 S		
Mr		318.27		
Dx,g cm-3		1.411		
Z		4		
Mu (mm-1)		2.432		
F000		656.0		
h,k,lmax		19,13,9		
Nref		2563		
Tmin,Tmax		0.382, 1.000		
Correction method= # Reported	Т	Tmin = 0.382 Tmax	= 1.000	
Limits				
AbsCorr = MULTI-SCAN				
Data completeness		0.960		
Theta(max)		67.074		
R(reflections)		0.0725(2515)		
wR2(reflections)		0.1609(2563)		
S		1.166		
Npar		302		

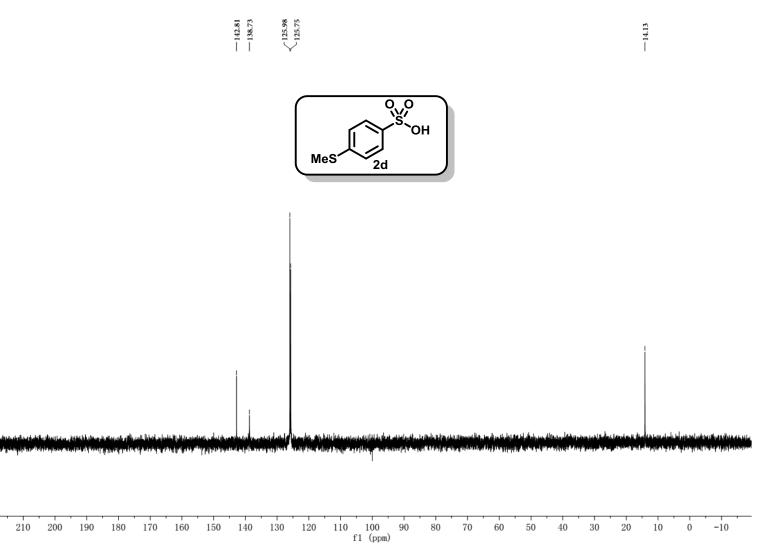

References:

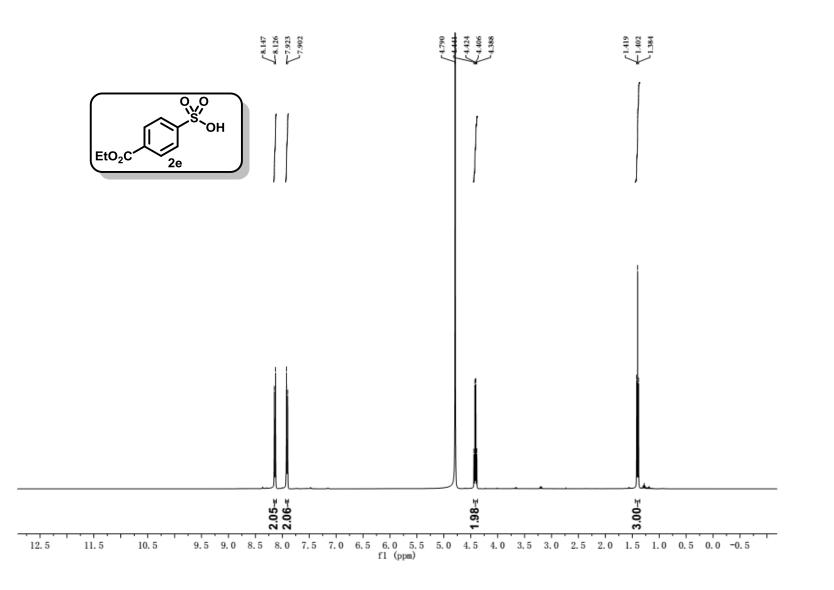

- 1. Y. Nosaka and A. Y. Nosaka, Chem. Rev. 2017, 117, 11302.
- 2. R. D. Mair and A. J. Graupner. Anal. Chem. 1964, 36, 194.
- Y. Li, S. A. Rizvi, D. Hu, D. Sun, A. Gao, Y. Zhou, J. Li and X. Jiang. Angew. Chem., Int. Ed., 2019, 58, 13499.

