Electronic Supplementary Information (ESI) for

On the improvement of properties of composites derived from

wasted cottonseed protein by rational cross-linking and natural fiber

reinforcement

Hangbo Yue,*^a Yuru Zheng,^a Pingxuan Zheng,^a Jianwei Guo,^a, Juan P. Fernández-Blázquez,^b James H. Clark,^c and Yingde Cui^d

^{a.} School of Chemical Engineering & Light Industry, Guangdong University of Technology, Guangzhou 510006, China.

- ^{b.} IMDEA Materials Institute, Eric Kandel 2, Getafe, Madrid 28906, Spain.
- ^{c.} Green Chemistry Centre of Excellence, University of York, York, UK.
- ^{d.} Guangzhou Vocational and Technical University of Science and Technology, Guangzhou 510550, China

*Correspondence: E-mail: hangbo.yue@gdut.edu.cn (H.Y).

Section S1 Supplementary experiments

Cottonseed protein waste powder treatment

Purification of cottonseed protein (CP) powder was carried out using the alkali dissolution and acid precipitation method. Experimental procedures are described as follows: Firstly, 30 g of CP powder was added into 500 mL NaOH solution with pH of 12, and stirred for 1 h at room temperature. After the solution was centrifuged at the rate of 10000 r/min for 10 min to obtain a supernatant, its pH was adjusted to 5 using 1 mol/L HCl, and conditioned at 4 °C for 12 h. Then, the mixture was separated using the same centrifugation process (10000 r/min for 10 min), and the sediment was washed with deionized water 3 times to remove the excess NaCl. Finally, the precipitate was freezedried to obtain cottonseed protein concentrate (CPC) for further uses.

Determination of amino acids

The contents of hydrolyzed amino acids in CP powder and CPC were obtained by an automatic amino acid analyzer (L-8900, Hitachi) in accordance with GB 5009. 124-2016, and the results were listed in Table S1. The specific composition of amino acids guarantees a good processibility of cottonseed protein due to its high plasticizing efficiency, calculated by the ratio of the total contents of threonine, serine, and tyrosine to cysteine¹.

Sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE)

Sample CPC was solubilized in 1 M Tris-HCl buffer. After heating at 100 °C for 5 min, 10 μ L of the mixture was loaded into 12% polyacrylamide gel slabs. Electrophoresis pattern was determined at a constant voltage of 150 V. The gel was stained with Coomassie blue (0.1% Coomassie brilliant blue R-250, 25% isopropanol, 10% glacial acetic acid, 64.9% deionized water), and later de-stained using decolorizing solution (10% acetic acid, 5% ethanol, 85% deionized water).

Sisal fiber treatment

Natural sisal fiber bundles were cut at a length of 10 cm, immersed in 10% NaOH for 4 h, washed repeatedly with pure water to get a neutral filtrate, dried at 60 °C overnight in vacuum, and alkalized sisal fibers were obtained and stored prior to further processing.

Preparation of dialydehyde starch

A modified method based on previously reported approach² was used. In a typical experiment, 8 g soluble starch was added to 100 mL NaIO₄ solution (0.3 mol/L, pH=2.0), stirred at 38 °C for 4 h. Then the precipitate was washed thoroughly with water and ethanol absolute until a colorless and neutral filtrate was obtained. After that, the cleaned precipitate was dried at 45 °C in vacuum for 24 h, grinded and sieved to obtain DAS cross-linker.

Section S2 Supplementary tables and figures

	СР	СРС	SPI ³
hydrolyzed content (g/100g)	48.89	57.43	64.92
Asp	2.32	3.04	7.44
Thr	1.54	1.98	2.24
Ser	4.56	5.02	3.04
Glu	10.32	11.97	11.0
Pro	0.85	2.09	1.97
Gly	3.19	3.35	3.36
Ala	3.23	3.86	2.00
Cys	2.34	2.41	0.30
Val	0.35	0.72	10.7
Met	0.59	1.24	0.73
lle	1.79	0.93	2.69
Leu	4.93	5.45	4.67
Tyr	3.02	3.35	2.06
Phe	2.22	2.46	3.23
Lys	1.54	1.99	3.72
His	5.14	5.68	1.49
Arg	0.96	1.89	4.28

Table S1 Amino acid composition of cottonseed protein (CP), CPC and soy protein isolate (SPI).

 Table S2 Chemical composition of natural and alkalized sisal fibers.

	Cellulose (%)	Hemicellulose (%)	Lignin (%)
Natural sisal fiber	60.5±0.9	26.4±0.6	3.5±0.1
Alkalized sisal fiber	72.1±0.5	14.2±0.6	5.7±0.4

Note: Chemical composition of natural and alkalized sisal fibers was determined by the classic acid-detergent fiber method, also known as VAN SOEST method⁴. Pretreatment: sisal fiber was crushed into tiny particles and passed through a sieve (60 mesh).

Figure S1 SEM images of cottonseed protein derived bioplastic films.

Figure S2 Histogram showing the diameter distribution of natural and alkalized sisal fibers.

Figure S3 Scanning electron microscopy with energy dispersive X-ray spectroscopy (SEM/EDX) results of cottonseed protein, sisal fiber, and CPC/SF/DAS20 composite. SEM images of (a) cottonseed protein and (b) sisal fiber were collected from sample surfaces; SEM images (c-d) were obtained from the cross-section of CPC/SF/DAS20 composite after tensile test. Atomic percentage of elements detected from each SEM image is shown below the image.

While carbon (21 at.%) and oxygen (79 at.%) atoms were detected on the surface of sisal fiber (Figure S2b), the newly found nitrogen atom (9 at.%) from the same fiber imbedded in cottonseed protein (Figure S2c) indicates the presence of some amount of protein on the fiber; therefore, good protein/fiber compatibility with strong interface adhesion is expected.

