Supporting Information

Enzymatic production of β -glucose 1,6-bisphosphate through manipulation of catalytic magnesium coordination

Henry P. Wood,^a Nicola J. Baxter,^{a,b} F. Aaron Cruz-Navarrete,^a Clare R. Trevitt,^a Andrea M. Hounslow^a and Jonathan P. Waltho^{a,b,*}

^aKrebs Institute for Biomolecular Research, Department of Molecular Biology and Biotechnology, The University of Sheffield, Sheffield, S10 2TN, United Kingdom; ^bManchester Institute of Biotechnology and School of Chemistry, The University of Manchester, Manchester, M1 7DN, United Kingdom

^{*}To whom correspondence may be addressed: Prof. Jonathan Waltho, Krebs Institute for Biomolecular Research, Department of Molecular Biology and Biotechnology, The University of Sheffield, Sheffield, S10 2TN, +44 114 22717, j.waltho@sheffield.ac.uk, ORCID 0000-0002-7402-5492

Keywords: glucose bisphosphate | enzymatic production | NMR spectroscopy

Figure S1. Initial rate measurements for the conversion of β G1P to G6P catalysed by β PGM_{D170N} monitored using a glucose 6-phosphate dehydrogenase (G6PDH) coupled assay. (A) Reactions were conducted in 200 mM K⁺ HEPES buffer (pH 7.2), 5 mM MgCl₂, 1 mM NAD⁺ and 5 U/mL G6PDH containing 10 μ M β PGM_{D170N}, 1 mM β G1P and were initiated using increasing concentrations of β G16BP (10, 25, 50, 100, 150, 250, 350, 750, 1000, 1500, 2500 μ M). Initial rates of G6P production were obtained using an in-house Python non-linear least squares fitting program yielded an apparent K_m (β G16BP) = 150 ± 13 μ M. (B) Reactions were conducted in 200 mM K⁺ HEPES buffer (pH 7.2), 5 mM MgCl₂, 1 mM NAD⁺ and 5 U/mL G6PDH containing 10 μ M β PGM_{D170N} and increasing concentrations of β G1P (50, 100, 200, 300, 500, 700, 1000, 1500, 2000, 3000, 5000 μ M) and were initiated using 250 μ M β G16BP. Initial rates of G6P production were obtained using a linear least-squares fitting routine Subsequent fitting of these rates to Equation 2 using an in-house Python non-linear least squares fitting routine fitting of these rates to Equation μ M and were initiated using 250 μ M β G16BP. Initial rates of G6P production were obtained using a linear least-squares fitting routine Subsequent fitting of these rates to Equation 2 using an in-house Python non-linear least squares fitting program yielded an apparent K_m (β G1P) = 6.9 ± 1.0 μ M and an apparent K_i (β G1P) = 1536 ± 170 μ M.

Figure S2. Activity of βPGM_{WT} and βPGM_{D170N} with increasing MgCl₂ concentration. Normalised initial rate measurements for the conversion of β G1P to G6P by either β PGM_{WT} (black circles) or βPGM_{D170N} (green circles) at different concentrations of MgCl₂ monitored using a G6PDH coupled assay. Reactions were conducted in 200 mM K⁺ HEPES buffer (pH 7.2) containing different concentrations of MgCl₂ (0, 0.1, 0.3, 0.6, 1.0, 1.5, 2.5, 5, 10, 20, 50 and 100 mM), 1 mM NAD⁺, 5 U/mL G6PDH, 1 mM ßG1P and either 1 nM ßPGM_{WT} with 100 μM βG16BP, or 10 μM βPGM_{D170N} with 1250 μM βG16BP. Initial rates of G6P production were obtained using a linear least-squares fitting routine. Subsequent fitting of these rates to Equation 2 using an in-house Python non-linear least squares fitting program yielded an apparent $K_{\rm m}$ (Mg²⁺) = 180 ± 40 μ M for β PGM_{WT} and an apparent $K_{\rm m}$ (Mg²⁺) = 690 ± 110 μ M for βPGM_{D170N}. The standard error of the mean of three technical replicates falls within the radii of the data points. The discrepancy between the $K_{\rm m}$ (Mg²⁺) value obtained using the G6PDH coupled assay and ³¹P NMR time-course experiments (Fig. 3B-C) is likely due to the different conditions employed, although similar maximal initial rates of reaction are observed using each technique (maximal initial rate using G6PDH coupled assay = 0.009 s^{-1} ; maximal initial rate using ³¹P NMR time-course experiments = 0.012 s^{-1}). These observations indicate that a component of the reaction mixture used in the ³¹P NMR experiments is competing with Mg^{2+} ions to bind to βPGM_{D170N} . One notable difference between the conditions of each technique is the 10-fold higher βG1P concentration used in the ³¹P NMR experiments. Given that βPGM_{D170N} experiences βG1P inhibition (Fig. S1B) at a comparable level to βPGM_{WT}, this behaviour provides a likely source for the competitive inhibition observed in the ³¹P NMR experiments. Although the mechanism for β G1P inhibition has not been structurally characterised, it is plausible that β G1P binds to Mg_{cat}-free β PGM_{D170N} to form a closed complex, thus preventing \u03b3G16BP production in Step 1 and G6P production in Step 2, until dissociation occurs.