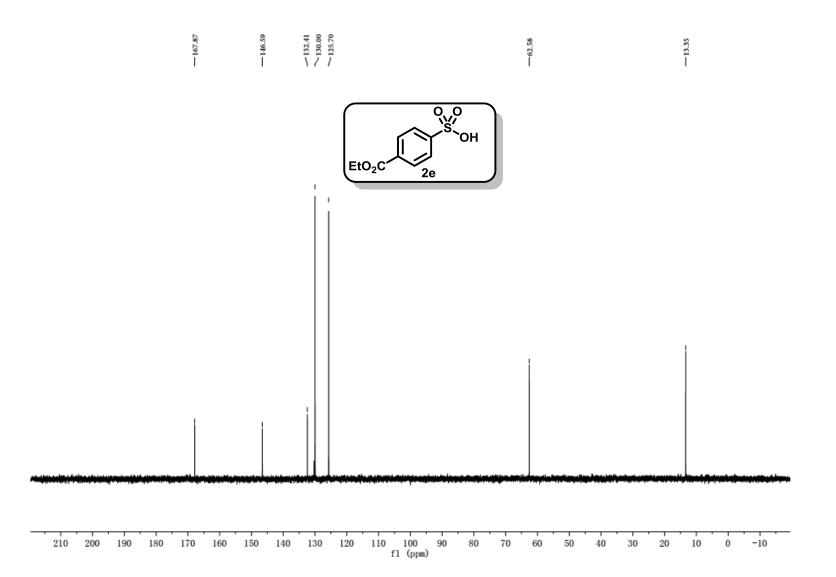


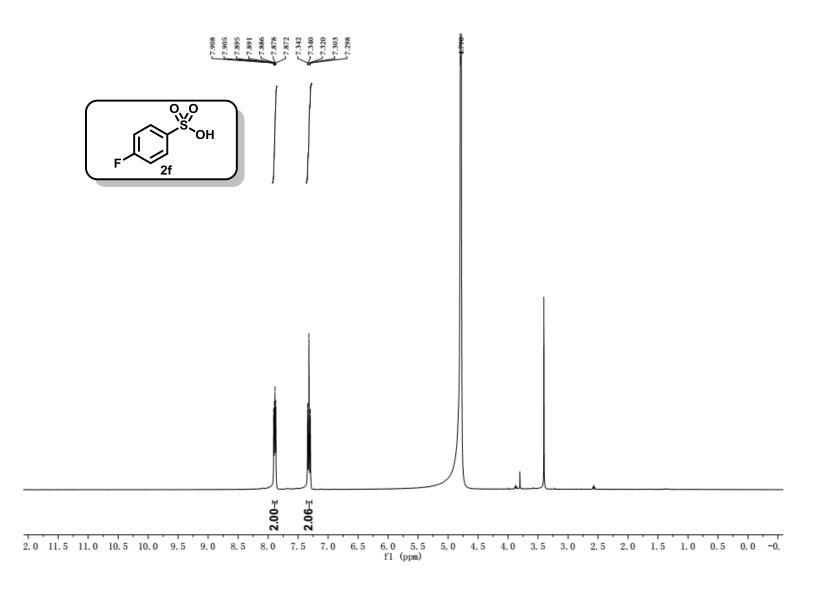


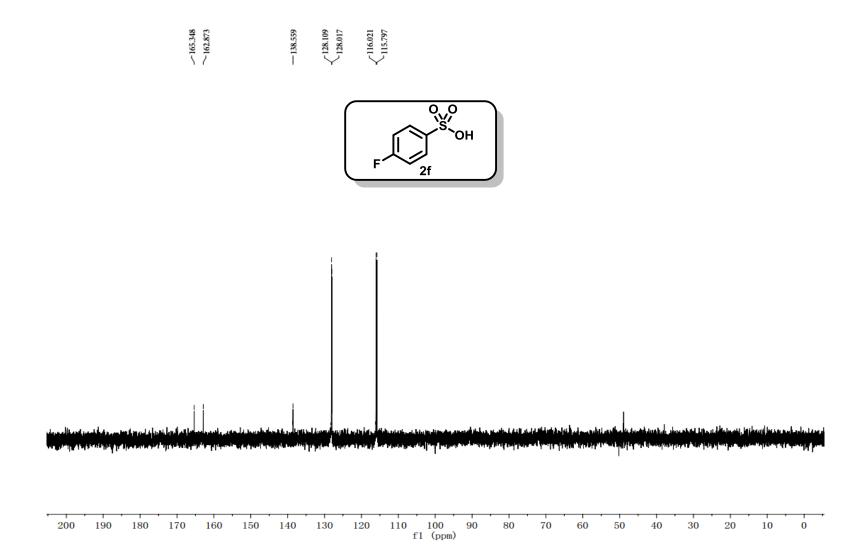




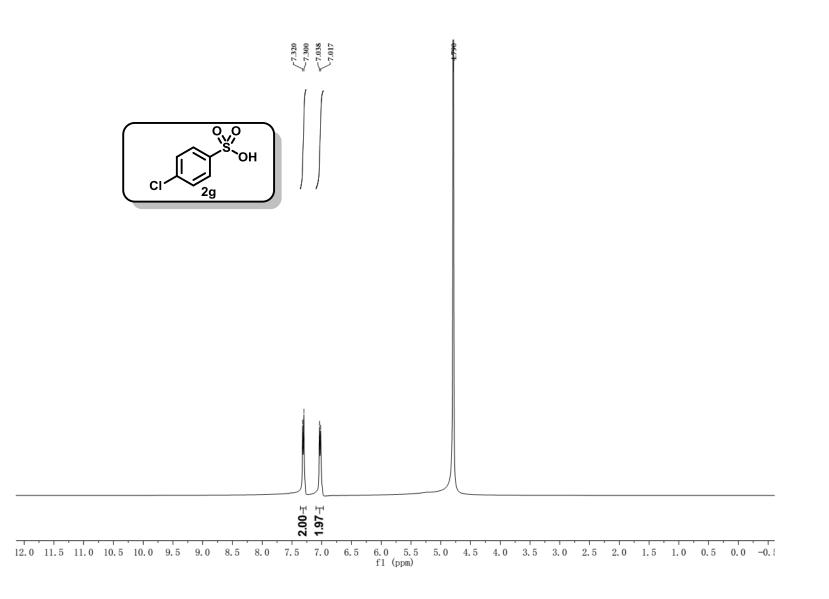


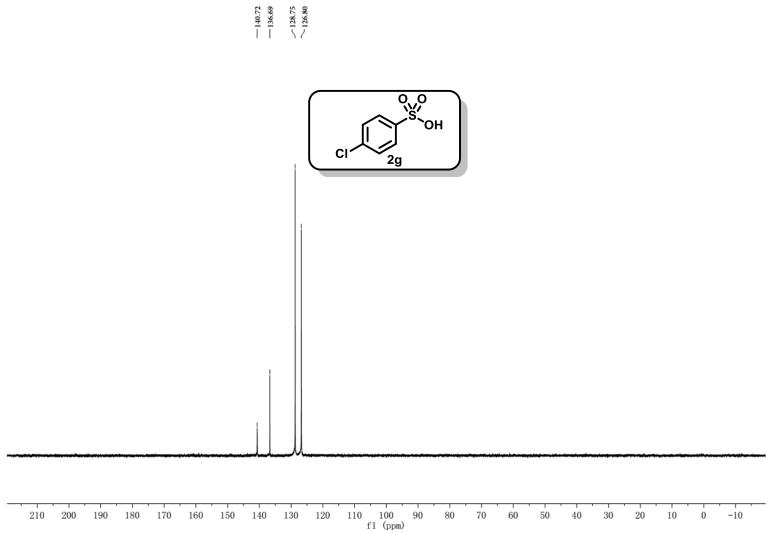


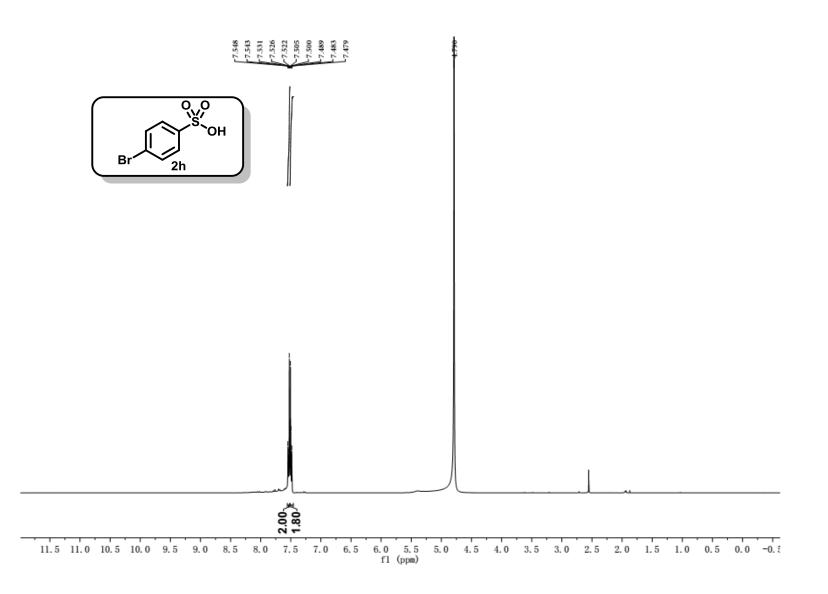


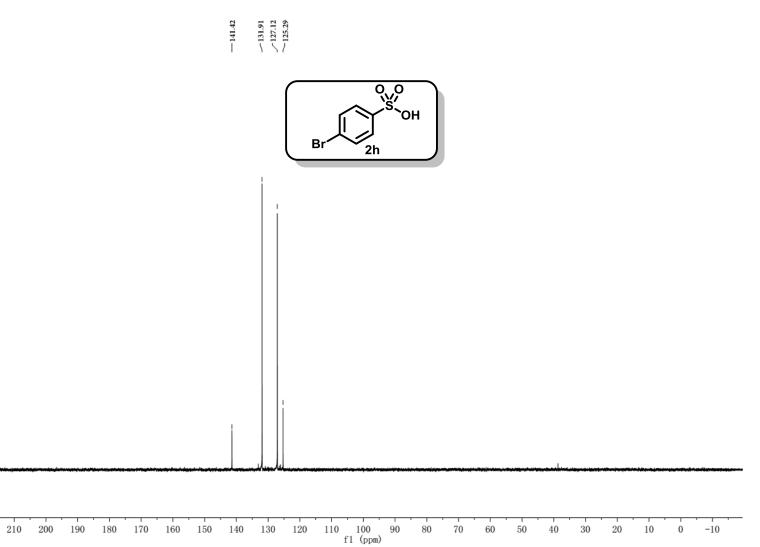