Figure S4 Tensile stress-strain curves of natural and alkalized sisal fibers. Fiber specific stress (tenacity) is expressed by force to break per tex (linear density), N/tex is equivalent to GPa/SG. Gauge length: 20 mm; Cross-head speed: 2 mm/min.

	_				
Samples	Contac	t angle (°)	Surface	Dispersion	Polarity
			energy	component	component
			(mJ/m²)	(mJ/m²)	(mJ/m²)
	pure water	ethylene glycol			
CPC/Glycerol	34.38	36.08	73.88	1.47	72.41
CPC/SF/DAS0	39.61	40.26	68.84	1.67	67.17
CPC/SF/DAS2	80.13	67.43	25.01	8.32	16.69
0					

Table S3 Contact angle and surface energy components CP derived materials

Note: Total surface energy was determined by the combination of dispersion component and polarity component of surface free energy, using pure water and ethylene glycol as probing

molecules⁵.

	samples	contact angle	water absorption/update
		(°)	(%)
	CPC/glycerol	34	58.1
	CPC/SF/DAS0	39	59.3
	CPC/SF/DAS5	62	49.5
	CPC/SF/DAS1	68	46.6
this work(CPC/SF/DAS)	0		
	CPC/SF/DAS2	80	38.3
	0		
	CPC/SF/DAS3	72	43.5
	0		
	Jute fiber	42.1	190
jute/soy based green	SRF10	50.4	110
composites ⁶	WJS3	63.5	52.1
•	NJS3	67.8	46.6
	SPI	65	239
	MCC/SPI-1	56.7	187
	MCC/SPI-2	53.3	175
poly(dopamine) soy protein	MCC/SPI-3	52.7	204
isolate-based film ⁷	PDMCC/SPI-1	64.2	187
	PDMCC/SPI-2	74.8	164
	PDMCC/SPI-3	70.4	179
	LNCO	60.2±0.2	
	LNC2	61.6±1.2	-
licorice residue soy protein	LNC4	68.2±0.4	-
isolate nanocomposites ⁸	LNC6	72.4±0.2	-
	LNC8	73.5±0.4	-
	RP-film	54	
	RP-MA film	60	-
rise protein composite ⁹	RP-WK film	79	-
	RP-CPP film	70	-
	GSPI sheet	_	40
	SPI-5	_	35
	SPI-10	-	33
chitin whiskers/soy protein	SPI-15	-	31
isolate composites ¹⁰	SPI-20	-	31
	SPI-25	-	29
	SPI-30	-	23
acid treated carbon	SPI/NWNTs-0	_	50
nanotubes/	SPI/NWNTs-1	_	48
soy protein nanocomposites ¹¹	SPI/NWNTs-2	-	46

Table S4 Water resistance property of protein-based biocomposites

	SPI/NWNTs-3	-	43
	SPI/NWNTs-4	-	40
	SPI/NWNTs-5	-	38
	SPI-S	-	35
	SC-0.25	-	29
carbon nanotubes reinforced	SC-0.75	-	35
soy protein nanocomposites ¹²	SC-3	-	33
	SC-0.25-Ⅲ	-	33
	SC-0.25-IV	-	42
	SPI-S	-	34
	SStN-1	-	32
starch nanocrystal-reinforced	SStN-2	-	31
soy protein plastics ¹³	SStN-3	-	31
	SStN-8	-	30
	SStN-16	-	29

Figure S5 DSC thermograms showing the changes of grass transition temperature T_g with varying DAS content.

References

- 1. H. B. Yue, Y. D. Cui, P. S. Shuttleworth and J. H. Clark, *Green Chemistry*, 2012, **14**, 2009-2016.
- 2. Y. Dou, X. Huang, B. Zhang, M. He, G. Yin and Y. Cui, *RSC Advances*, 2015, **5**, 27168-27174.
- 3. J. Chen, G. Liu, V. Pantalone and Q. Zhong, *Journal of Agriculture and Food Research*, 2020, **2**, 100022.
- 4. P. J. Van Soest, *Journal of the Association of Official Agricultural Chemists*, 1963, **46**, 829-835.
- 5. D. F. Steele, R. C. Moreton, J. N. Staniforth, P. M. Young, M. J. Tobyn and S. Edge, AAPS J,

2008, **10**, 494-503.

- A. K. Behera, S. Avancha, R. K. Basak, R. Sen and B. Adhikari, *Carbohydrate Polymers*, 2012, 88, 329-335.
- 7. H. Kang, X. Song, Z. Wang, W. Zhang, S. Zhang and J. Li, *ACS Sustainable Chemistry & Engineering*, 2016, **4**, 4354-4360.
- 8. Y. Han, M. Yu and L. Wang, *Industrial Crops and Products*, 2018, **117**, 252-259.
- 9. C. He, Y. Hu, Y. Wang, Y. Liao, H. Xiong, C. Selomulya, J. Hu and Q. Zhao, *Green Chemistry*, 2020, **22**, 490-503.
- 10. Y. Lu, L. Weng and L. Zhang, *Biomacromolecules*, 2004, **5**, 1046-1051.
- 11. A. Xiang, G. Guo and H. Tian, *Journal of Polymers and the Environment*, 2016, **25**, 519-525.
- 12. H. Zheng, F. Ai, M. Wei, J. Huang and P. R. Chang, *Macromolecular Materials and Engineering*, 2007, **292**, 780-788.
- 13. H. Zheng, F. Ai, P. R. Chang, J. Huang and A. Dufresne, *Polymer Composites*, 2009, **30**, 474-480.