Figure S3. Solution behaviour of substrate-free β PGM. Overlay of ¹H¹⁵N-TROSY spectra for substrate-free β PGM_{WT} (black) and substrate-free β PGM_{D170N} (green), recorded in 50 mM K⁺ HEPES buffer (pH 7.2), 5 mM MgCl₂, 2 mM NaN₃, 10% ²H₂O (v/v) and 1 mM TSP. There is a broad correspondence between peaks of β PGM_{WT} and β PGM_{D170N}, indicating a similar solution behaviour and overall protein fold. Two conformers are present in slow exchange (~70% conformer A and ~30% conformer B) for both β PGM_{WT} and β PGM_{D170N}, which arise from *cis-trans* isomerisation at the K145-P146 peptide bond.²³ Additionally, ~15 peaks are present for β PGM_{D170N}, which are absent in β PGM_{WT} due to backbone conformational exchange on the millisecond timescale.²³ This observation indicates that residue N170 in β PGM_{D170N} abolishes the intermediate exchange dynamic that residue D170 propagates in β PGM_{WT}.

Figure S4. Comparative overlays of a section of ${}^{1}H^{15}N$ -TROSY spectra for substrate-free β PGM recorded in 50 mM K⁺ HEPES buffer (pH 7.2), 5 mM MgCl₂, 2 mM NaN₃, 10% ${}^{2}H_{2}O$ (v/v) and 1 mM TSP. (A) Comparison of substrate-free β PGM_{D170N} that had been preincubated at 25 °C for 0 h (light green) and 48 h (dark green). Near-identical spectra indicate that the incubation process has a negligible effect on the stability of substrate-free β PGM_{D170N}. (B) Comparison of substrate-free β PGM_{D170N} preincubated at 25 °C for 0 h (light green) and substrate-free β PGM_{D170N} preincubated at 25 °C for 0 h (light green) and substrate-free β PGM_{WT} (black). (C) Comparison of substrate-free β PGM_{D170N} preincubated at 25 °C for 48 h (dark green) and substrate-free β PGM_{WT} (black). The absence of observable β PGM_{WT} peaks in the β PGM_{D170N} spectrum indicates that reversion of β PGM_{D170N} to β PGM_{WT} through deamidation is not a process that occurs readily under these sample conditions.

Figure S5. Activity of β PGM_{D170N} in 200 mM K⁺ HEPES buffer (pH 7.2) and 100 mM MgCl₂ monitored using ³¹P NMR time-course experiments. (A) Reaction kinetics for the equilibration of 10 mM β G1P with G6P catalysed by 200 μ M β PGM_{D170N} that had been preincubated at 25 °C for 0 h (light green symbols), 24 h (medium green symbols) and 48 h (dark green symbols). The reactions were initiated by and timed from the addition of 20 mM AcP. Normalised integral values of the ³¹P resonances of β G16BP and G6P have been converted to concentrations and are plotted as a function of 10 mM β G1P with G6P catalysed by 200 nM β PGM_{D170N} to β PGM_{D170N} containing 200 nM β PGM_{WT} (representative of 0.1% reversion of β PGM_{D170N} to β PGM_{WT} through deamidation). The reaction was initiated by and timed from the addition of 20 mM AcP. Normalised integral values of the ³¹P resonances of the ³¹P resonances of β G16BP (open circles) and G6P (closed circles). (B) Reaction kinetics for the equilibration of 10 mM β G1P with G6P catalysed by 200 μ M β PGM_{D170N} to β PGM_{WT} through deamidation). The reaction was initiated by and timed from the addition of 20 mM AcP. Normalised integral values of the ³¹P resonances of β G16BP and G6P have been converted to concentrations and are plotted as a function of 10 mM β G1P with G6P catalysed by 200 μ M β PGM_{U170N} to β PGM_{WT} through deamidation). The reaction was initiated by and timed from the addition of 20 mM AcP. Normalised integral values of the ³¹P resonances of β G16BP and G6P have been converted to concentrations and are plotted as a function of time for β G16BP (open circles) and G6P (closed circles).