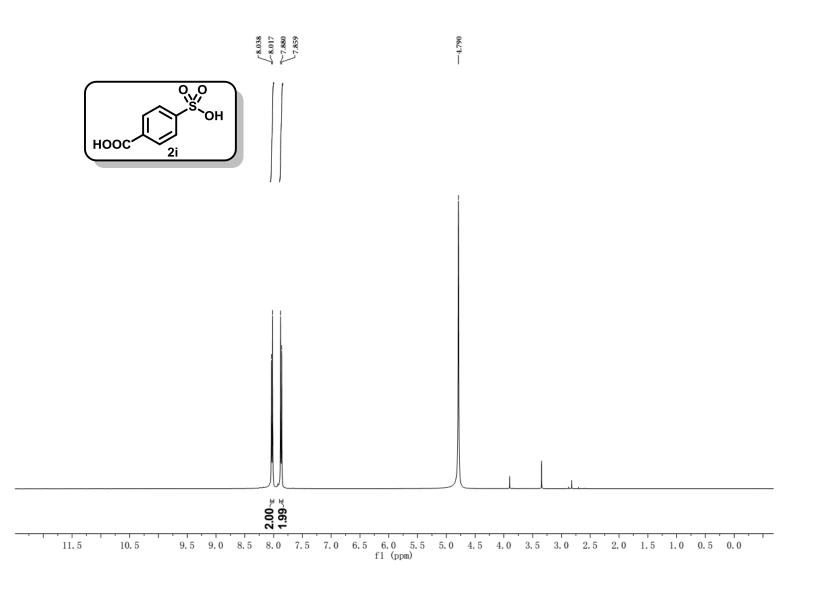


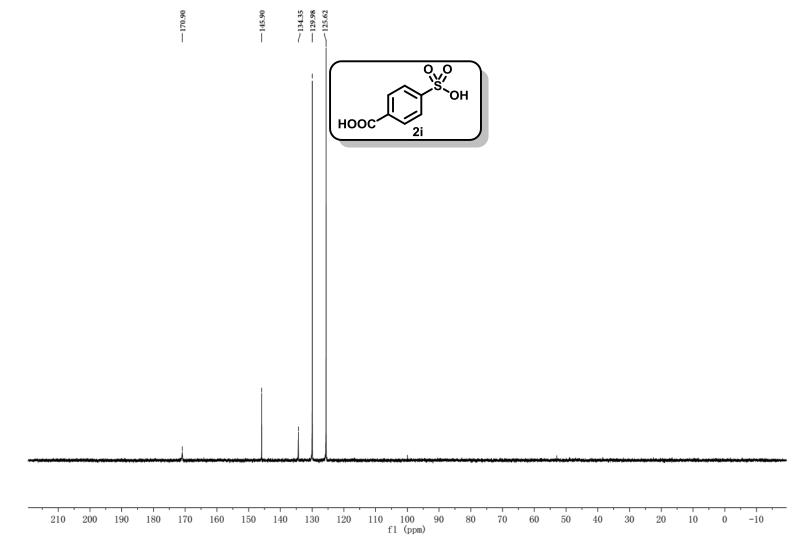


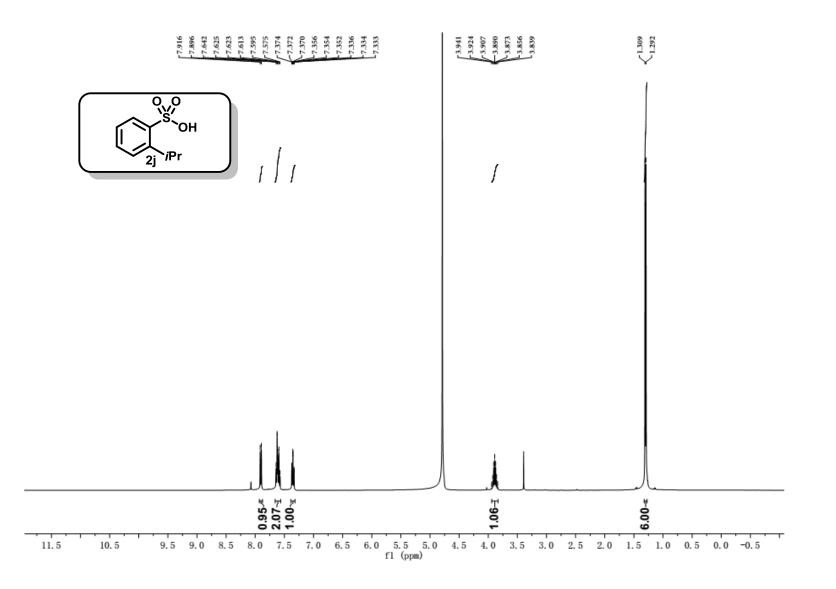


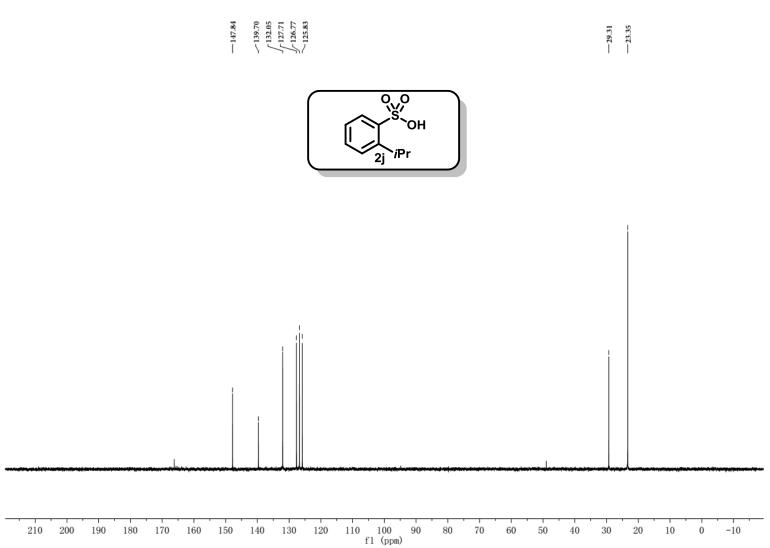


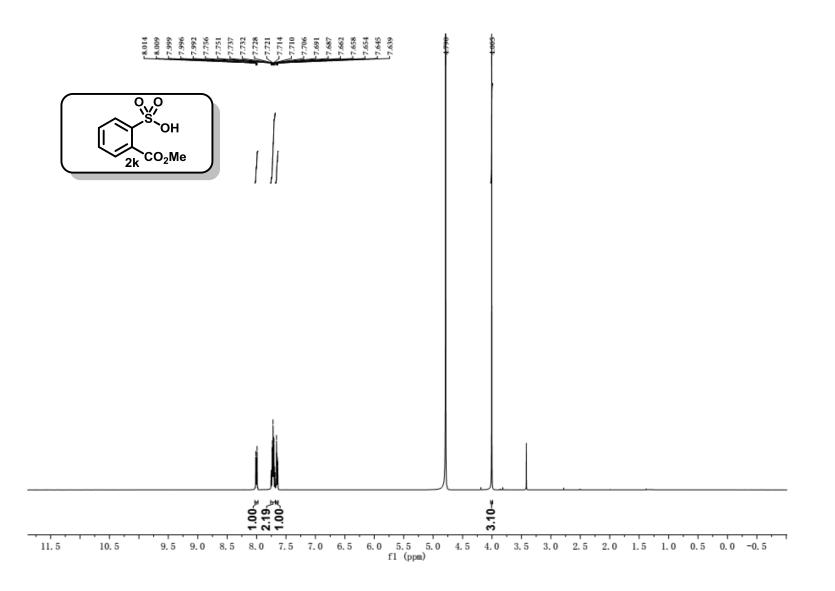


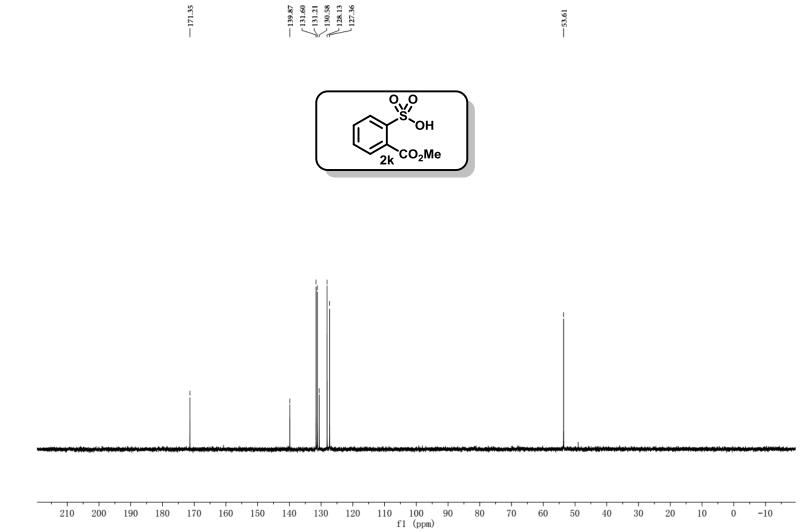


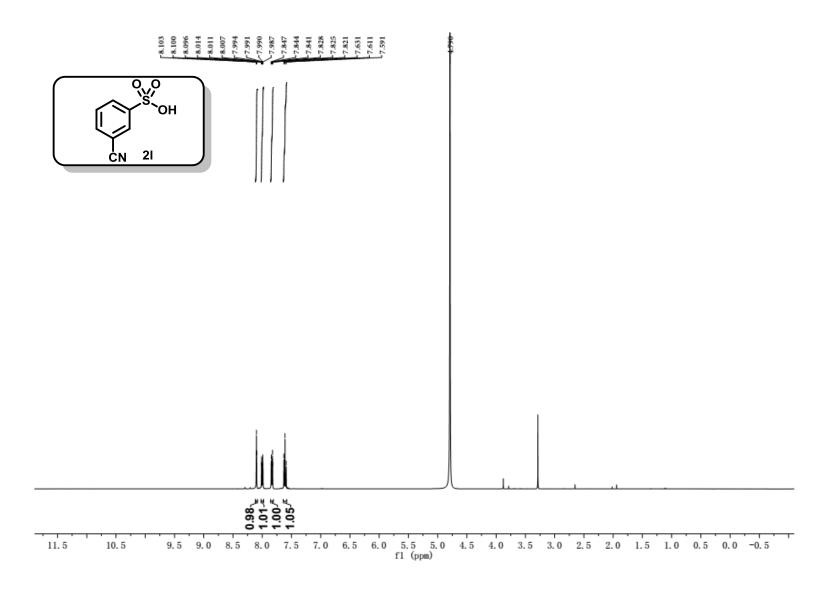


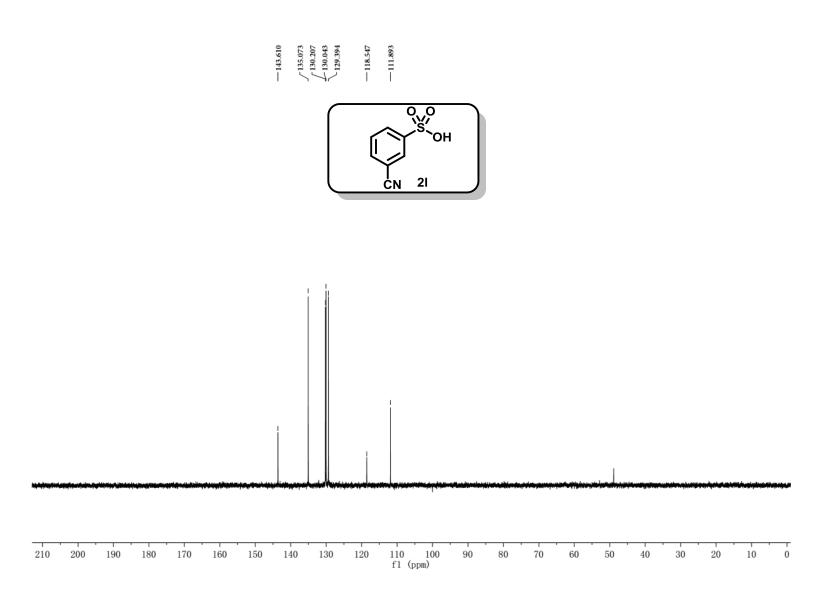


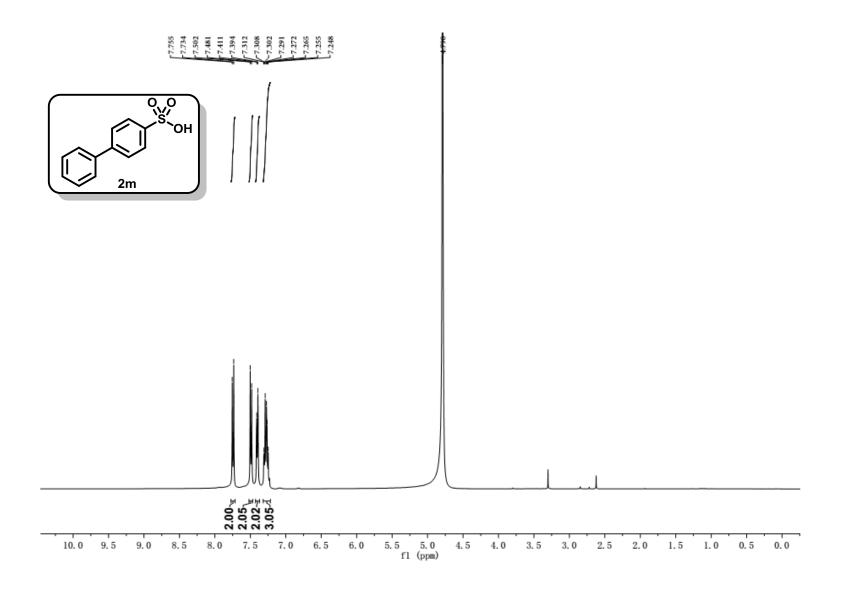


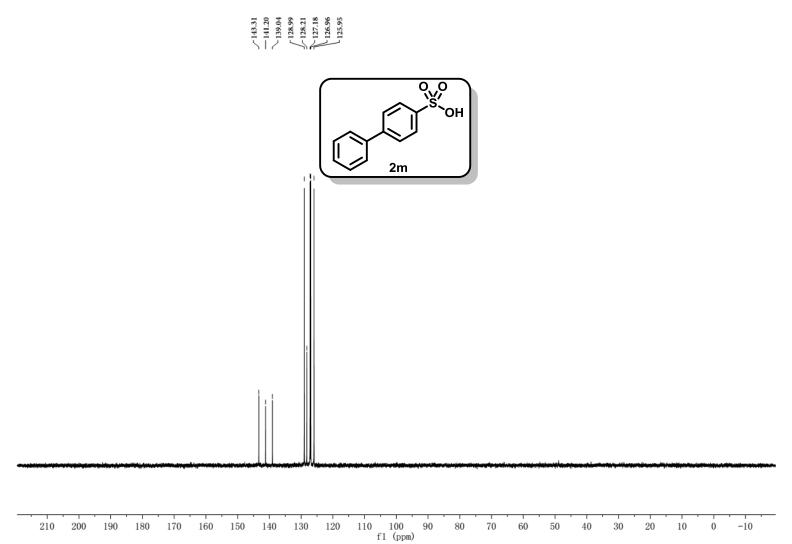


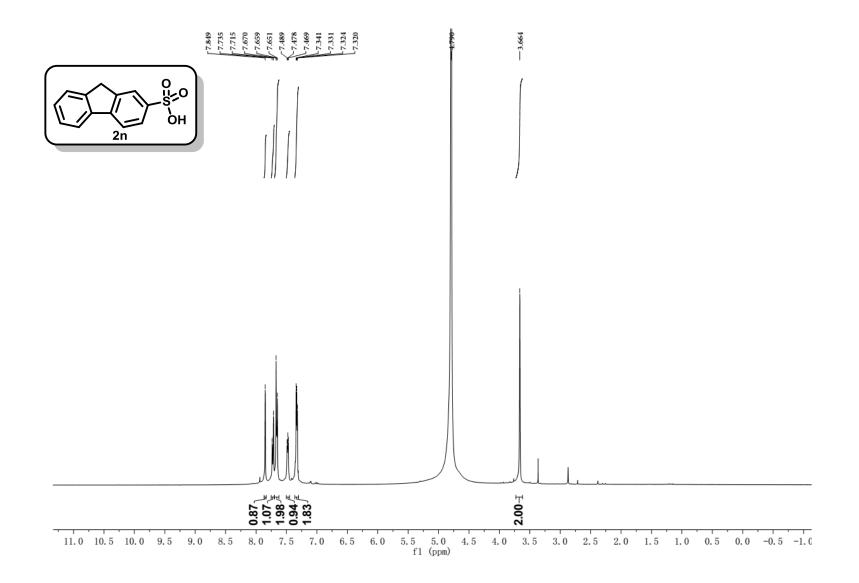


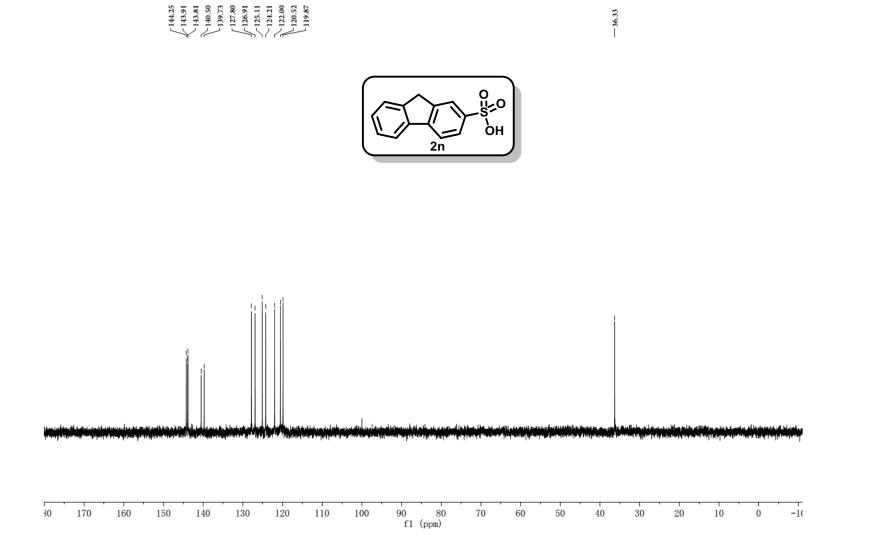


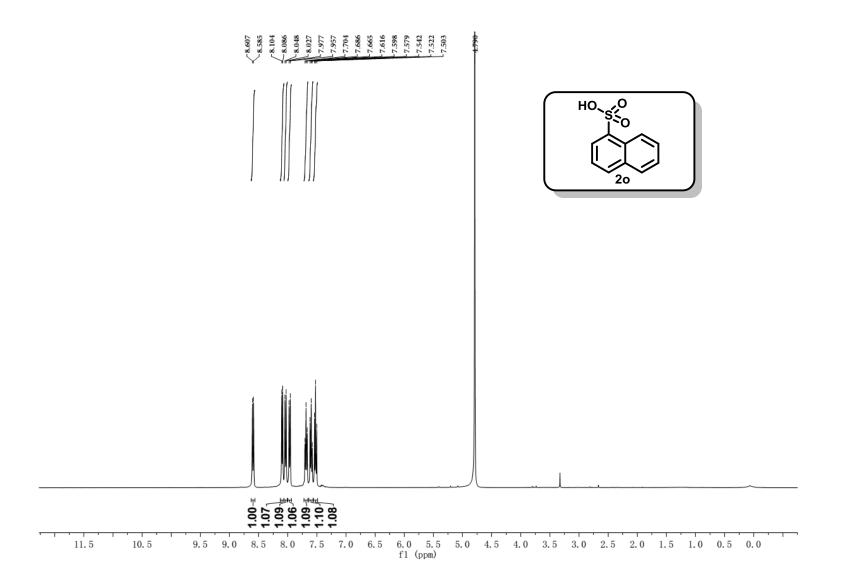


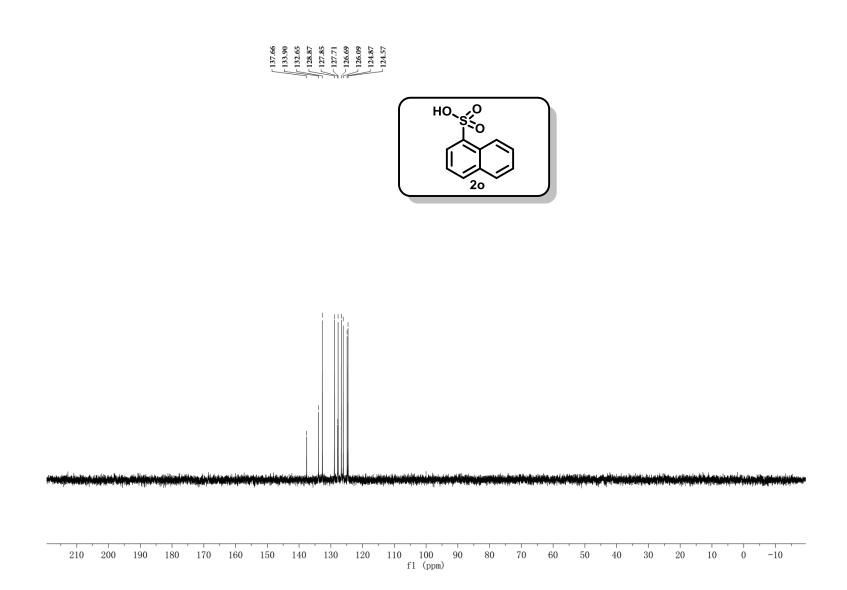


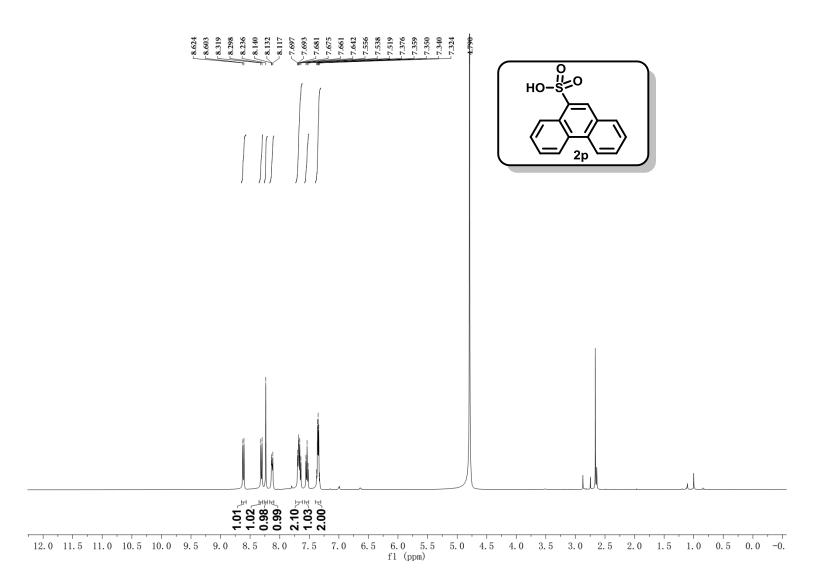


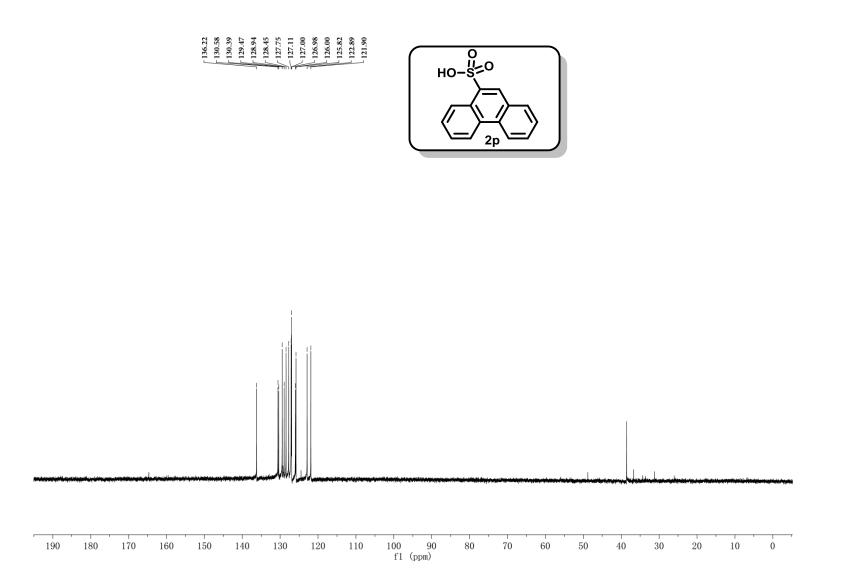


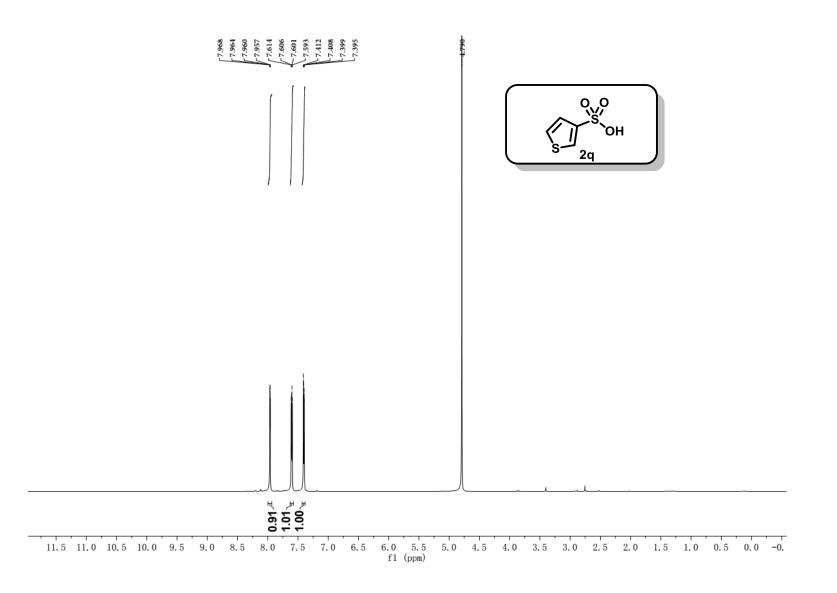


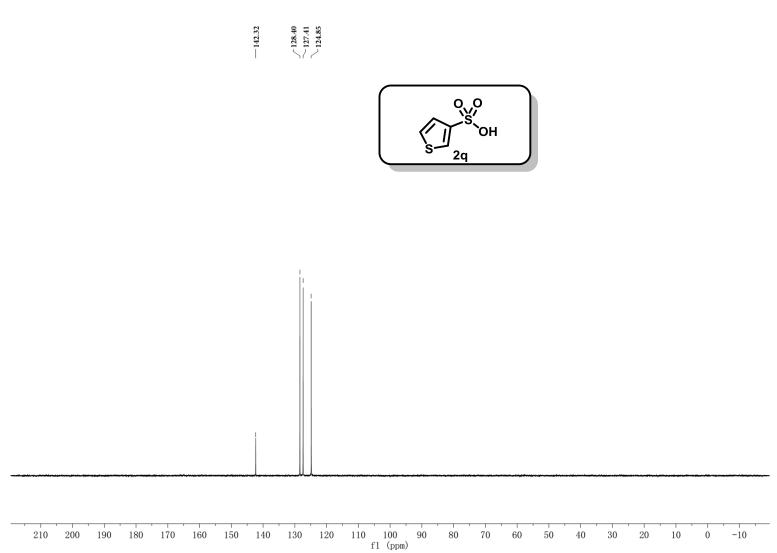


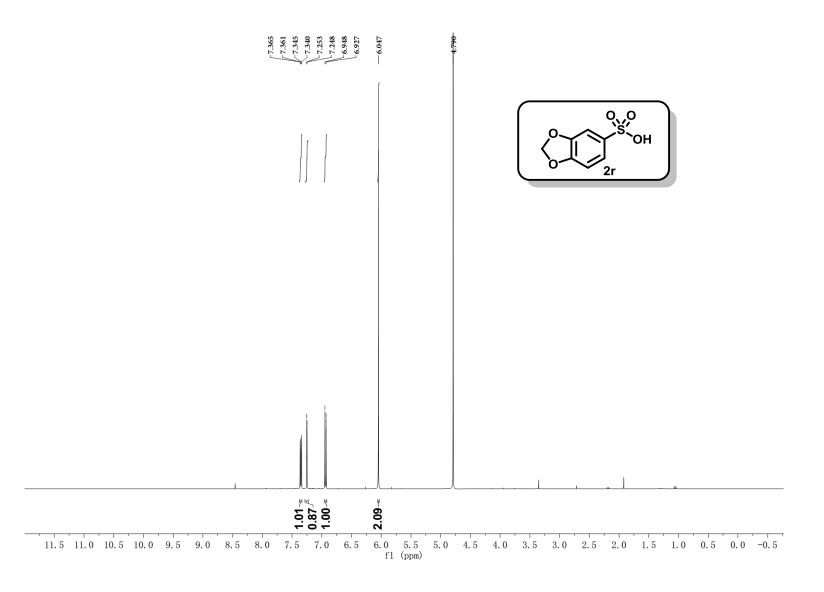


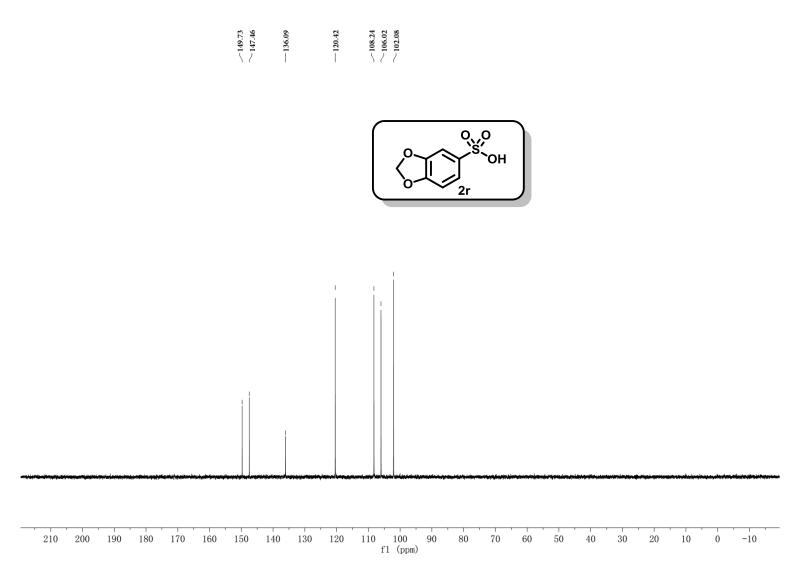


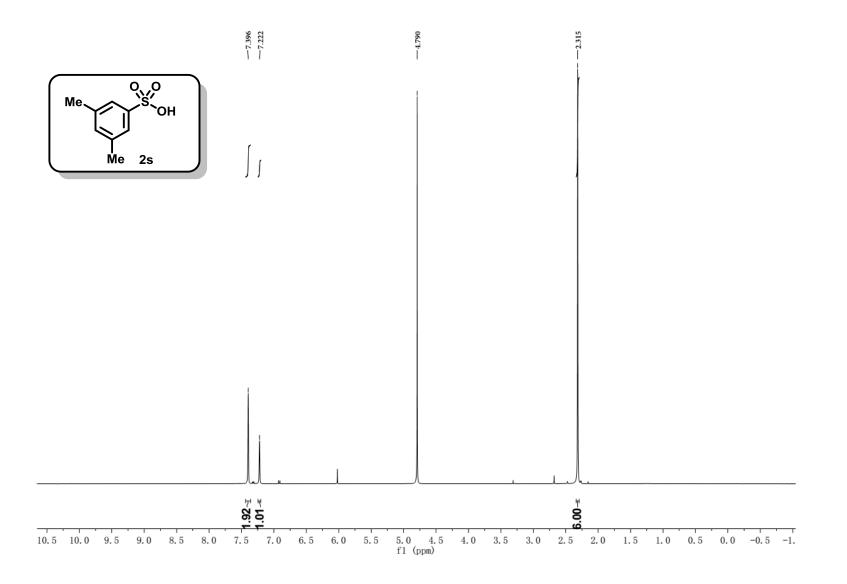


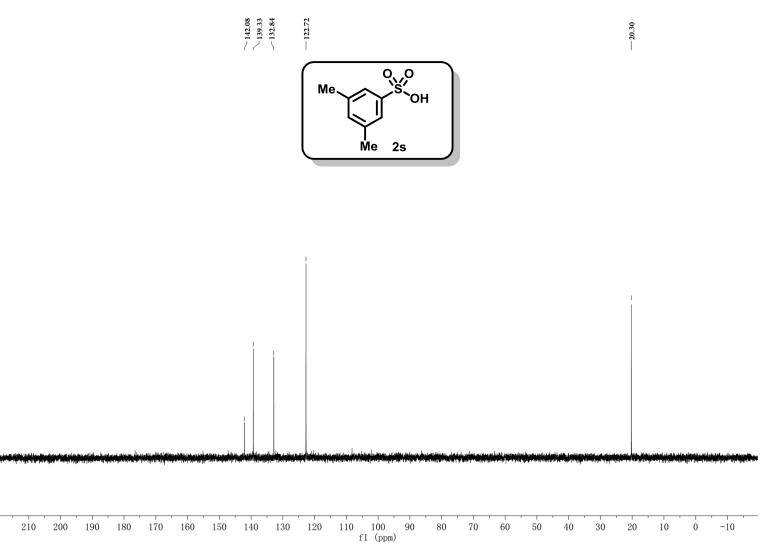


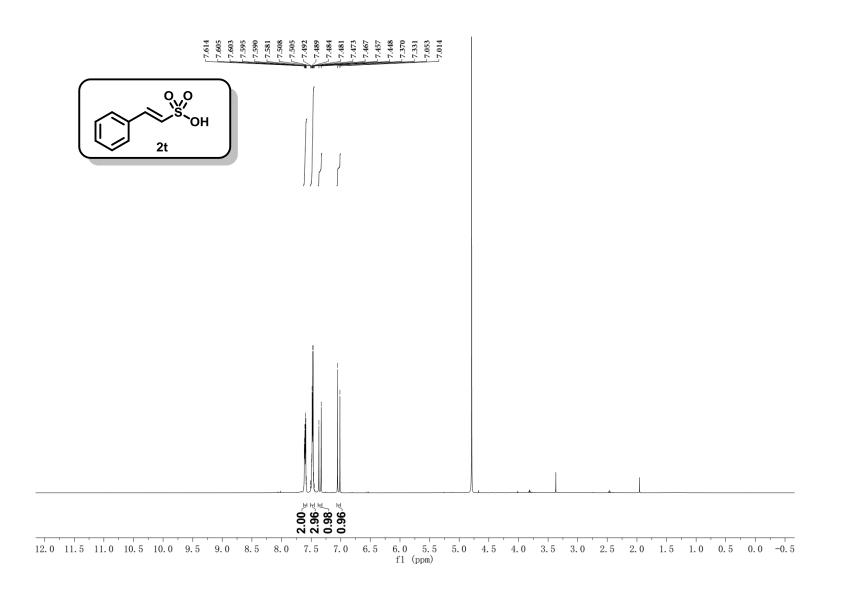


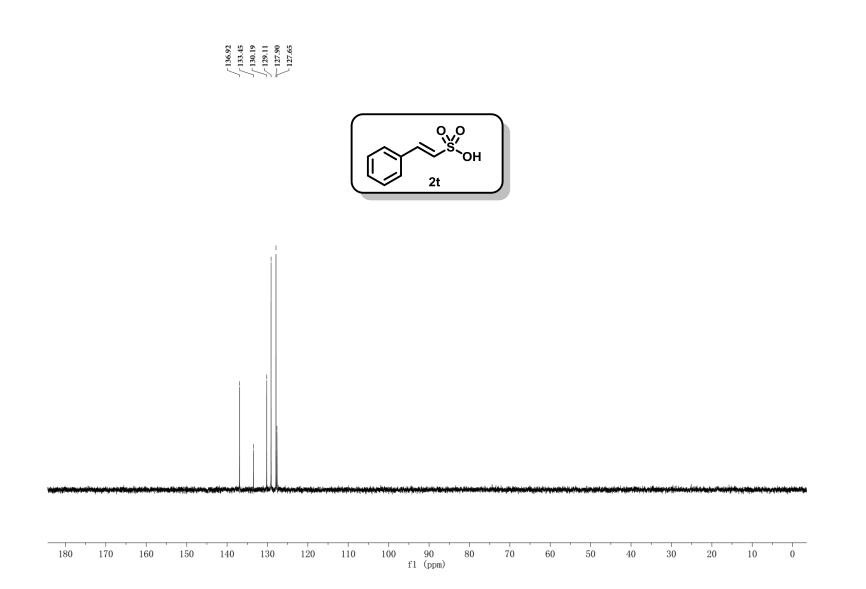


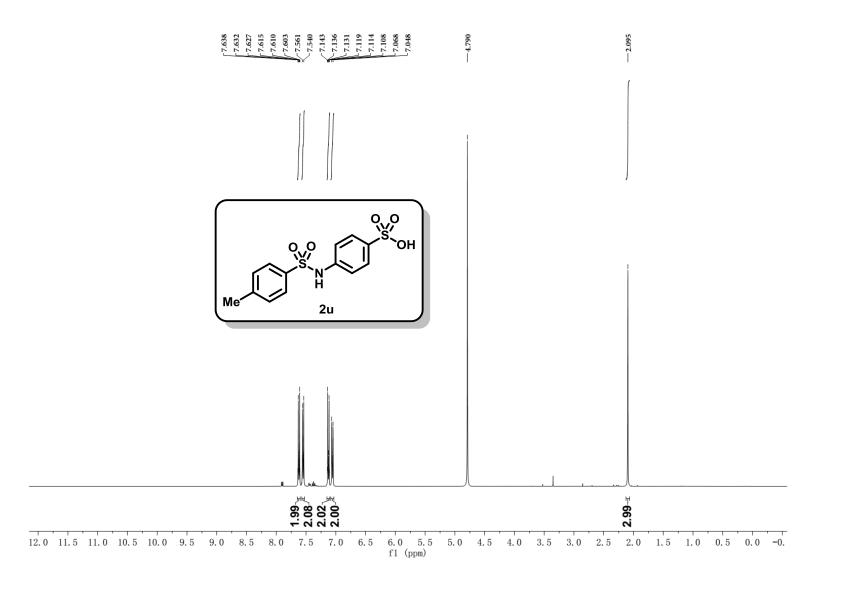


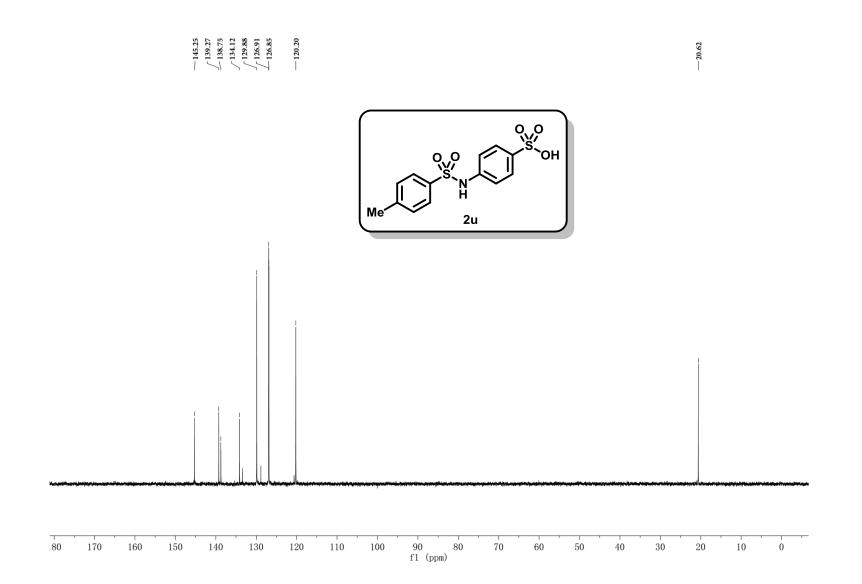


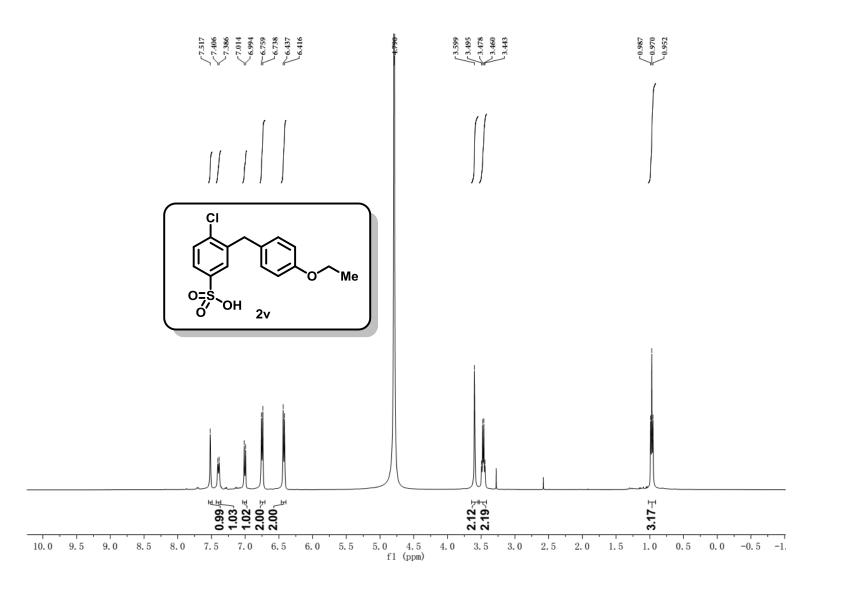


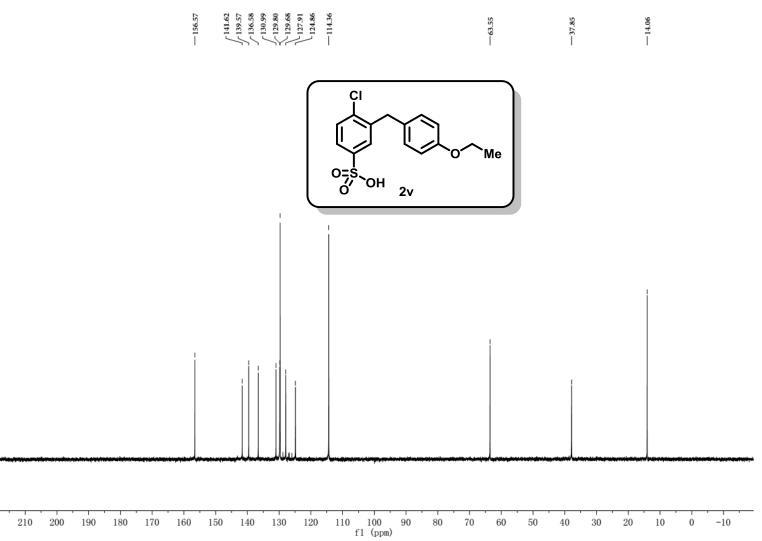


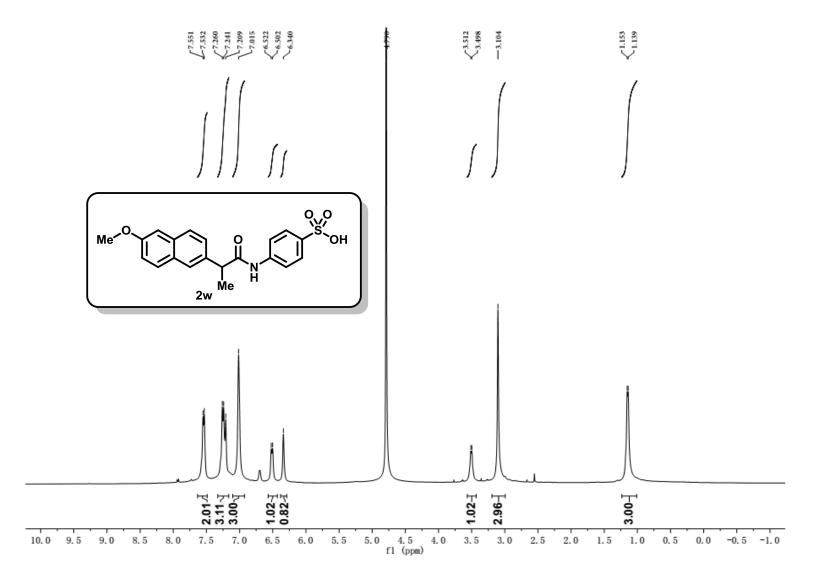


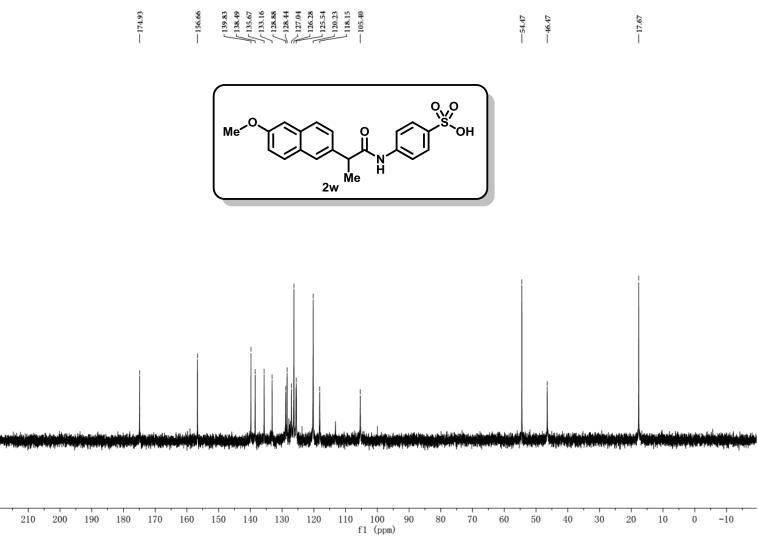


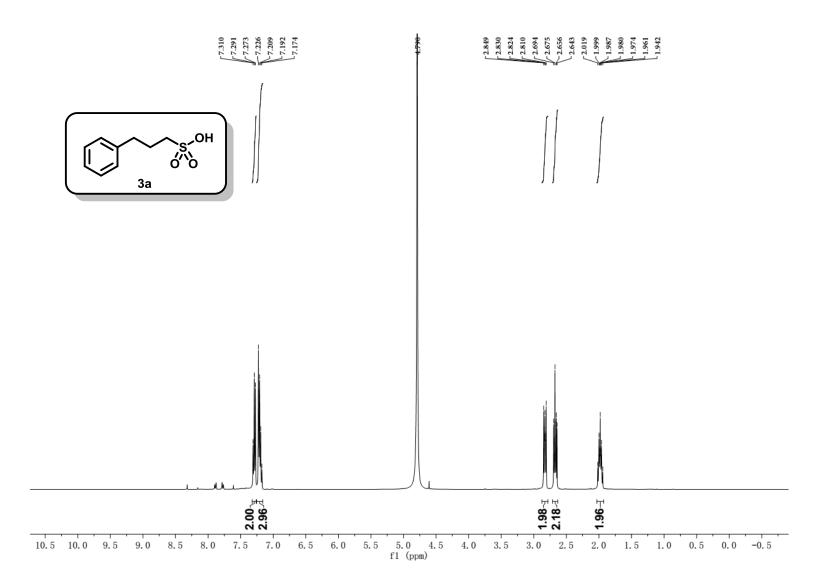


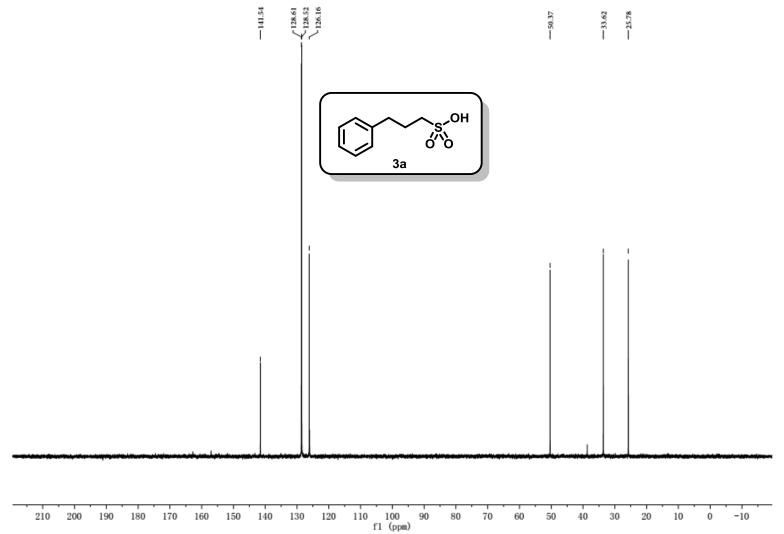


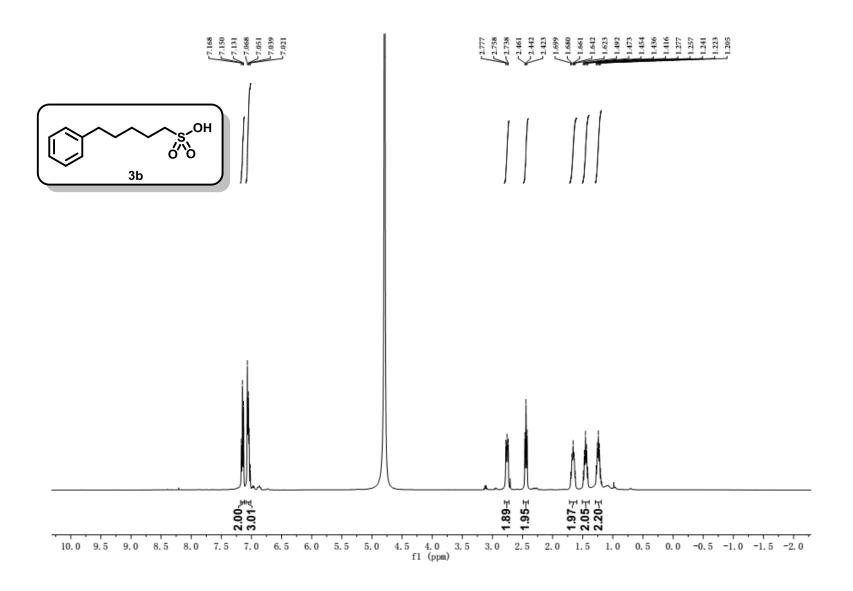


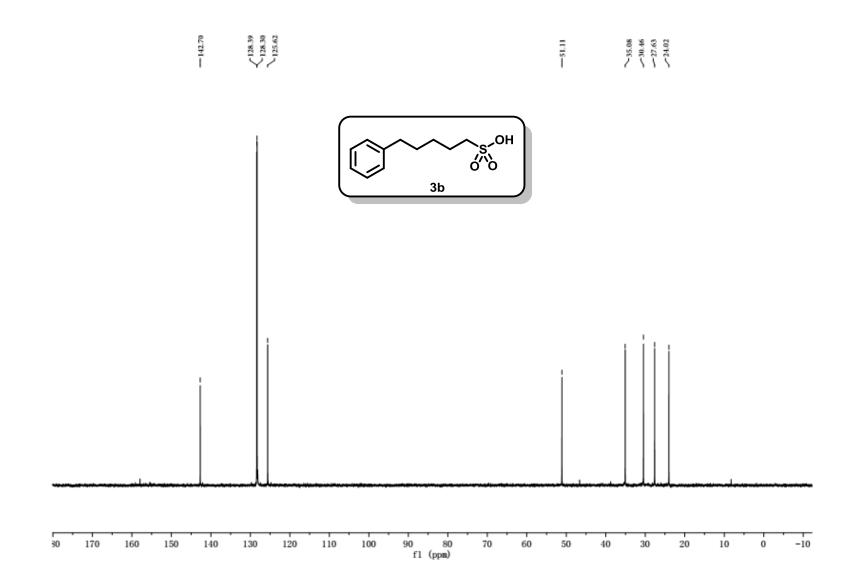


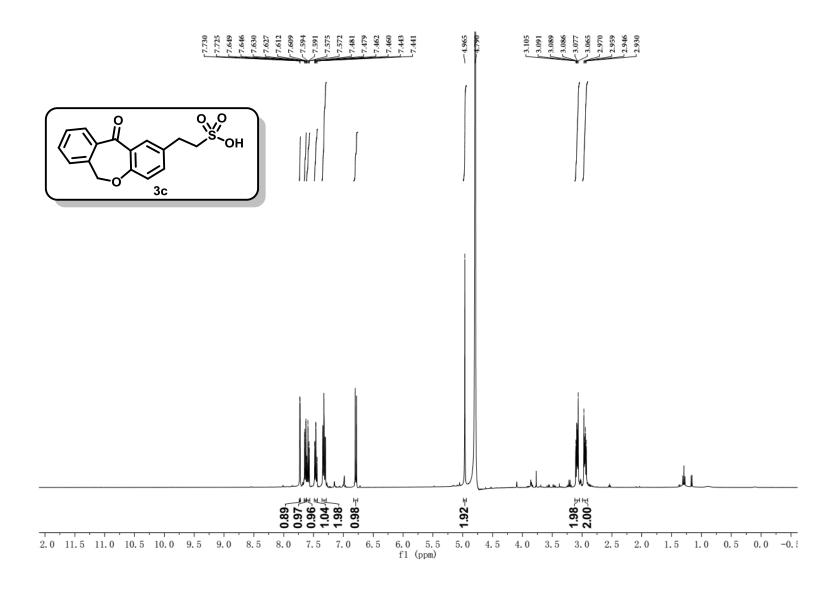


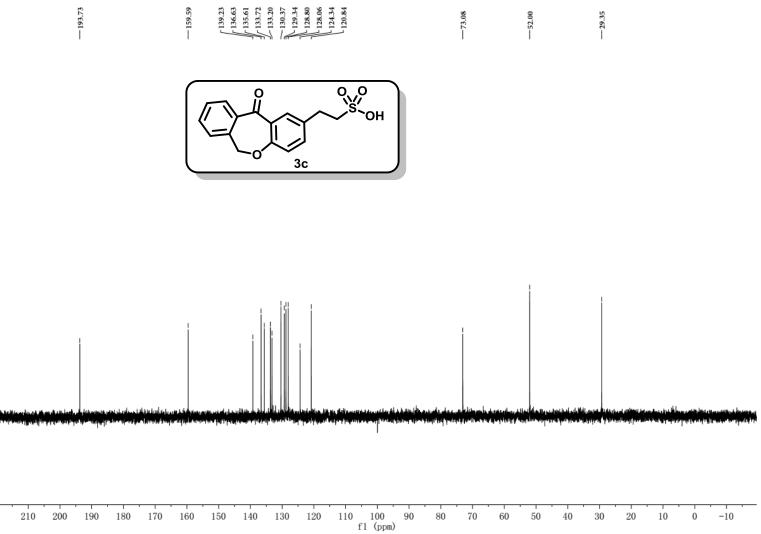


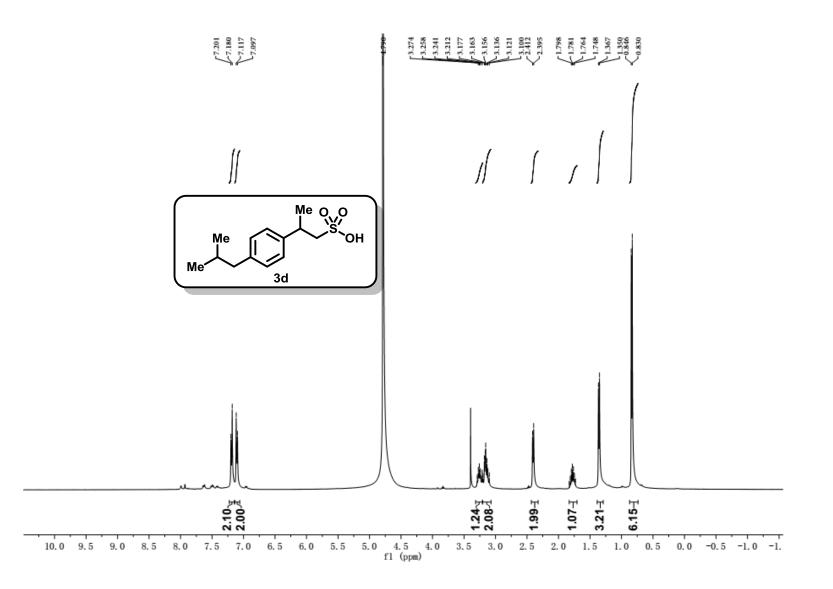


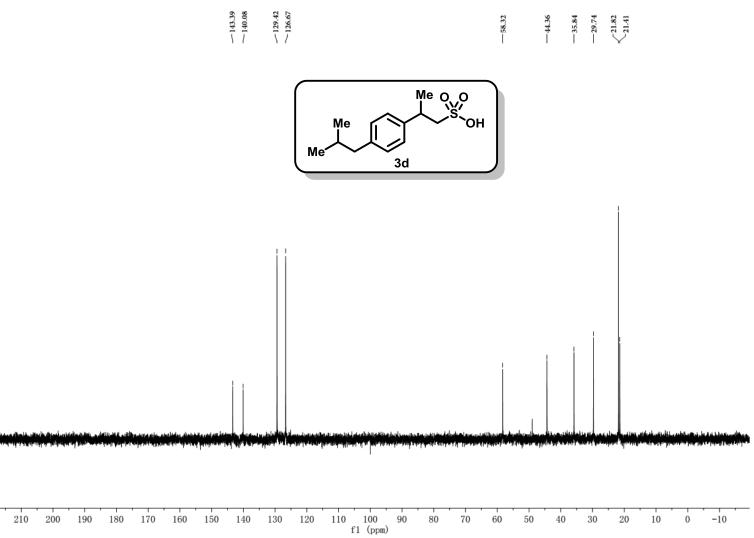


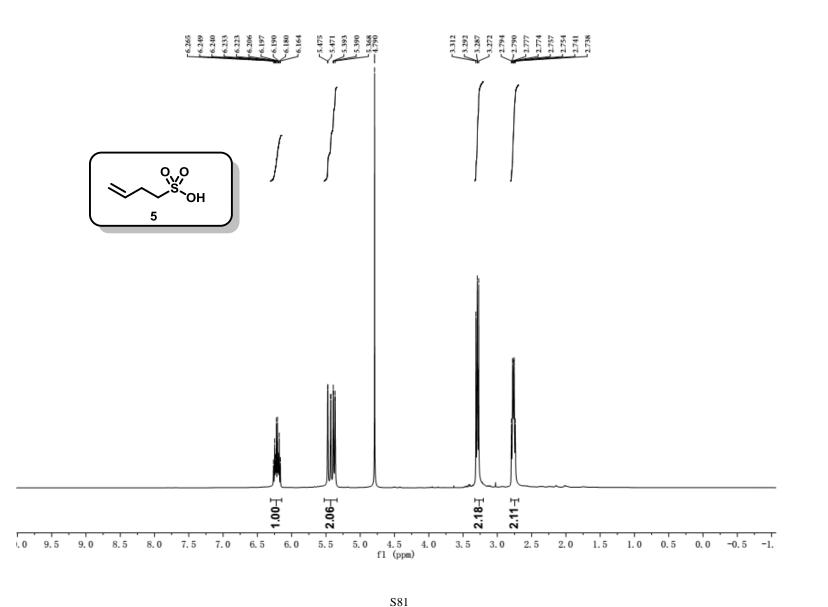


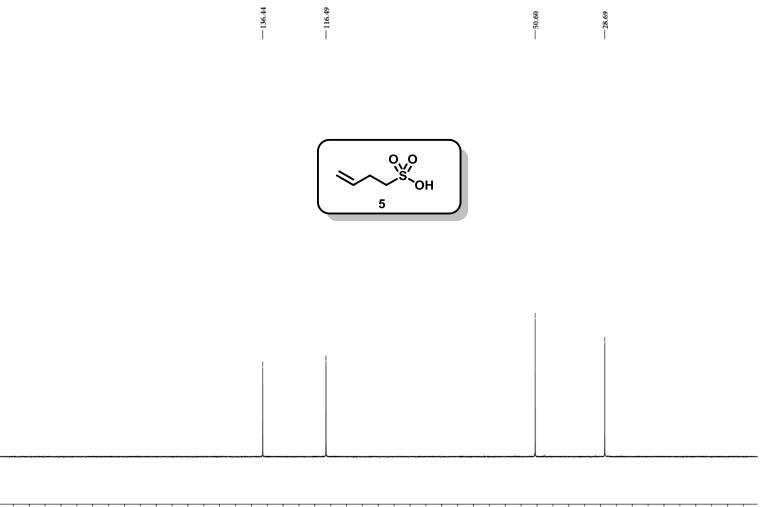












210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)